A Model for Large Scale Self-Stabilization

Thomas Herault, Pierre Lemarinier, Olivier Peres, Laurence Pilard, Joffroy Beauquier

LRI, Université Paris-Sud

Cédric Tedeschi - WG GRAAL - May 31, 2007
A technique and some platforms

- **Peer-to-peer** networks and grids
 - large scale
 - every pair of nodes are able to communicate
 - dynamic set of *neighbors*
 - unstable platforms (crashes)

- **Self-stabilizing** algorithms
 - small scale
 - designed for distributed systems with a static topology
 - fixed set of links

- Need for overcoming this division
 - new model abstracting P2P platforms injected in self-stabilization
 - resource discovery service \rightarrow dynamic neighborhood
 - failure detection service \rightarrow crash awareness
A technique and some platforms

- **Peer-to-peer** networks and grids
 - large scale
 - every pair of nodes are able to communicate
 - dynamic set of *neighbors*
 - unstable platforms (crashes)

- **Self-stabilizing** algorithms
 - small scale
 - designed for distributed systems with a static topology
 - fixed set of links

- Need for overcoming this division
 - new model abstracting P2P platforms injected in self-stabilization
 - resource discovery service \rightarrow dynamic neighborhood
 - failure detection service \rightarrow crash awareness
A technique and some platforms

- **Peer-to-peer** networks and grids
 - large scale
 - every pair of nodes are able to communicate
 - dynamic set of *neighbors*
 - unstable platforms (crashes)

- **Self-stabilizing** algorithms
 - small scale
 - designed for distributed systems with a static topology
 - fixed set of links

- Need for overcoming this division
 - new model abstracting P2P platforms injected in self-stabilization
 - resource discovery service \rightarrow dynamic neighborhood
 - failure detection service \rightarrow crash awareness
Outline

1. Model
2. An example: spanning Tree Algorithm
3. Stabilization
4. Experimental Measurements
5. Conclusion
Outline

1. Model
2. An example: spanning Tree Algorithm
3. Stabilization
4. Experimental Measurements
5. Conclusion
A P2P oriented model

- No fixed topology, no set of communication links (too large)
- Physical layer abstracted, neighborhood based on resource discovery
- \((\mathcal{I}, <)\), the totally ordered set of process identifiers
- \(\mathcal{P} \subseteq \mathcal{I}\), the set of correct processes
- \(\mathcal{C} = \{c_{a \rightarrow b} | \forall a, b \in \mathcal{I}^2\}\), the set of possible FIFO channels

State - configuration

- The state of a process is the set of its variables and their values
- The state of a channel is the ordered list of the messages it contains
- The configuration of a system is the product of the states of every \(i \in \mathcal{I}\) and every \(c \in \mathcal{C}\)
Execution

An execution is a sequence $C_1, A_1, C_2, A_2, \ldots, C_i, A_i, \ldots$ such that $\forall i \in \mathbb{N}^*$, applying transition A_i to configuration C_i yields to configuration C_{i+1}.

Self-stabilization

Let \mathcal{L} a set of configurations (satisfying some properties, and defining what is a stable configuration). An algorithm is self-stabilizing to \mathcal{L} if and only if :

- **Correctness** Every execution starting from a configuration of \mathcal{L} verifies the specification
- **Closure** Every configuration of all executions starting from a configuration of \mathcal{L} is a configuration of \mathcal{L}
- **Convergence** Starting from any configuration, every execution reaches a configuration of \mathcal{L}.
Resource discovery

- Oracle providing identifiers in I:
 - assumes an id eventually returned
 - example: enumerates I in an infinite loop

Failure detection

- Match the self-stabilization paradigm
 - valid behavior, most of the time
 - infrequent transient failures
- Model: arbitrary initialization and then failure-free run (i.e., all detectors converge eventually)
- Implementation: distributed failure detector
 - function suspect : I → boolean
 - after a finite time return true iff the id ∉ P from then on.
Model - execution

Algorithm

- Each node executes the same code
- set of guarded rules $< guard > \rightarrow < statement >$
- $< guard >$: boolean expression (variables and incoming message)
- $< statement >$:
 - consumes the message (if any)
 - modifies the local state
 - sends messages

Scheduler

Each statement is eventually triggered if the guard is infinitely true
Outline

1. Model
2. An example: spanning Tree Algorithm
3. Stabilization
4. Experimental Measurements
5. Conclusion
The algorithm - principles

- Topology kept free of cycle by *heap invariant*
 - id_p must be lower than the *id* of the father of p
 - id_p must be greater than the *id* of any of its children
- Every process checks consistency in its neighborhood
 - using the failure detector to eliminate stopped processes
 - its parent considers it as a child
 - its children consider it as their parent
- Each process being a root ($parent_p = id_p$)
 - connect new processes via the resource discovery
 - enforce the global invariant
The algorithm - details (1)

Algorithm - Constants, variables, messages

- **Constants**:
 - id_p
 - δ

- **Variables**:
 - $parent_p$
 - $children_p$

- **Messages**:
 - $Exists(id)$
 - $YouAreMyChild(id)$
 - $Neighbor?(id)$
 - $NotNeighbor(id)$
The algorithm - details (1)

Algorithm - Procedures and functions

- **Neighborhood**(p): return\{id$_q$ ∈ children$_p$ ∪ \{parent$_p$\} \ \{id$_p$\}

- **Sanity_check**(p):
 IF parent$_p$ < id$_p$ THEN parent$_p$:= id$_p$
 IF |children$_p$| > δ THEN children$_p$:= \emptyset
 children$_p$:= \{id$_q$ ∈ children$_p$/id$_q$ < id$_p$\}

- **Suspect**(id$_p$)

- **Detect_failures**(p):
 IF parent$_p$ ≠ id$_p$ ∧ Suspect(parent$_p$) THEN parent$_p$ = id$_p$
 \forall id$_q$ ∈ children$_p$ IF Suspect(id$_q$) THEN children$_p$ = children$_p$ \ {id$_q$}

- **RD_Get**()
The algorithm - details (2)

True →

\[\text{Sanity_check}(p); \text{Detect_failures}(p)\]
\[\forall id_q \in \text{Neighborhood}(p) \text{ SEND Neighbor?}(id_p) \text{ TO } q\]
\[\text{IF } \text{parent}_p = id_p \text{ THEN}\]
\[\quad id_q := \text{RD_Get}()\]
\[\quad \text{IF } id_q > id_p \text{ THEN SEND Exists}(id_p) \text{ TO } q\]
The algorithm - details (2)

Reception of \textit{Neighbor}(id_q) \rightarrow

\texttt{Sanity_check}(p)

\textbf{IF} id_p < id_q \textbf{THEN}

\texttt{IF} parent_p = id_p \texttt{THEN} parent_p := id_q

\textbf{ELSE IF} id_q \notin \textit{children}_p \textbf{THEN}

\texttt{IF} |children_p| < \delta \texttt{\ OR} (|children_p| = \delta \texttt{\ AND} \exists id_r|id_r < id_q) \textbf{THEN}

\texttt{children}_p := children_p \setminus id_r \cup \{id_q\}

\textbf{ELSE IF} id_p \neq id_q \textbf{THEN}

\texttt{SEND NotNeighbor(id_p) TO q}
The algorithm - details (2)

Reception of $\text{NotNeighbor}(id_q) \rightarrow$

$\text{Sanity_check}(p)$

IF $\text{parent}_p = id_q$ THEN $\text{parent}_p : id_p$

$\text{children}_p = \text{children}_p \setminus \{id_q\}$
The algorithm - details (2)

Reception of \(\text{Exists}(id_q) \) →

\[\text{Sanity_check}(p) \]

IF \(|\text{children}_p| < \delta\) THEN

\[\text{children}_p := \text{children}_p \cup \{id_q\} \]

SEND \(\text{YouAreMyChild}(id_p) \) TO \(q \)

ELSE IF \(\{id_r \in \text{children}_p | id_r > id_q\} \neq \emptyset \) THEN

let \(id_s \in \{id_r \in \text{children}_p| \text{s.t.} \ id_r > id_q\} \)

SEND \(\text{Exists}(id_q) \) TO \(s \)

ELSE

let \(id_s \in \text{children}_p \)

\[\text{children}_p := \text{children}_p \setminus \{id_s\} \cup \{id_q\} \]

SEND \(\text{YouAreMyChild}(id_p) \) TO \(q \)
The algorithm - details (2)

Reception of \textit{YouAreMyChild}(id_q) \rightarrow
\begin{align*}
\textit{Sanity_check}(p) \\
\text{IF } parent_p = id_p \text{ AND } id_q > id_p \text{ THEN} \\
parent_p := id_q
\end{align*}
Outline

1. Model
2. An example: spanning Tree Algorithm
3. Stabilization
4. Experimental Measurements
5. Conclusion
Definition of stability

\[L \]

A configuration \(C \in Liff \), \(\forall p \in P : \)

1. **unique path from any process to Max**
 \[
 p \neq \text{Max} \Rightarrow \exists p_1, \ldots, p_n \in P : (p = p_1) \land (p_n = \text{Max}) \\
 \land \forall i \in \{1, \ldots, n - 1\} parent_{p_i} = id_{p_{i+1}} \land id_{p_i} \in children_{p_{i+1}}
 \]

2. **heap invariant**
 \[
 parent_p \geq id_p
 \]

3. **I am the child of a process**
 \[
 children_p = \{ q \in P \mid parent_q = id_p \}
 \]

4. **degree bound**
 \[
 |children_p| \leq \delta
 \]

5. **communications**
 \[
 \text{every} c_{p \rightarrow q} \in C \text{ is empty or contains Neighbor?}(p) \text{ messages}
 \]
Sketch of proof

1. Closure \((\text{Once in } \mathcal{L}, \text{ we remain in } \mathcal{L})\)
2. Correctness \((\text{In } \mathcal{L}, \text{ the algorithm respects its specifications})\)
3. Convergence \((\text{From anywhere, we enter } \mathcal{L} \text{ in a finite time})\)
Sketch of proof

1. Closure (Once in L, we remain in L)
2. Correctness (In L, the algorithm respects its specifications)
3. Convergence (From anywhere, we enter L in a finite time)
Sketch of proof

1. Closure (*Once in \mathcal{L}, we remain in \mathcal{L}*)
2. Correctness (*In \mathcal{L}, the algorithm respects its specifications*)
3. Convergence (*From anywhere, we enter \mathcal{L} in a finite time*)
Outline

1. Model
2. An example: spanning Tree Algorithm
3. Stabilization
4. Experimental Measurements
5. Conclusion
Experimental settings

- **Platform**
 - Grid Explorer platform
 - 150 bi-Opteron
 - Gigabit Ethernet

- **Deployment**
 - up to 100 processes per node
 - logger gathering information based on local history

- **Implementation**
 - adapting timeout for spontaneous rule
 - RD daemon (global id_{Max}) communicating by multicast
 - failure detector service based on heartbeat

- **Set-up**
 - 750 to 10050 processes
 - $\delta = \{3, 4, 5\}$
 - initial configuration: disconnected network
Experimental results

Two phases:

- First, processes form trees:
 - optimal depth (logarithmic in the number of processes)
 - more efficient by increasing the degree

- Second, trees merge:
 - depth increases linearly in number of tree merging
 - number of merging linear in the number of nodes

- Stabilization time: 10000 processes → 100 seconds
Outline

1. Model
2. An example: spanning Tree Algorithm
3. Stabilization
4. Experimental Measurements
5. Conclusion
Conclusion and future works

- A model for large scale self-stabilization
 - neighbors list
 - resource discovery service
 - failure detector

Illustration
- spanning tree
- degree bounded
- formal proof of convergence
- prototype implementation and experimentation

Open problems
- no formal evaluation of the stabilization time
- other problems?
- other topologies?
- realistics assumptions on the resource discovery service