An out-of-core extension of a parallel sparse

multifrontal solver

E. AGULLO in collaboration with
A. GUERMOUCHE and J.-Y. L’EXCELLENT

CSCO05, 21-23 June 2005

@ Introduction and State-of-the-art
© Preliminary Study

© Out-of-core Storage of the Factors
@ Algorithms
@ Preliminary performance analysis

@ Out-of-core Active Memory (sequential case)
@ Active memory behaviour
@ Minimizing the volume of 1/0

© Treatment of Large Active Frontal Matrices

O Future Work

Introduction

@ The multifrontal method (Duff, Reid'83)

1 2 3 4 5
1

2

Fin LHU-T°

4

5

. Non Zero D Zero . Fill-in SE ¢
. . Factor / \3 BE
Memory divided in two parts: \ :

1
1 \
. 4 2
@ Active memory ‘ 2’

Contri\buti on block

e Factors

Dependency tree

Active memory

e MUMPS: MUIltifrontal Massively Parallel Solver (Amestoy, Duff, Guer-

mouche, Koster, L'Excellent, Pralet, ...)

PO| P1| PO
P2| P3| P2

2D static decomposition

PO PO| P1| PO

‘Al
e

1D p1pel1ned factorization
P3 and PO chosen at runtime

TIME

PO
TPl
P2

\
N

PO

: STATIC
] :DYNAMIC

see http://graal.ens-lyon.fr/MUMPS
or http://www.enseeiht.fr/apo/MUMPS

http://graal.ens-lyon.fr/MUMPS
http://www.enseeiht.fr/apo/MUMPS

State-of-the-art

e 1/0 tools:
C/Fortran libraries (+ threads) ; AlO ; MPIIO ; FG

@ Previous out-of-core approaches (sequential):

left—looking

N R

A0 ///*m h 3

multifrontal

Figure: EE. ROTHBERG AND R. SCHREIBER, 1999

@6’% , M

Figure: V. ROTKIN AND S.TOLEDO, 2004

Preliminary Study: Experimental Environment

o MUMPS: Multifrontal Parallel Solver for both LU and LDL'.

@ Reordering techniques: METIS, PORD.

@ Test platform: IBM platform at IDRIS (Orsay, France) com-
posed of 4-way and 32-way Power4+ processors.
Memory limits per processor:

Number of procs |1 2-16 | 17-64 | 65-
Max memory 16 GB|4GB | 3.5GB |1.3GB

@ Test problems: range of large matrices extracted from standard
collections or provided by MUMPS users.

@ Simulation of an out-of-core behaviour:

o Free factors as soon as they are computed
e Only factorization step is possible (factors are lost)

@ Selected values: the bigger over all processors for :
@ The size of factors
@ The peak of active memory
@ The peak of total memory

Preliminary Study: Experimental Results

@ Typical memory behaviour (AUDIKW 1 matrix)

1600 T T 1600 T T
Active memory —+— Active memory —+—
Factors zone - Factors zone -~
L Total memory ------ Y Total memory ------
1400 g 1400 ..
1200 v“: 1200 L}
1000 L‘: 1000 L,
3 3
g §
2 800 - > 800
o =3
£ £
Q Q
= =
600 [600 |-
400 400
200 ,\\ — R 200 % *
B
T For \\777”’*‘*7—#—;“ ot -
0 0 10 20 30 40 50 60 0 0 10 20 30 40 50 60
Nb pt Nb pt
o> 08 T T T T T T
kS e AUDIKW 1 —+—
= - T CONESHL_MOD -~~~
2 _— ~——— CONESHL2 --x---
2 o7lL ~———CONV3D o
[} . ULTRASOUNDS8O +
£ B =) %
g8 i i
2 / g
S 06 /
i~ /
i /
o /
g // LK
E 05 | // y)
3 / .
€
g o4f / K
£ I T
) [
£ F
g -
g 03fF //
s @/
o /’,’
% %
@ /
S 02!
IS ;
3 !
£ !
=
(o] ;
s 0.1 L« 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Consequence

o First step: factors out-of-core (well adapted for few processors)
@ Second step: factors and stack out-of-core (largest problems
Or many processors)

Number of processors

Out-of-core Storage of the Factors

@ Synchronous Version:

@ Use standard write operations

o Factors are written to disk (possibly with low-level system buffering)
as soon as they are computed

e Solution step:
1. Read a factor block
2. Work with the factor
= Factors may be read twice (forward elimination and backward
substitution)

@ Asynchronous Version:

/O Request
e Threaded version with buffers | - Tt
e Solution step: still synchronous /0
Compute I/O thread

thread
@ Results: we can solve
@ bigger problems
@ same problems with less memory (cf preliminary study)

example: ULTRASOUND80O
‘ total mem per proc ‘ active mem per proc

1 proc (16GB memory) | 1101 million reals | 218 million reals

4 procs 360 million reals | 154 million reals
@ same problems with less processors
Matrix Strategy min procs

ULTRASQUNDS8O | in-core 3
out-of-core | 2
CONV3D In-core 32

out-of-core | 16
@ CONV3D on 1 proc with 16 GB memory: out-of-core version ok, in-

core version runs out of memory

@ Same environment: IDRIS platform
@ Ordering selected: METIS

@ Different strategies:
- synchronous |/0
- asynchronous 1/O with a buffer
- In core

@ Time for factorization: typical behaviour of the factorization

step

1200

Preliminary Performance Analysis

I|C—»—

Synchronous OOC -~~~
* Asynchronous OOC ------
1000 ‘X
- !
7 ‘
c «
[=} ‘
[5) “‘
8 800
2 \:
5 i
N &‘
g oo |
s !
é 1
[0}
£
kel 400 -
(7]
%)
Q.
©
]
200 |-
0 I : I I I I
0 10 20 30 40 * X

Number of processors

Figure: CONESHL MOD matrix

70

Current Performance Results

Elapsed time for factorization (ratio)

Elapsed time for factorization (ratio)

18 1.45
Synéhronous OOC‘/ IC —+— Synchronous OOC‘/ IC —+—
Asynchronous OOC /IC -~ Asynchronous OOC /IC 5 -~
17 i |
16 g |
°
15| i g
< 4
L
14 | i =
N
5 4
13 | q E
8 4
o
12 B g
o
. _ 2 4
11k A x B I3
T w
a | 4
09 B 7
0.8 - L L L L L L 1 - R L L L L L
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Number of processors Number of processors
16 T T 12 T T T =
Synchronous OOC / IC-—+— Synchronous OOC / IC —+—
Asynchronous OOC/1C -~ Asynchronous OOC /IC -~~~
15 1 118 1 1
5 1.16 q
14 | g 2
=
S 114} g
g
13 4 N
=]
X kst
& 112 B
8
12 q o
£
= 11+ B
o
O %
X a y
1.1 B © y
Yo108 — 7 g
XX % : ‘\\‘\r
tr :] 1.06 | E
%
0.9 L L L L L L 1.04 L L L X L L L L L L
0 20 40 60 80 100 120 140 30 40 50 60 70 80 920 100 110 120 130
Number of processors Number of processors
12 T T
Synchronous OOC/IC —+—
Asynchronous OOC/IC_ -~
115 B
11 B
= i
g
T 105 B
2
T
N
5 1h 1
5]
£
< o095t g
o
E
©
g oor g
&
w
0.85 | B
0.8 B
%
0.75 I I I I I I
0 10 20 30 40 50 60 70

Number of processors

ULTRASOUND8O

. time synchronous version . time asynchronous version
RED: time in-core G REEN:

time in-core

Performance Analysis

@ Some irregular behaviour observed
@ Impact of buffer size
e Larger than largest frontal matrix ...
e For large numbers of processors, buffer size too large
= The last |/O request concerns a huge amount of factors in the
asynchronous approach !!
@ Impact of platform
e No guarantee that each processor accesses its own disk...
= Explains some of the surprising behaviour
@ Impact of locality
@ In some cases, out-of-core version faster than in-core version |

e Explanation: better memory locality (frontal matrix always in the
same area of memory)

@ Study of the solution step

140 T T T T

T
AUDIKW_1 —+—
g CONESHL_MOD -+
CONESHL2 -3~
CONV3D64 =

120 | ULTRASOUNDS0 1

100 ,

80 E

60 E

Elapsed time for solve step (ratio OOC / IC)

40 60 80 100 120 140
Number of processors

@ Solution time becomes critical: same order as factorization time

e Improve 1/O performance: increase granularity of |/O operations
@ Asynchronous prefetch mechanisms: requires

@ asynchronous |/O (thread)
@ more complex memory management (multiple or cyclic workspaces)

e Separate L and U factors for unsymmetric matrices

Out-of-core Active Memory (sequential case)

@ We assume that the factors are written to disk as soon as com-
puted = need for an out-of-core active memory management
(even more critical for the parallel case)

@ The active memory highly depends on the tree traversal:

/Memory peak

/Memory peak

Worst case. Best case.

@ LIU’86 has proposed an optimal algorithm to minimize the
peak of active memory

@ Our theoretical study: how to minimize the volume of /O

when the active memory does not fit into a physical memory
of size My ?

Some Notations and Assumptions

cbn

E

@ My : Amount of memory allowed for factorization (e.g. physi-
cal memory of the target machine).

@ n : Number of children.

@ j : j™ child of the node.

@ cb; : Size of the contribution block of child j.

@ F : Memory size of the parent’s frontal matrix (F < Mp).

@ M; : Amount of memory needed to process alone an i-rooted

subtree.

Active memory Physical memory Active memory Physical memory Active memory Physical memory

Assumptions:

—_—
Allocatlon of After I/0
anew

frontal matrix

. stack memory area written to disk allocation of a frontal matrix . active frontal matrix

@ All frontal matrices fit in memory (i.e. Vi: F; < Mp)
@ Factors are written to disk as soon as they are computed.

@ Once extra /O have to been done (I/O concerning contribu-
tion blocks), eldest contribution blocks are written first.

Memory Occupation & 1/O Volume

Consider a parent node with its children.

Case 1: Vi € set of children : M; < M,

The assembly step requires an amount

of 1/0 of :

The assembly step requires a storage:
F+) ch
j=1

The storage required to process child

max(O, F+ Z ij — Mo)
j=1

The amount of 1/O required to pro-

IS:
4 cess child j is:
M; + cb !
! z_: “ max(0, M; + 3 chy — M)
k=1

M t is thus defined by:
Perst V0 is thus defined by:

M, = max(max(M; + » cby), S
parent j:l,n(J £ k) V0 — max(m?X(MJ + cby),
= J=L4n _

F+ Y cby) — Mo
j=1

Case 2: General case (M, can be greater than M for a given child).

@ The expression for the active memory size does not change

@ /0 volume needs to be recomputed:

o If M; > M, then :

© the amount of 1/0 \/,-I/O is independent from the position of child / in
the schedule

© all contribution blocks that were in memory have to be written to disk
when | is processed

— y/0= max(max(mm M;, M) +Zcbk), F+ Zcb) — M(H_zn: \/,-I/O

1.n
J =il

——> /0 volume can be computed on the complete tree using a greedy bottom-

up process

Minimizing the Volume of 1/0

In which order shall we process children for minimizing V/© ?

o Minimizing V/© equivalent to minimize:

j—1
max| min(M;, My) + cb)
j=1,n< (J 0) kz_; k

Theorem (Tree pebbling theorem)

The minimum of max;(x; + > 17 y;) is obtained when the sequence
(xj, y;) is sorted in decreasing order of xj — y;.

Consequence:
An optimal child sequence is obtained by rearranging the children

nodes in decreasing order of min(M;, My) — cb;
Algorithm:

@ Bottom-up greedy process

@ Apply Tree pebbling theorem at each level of the tree

Toy example:

Liu’s Algorithm |/O minimization

Algorithm
Mo=8
sequence a-b-c sequence b-a-c
V//0 g VvI/e 7
M=12 ~
cb=4 @

Experimental results:
5% decrease of 1/O volume on real-life test cases compared to Liu's

algorithm.

Large Active Frontal Matrices

@ In the multifrontal method, frontal matrices can be larger than

physical memory available (memory bottleneck for sequential
codes):

U
L]

Frontal matrix Physical memory

@ Previous techniques: use (hybrid) left-looking approaches:

o [Rothberg, Schreiber 99]
o [Toledo 2004]

e Multifrontal approach (future work):
e Out-of-core factorization (and assembly) of frontal matrices (panel
by panel)
o Parallel approach to this sequential bottleneck:

Use many processors for large frontal matrices that appear at the top
of the tree.

@ Prefetching techniques to read the factors at the (parallel)
solve step

@ Matrices that almost fit in memory:
Keep most of the factors in memory after factorization step

@ Qut-of-core stack memory in the parallel case:
The stack memory is not exactly accessed in LIFO order in the
dynamic distributed case = Find good heuristics to write /
prefetch contribution blocks

@ Scheduling strategies for parallel out-of-core factorization and
solution steps

@ Flexible allocation of the parent node:
How to extend [Guermouche,L'Excellent’05] (memory-minimizing
schedules) to minimize the volume of 1/0 ?

@ Impact of reordering, amalgamation, node splitting, ... on
1/O volume

@ Robust implementation in MUMPS (currently, only the factors
are out-of-core in an experimental version)

Test Problems

AUDIKW 1 comes from Automotive crankshaft model with
over 900,000 TETRA elements (available in the
PARASOL collection)

CONESHL[MOD|2] come from 3D finite element problems (cone with
shell and solid element connected by linear con-
straints with Lagrange multiplier technique). These

two matrices were provided by SAMTECH and cre-
ated using SAMCEF

CONV3D64 has been provided by CEA-CESTA and was gen-
erated using AQUILON
(http ://www.enscpb.fr/master/aquilon)
ULTRASOUND80O comes from propagation of 3D ultrasound waves
and has been provided by Masha Sosonkina

| Order | nnz | nnz(L|U) x 10° | Opsx10°
Symmetric matrices
AUDIKW_1 943695 | 39297771 1368.6 5682
CONESHL_MOD | 1262212 | 43007782 790.8 1640
CONESHL2 837967 | 22328697 266.6 218.5
Unsymmetric matrices
CONV3D64 836550 | 12548250 2693.9 23880
ULTRASOUND80O | 531441 | 33076161 981.4 3915

Statistics with METIS

	Introduction and State-of-the-art
	Multifrontal method

	Preliminary Study
	Out-of-core Storage of the Factors
	Algorithms
	Preliminary performance analysis

	Out-of-core Active Memory (sequential case)
	Active memory behaviour
	Minimizing the volume of I/O

	Treatment of Large Active Frontal Matrices
	Future Work

