
An out-of-core extension of a parallel sparse
multifrontal solver

E. Agullo in collaboration with
A. Guermouche and J.-Y. L'Excellent

CSC05, 21-23 June 2005

1 Introduction and State-of-the-art

2 Preliminary Study

3 Out-of-core Storage of the Factors
Algorithms
Preliminary performance analysis

4 Out-of-core Active Memory (sequential case)
Active memory behaviour
Minimizing the volume of I/O

5 Treatment of Large Active Frontal Matrices

6 Future Work

Introduction

The multifrontal method (Du�, Reid'83)

3

5

4

2

1

1 2 3 4 5

3

5

4

2

1

1 2 3 4 5

Fill−inNon Zero

A=
Fill−in L+U−I

Zero

Memory divided in two parts:
Active memory
Factors

Factors Active
matrix

Stack memory

Active memory

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factor

Contribution block

Dependency tree

MUMPS: MUltifrontal Massively Parallel Solver (Amestoy, Du�, Guer-
mouche, Koster, L'Excellent, Pralet, ...)

P0
P1

P0

P0

P1

P3

P2

P1

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2
P3
P0

P0

P0

P1 P3

P2

P3

SUBTREES

T
IM

E

P0P3
P2

P3 and P0 chosen at runtime
1D pipelined factorization

2D static decomposition

: STATIC

: DYNAMIC

see http://graal.ens-lyon.fr/MUMPS
or http://www.enseeiht.fr/apo/MUMPS

http://graal.ens-lyon.fr/MUMPS
http://www.enseeiht.fr/apo/MUMPS

State-of-the-art

I/O tools:
C/Fortran libraries (+ threads) ; AIO ; MPIIO ; FG

Previous out-of-core approaches (sequential):

left−looking

multifrontal

Figure: E. Rothberg and R. Schreiber, 1999

Figure: V. Rotkin and S.Toledo, 2004

Preliminary Study: Experimental Environment

MUMPS: Multifrontal Parallel Solver for both LU and LDLT .

Reordering techniques: METIS, PORD.

Test platform: IBM platform at IDRIS (Orsay, France) com-
posed of 4-way and 32-way Power4+ processors.
Memory limits per processor:

Number of procs 1 2-16 17-64 65-
Max memory 16 GB 4GB 3.5GB 1.3GB

Test problems: range of large matrices extracted from standard
collections or provided by MUMPS users.

Simulation of an out-of-core behaviour:
Free factors as soon as they are computed
Only factorization step is possible (factors are lost)

Selected values: the bigger over all processors for :
The size of factors
The peak of active memory
The peak of total memory

Preliminary Study: Experimental Results

Typical memory behaviour (AUDIKW 1 matrix)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60

M
em

or
y

pe
ak

Nb processors

Active memory
Factors zone

Total memory

METIS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60

M
em

or
y

pe
ak

Nb processors

Active memory
Factors zone

Total memory

PORD
Active memory / total memory ratio

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70

M
ax

im
um

 p
ea

k
of

 a
ct

iv
e

m
em

or
y

/ m
ax

im
um

 p
ea

k
of

 to
ta

l m
em

or
y

(r
at

io
)

Number of processors

AUDIKW_1
CONESHL_MOD

CONESHL2
CONV3D

ULTRASOUND80

Consequence
First step: factors out-of-core (well adapted for few processors)
Second step: factors and stack out-of-core (largest problems
or many processors)

Out-of-core Storage of the Factors
Synchronous Version:

Use standard write operations
Factors are written to disk (possibly with low-level system bu�ering)
as soon as they are computed
Solution step:
1. Read a factor block
2. Work with the factor
) Factors may be read twice (forward elimination and backward
substitution)

Asynchronous Version:
Threaded version with bu�ers
Solution step: still synchronous

Compute
thread

I/O thread

I/O Request

I/O

Results: we can solve
bigger problems
same problems with less memory (cf preliminary study)
example: ULTRASOUND80 total mem per proc active mem per proc
1 proc (16GB memory) 1101 million reals 218 million reals
4 procs 360 million reals 154 million realssame problems with less processorsMatrix Strategy min procs
ULTRASOUND80 in-core 8

out-of-core 2
CONV3D in-core 32

out-of-core 16CONV3D on 1 proc with 16 GB memory: out-of-core version ok, in-
core version runs out of memory

Preliminary Performance Analysis

Same environment: IDRIS platform
Ordering selected: METIS
Di�erent strategies:
- synchronous I/O
- asynchronous I/O with a bu�er
- in core
Time for factorization: typical behaviour of the factorization
step

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70

E
la

ps
ed

 ti
m

e
fo

r
fa

ct
or

iz
at

io
n

(s
ec

on
ds

)

Number of processors

IC
Synchronous OOC

Asynchronous OOC

Figure: CONESHL MOD matrix

Current Performance Results

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 10 20 30 40 50 60 70

E
la

ps
ed

 ti
m

e
fo

r
fa

ct
or

iz
at

io
n

(r
at

io
)

Number of processors

Synchronous OOC / IC
Asynchronous OOC / IC

AUDIKW 1
 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0 10 20 30 40 50 60 70

E
la

ps
ed

 ti
m

e
fo

r
fa

ct
or

iz
at

io
n

(r
at

io
)

Number of processors

Synchronous OOC / IC
Asynchronous OOC / IC

CONESHL MOD

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 20 40 60 80 100 120 140

E
la

ps
ed

 ti
m

e
fo

r
fa

ct
or

iz
at

io
n

(r
at

io
)

Number of processors

Synchronous OOC / IC
Asynchronous OOC / IC

CONESHL2
 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 30 40 50 60 70 80 90 100 110 120 130

E
la

ps
ed

 ti
m

e
fo

r
fa

ct
or

iz
at

io
n

(r
at

io
)

Number of processors

Synchronous OOC / IC
Asynchronous OOC / IC

CONV3D64

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 10 20 30 40 50 60 70

E
la

ps
ed

 ti
m

e
fo

r
fa

ct
or

iz
at

io
n

(r
at

io
)

Number of processors

Synchronous OOC / IC
Asynchronous OOC / IC

ULTRASOUND80
RED: time synchronous versiontime in-core GREEN: time asynchronous versiontime in-core

Performance Analysis
Some irregular behaviour observed
Impact of bu�er size

Larger than largest frontal matrix . . .
For large numbers of processors, bu�er size too large
) The last I/O request concerns a huge amount of factors in the
asynchronous approach !!

Impact of platform
No guarantee that each processor accesses its own disk...

) Explains some of the surprising behaviour
Impact of locality

In some cases, out-of-core version faster than in-core version !
Explanation: better memory locality (frontal matrix always in the
same area of memory)

Study of the solution step

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

E
la

ps
ed

 ti
m

e
fo

r
so

lv
e

st
ep

 (
ra

tio
 O

O
C

 /
IC

)

Number of processors

AUDIKW_1
CONESHL_MOD

CONESHL2
CONV3D64

ULTRASOUND80

Solution time becomes critical: same order as factorization time
Improve I/O performance: increase granularity of I/O operationsAsynchronous prefetch mechanisms: requiresasynchronous I/O (thread)more complex memory management (multiple or cyclic workspaces)
Separate L and U factors for unsymmetric matrices

Out-of-core Active Memory (sequential case)

We assume that the factors are written to disk as soon as com-
puted) need for an out-of-core active memory management
(even more critical for the parallel case)

The active memory highly depends on the tree traversal:

Memory peak

Worst case.

Memory peak

Best case.
Liu'86 has proposed an optimal algorithm to minimize the
peak of active memory

Our theoretical study: how to minimize the volume of I/O
when the active memory does not �t into a physical memory
of size M0 ?

Some Notations and Assumptions

n21

cb cb1 n
2cb

...

M0 : Amount of memory allowed for factorization (e.g. physi-
cal memory of the target machine).
n : Number of children.
j : j th child of the node.
cbj : Size of the contribution block of child j .
F : Memory size of the parent's frontal matrix (F < M0).
Mi : Amount of memory needed to process alone an i -rooted
subtree.

Assumptions:

stack memory area written to disk allocation of a frontal matrix active frontal matrix

Active memory Physical memory Active memory Physical memory Active memory Physical memory

Allocation of
a new

 frontal matrix

After I/O

All frontal matrices �t in memory (i.e. 8i : Fi < M0)
Factors are written to disk as soon as they are computed.
Once extra I/O have to been done (I/O concerning contribu-
tion blocks), eldest contribution blocks are written �rst.

Memory Occupation & I/O Volume
Consider a parent node with its children.
Case 1: 8i 2 set of children : Mi < M0
The assembly step requires a storage:

F + nX
j=1 cbj

The storage required to process child
j is:

Mj +
j�1X
k=1 cbk

Mparent is thus de�ned by:
Mparent = max�maxj=1;n(Mj +

j�1X
k=1 cbk);

F + nX
j=1 cbj

�

The assembly step requires an amount
of I/O of :

max(0;F + nX
j=1 cbj �M0)

The amount of I/O required to pro-
cess child j is:

max(0;Mj +
j�1X
k=1 cbk �M0)

V I/O is thus de�ned by:
V I/O = max�maxj=1;n(Mj +

j�1X
k=1 cbk);

F + nX
j=1 cbj

�
�M0

Case 2: General case (Mi can be greater than M0 for a given child).
The expression for the active memory size does not change
I/O volume needs to be recomputed:

If Mi > M0 then :
1 the amount of I/O V I=Oi is independent from the position of child i inthe schedule2 all contribution blocks that were in memory have to be written to diskwhen i is processed

=) V I/O = max�maxj=1;n(min(Mj ;M0) +
j�1X
k=1 cbk);F + nX

j=1 cbj
�
�M0 + nX

i=1 V
I=Oi

=) I/O volume can be computed on the complete tree using a greedy bottom-
up process

Minimizing the Volume of I/O
In which order shall we process children for minimizing V I/O ?

Minimizing V I/O equivalent to minimize:
maxj=1;n
�min(Mj ;M0) +

j�1X
k=1 cbk

�

Theorem (Tree pebbling theorem)
The minimum of maxj(xj +Pj�1i=1 yj) is obtained when the sequence
(xj , yj) is sorted in decreasing order of xj � yj .
Consequence:
An optimal child sequence is obtained by rearranging the children
nodes in decreasing order of min(Mj ;M0)� cbj
Algorithm:

Bottom-up greedy process
Apply Tree pebbling theorem at each level of the tree

Toy example:

Liu's Algorithm I/O minimization
Algorithm

a b

c

M=12
cb=4

M=8
cb=2

F=5
M0=8 sequence a-b-c

V I=0 8
sequence b-a-c

V I=0 7

Experimental results:
5% decrease of I/O volume on real-life test cases compared to Liu's
algorithm.

Large Active Frontal Matrices

In the multifrontal method, frontal matrices can be larger than
physical memory available (memory bottleneck for sequential
codes):

L

U

Frontal matrix Physical memory
Previous techniques: use (hybrid) left-looking approaches:

[Rothberg, Schreiber 99]
[Toledo 2004]

Multifrontal approach (future work):
Out-of-core factorization (and assembly) of frontal matrices (panel
by panel)
Parallel approach to this sequential bottleneck:
Use many processors for large frontal matrices that appear at the top
of the tree.

Future Work

Prefetching techniques to read the factors at the (parallel)
solve step

Matrices that almost �t in memory:
Keep most of the factors in memory after factorization step

Out-of-core stack memory in the parallel case:
The stack memory is not exactly accessed in LIFO order in the
dynamic distributed case) Find good heuristics to write /
prefetch contribution blocks

Scheduling strategies for parallel out-of-core factorization and
solution steps

Flexible allocation of the parent node:
How to extend [Guermouche,L'Excellent'05] (memory-minimizing
schedules) to minimize the volume of I/O ?

Impact of reordering, amalgamation, node splitting, . . . on
I/O volume

Robust implementation in MUMPS (currently, only the factors
are out-of-core in an experimental version)

Test Problems

AUDIKW 1 comes from Automotive crankshaft model with
over 900,000 TETRA elements (available in the
PARASOL collection)

CONESHL[MODj2] come from 3D �nite element problems (cone with
shell and solid element connected by linear con-
straints with Lagrange multiplier technique). These
two matrices were provided by SAMTECH and cre-
ated using SAMCEF

CONV3D64 has been provided by CEA-CESTA and was gen-
erated using AQUILON
(http ://www.enscpb.fr/master/aquilon)

ULTRASOUND80 comes from propagation of 3D ultrasound waves
and has been provided by Masha Sosonkina

Order nnz nnz(LjU)� 106 Ops�109Symmetric matricesAUDIKW 1 943695 39297771 1368.6 5682CONESHL MOD 1262212 43007782 790.8 1640CONESHL2 837967 22328697 266.6 218.5Unsymmetric matricesCONV3D64 836550 12548250 2693.9 23880ULTRASOUND80 531441 33076161 981.4 3915
Statistics with METIS

	Introduction and State-of-the-art
	Multifrontal method

	Preliminary Study
	Out-of-core Storage of the Factors
	Algorithms
	Preliminary performance analysis

	Out-of-core Active Memory (sequential case)
	Active memory behaviour
	Minimizing the volume of I/O

	Treatment of Large Active Frontal Matrices
	Future Work

