Memory-Aware Scheduling for Sparse Direct Methods

Emmanuel AGULLO, ICL - University of Tennessee
Jean-Yves L’EXCELLENT, LIP - INRIA
Abdou GUERMOCHE, LaBRI, Université de Bordeaux

MS31 Parallel Sparse Matrix Computations and Enabling Algorithms
SIAM CSE 2009, Miami, FL, March 2-6, 2009
Solving sparse linear systems

\[ Ax = b \]

⇒ Direct methods: \( A = LU \)

Typical matrix: BRGM matrix

- 3.7 \( \times \) 10^6 variables
- 156 \( \times \) 10^6 non zeros in \( A \)
- 4.5 \( \times \) 10^9 non zeros in \( LU \)
- 26.5 \( \times \) 10^{12} flops

Hardware paradigm
- Many-core architecture.
- Large global amount of memory.
- Limited memory per core.

Software challenge
- Need for algorithms whose memory usage scales with the number of processors.
- Case study: MUMPS
Solving sparse linear systems

\[ \mathbf{A}x = b \]

⇒ Direct methods: \( \mathbf{A} = LU \)

Typical matrix: BRGM matrix

- 3.7 × 10^6 variables
- 156 × 10^6 non zeros in \( \mathbf{A} \)
- 4.5 × 10^9 non zeros in \( \mathbf{LU} \)
- 26.5 × 10^{12} \text{ flops}

Hardware paradigm

- Many-core architecture.
- Large global amount of memory.
- Limited memory per core.

Software challenge

⇒ Need for algorithms whose memory usage scales with the number of processors.

Case study: **MUMPS**
Solving sparse linear systems

\[ Ax = b \]

⇒ Direct methods: \( A = LU \)

Typical matrix: BRGM matrix

- 3.7 × 10^6 variables
- 156 × 10^6 non zeros in A
- 4.5 × 10^9 non zeros in LU
- 26.5 × 10^{12} flops

Hardware paradigm

- Many-core architecture.
- Large global amount of memory.
- Limited memory per core.

Software challenge

→ Need for algorithms whose memory usage scales with the number of processors.
- Case study: MUMPS
Solving sparse linear systems

\[ Ax = b \]

⇒ Direct methods: \( A = LU \)

Typical matrix: BRGM matrix

- \( 3.7 \times 10^6 \) variables
- \( 156 \times 10^6 \) non zeros in \( A \)
- \( 4.5 \times 10^9 \) non zeros in \( LU \)
- \( 26.5 \times 10^{12} \) flops

Hardware paradigm

- Many-core architecture.
- Large global amount of memory.
- Limited memory per core.

Software challenge

⇒ Need for algorithms whose memory usage scales with the number of processors.

- Case study: MUMP S
1. MUMPS

2. Limits to memory scalability

3. A new memory-aware algorithm

4. Preliminary results

5. Conclusion
Outline

1. MUMPS

2. Limits to memory scalability

3. A new memory-aware algorithm

4. Preliminary results

5. Conclusion
MUMPS: a MUltifrontal Massively Parallel sparse direct Solver

Solution of large sparse linear systems with:
★ Symmetric positive definite matrices;
★ General symmetric matrices;
★ General unsymmetric matrices.

Implementation
★ Distributed Multifrontal Solver (F90, MPI based);
★ Dynamic Distributed Scheduling;
★ Use of BLAS, BLACS, ScaLAPACK.

Interfaces
The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

- Factors *systematically* written to disk;
- Active Storage kept in memory.

Factors

<table>
<thead>
<tr>
<th>Factors</th>
<th>Active frontal matrix</th>
<th>Stack of contribution blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elimination tree

Active Storage
Storage divided into two parts:

★ Factors \textit{systematically} written to disk;
★ Active Storage kept in memory.
The multifrontal method (Duff, Reid’83)

Storage divided into two parts:
- Factors *systematically* written to disk;
- Active Storage kept in memory.

Elimination tree
The multifrontal method (Duff, Reid’83)

Storage divided into two parts:
- Factors *systematically* written to disk;
- Active Storage kept in memory.

Elimination tree
The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

- Factors *systematically* written to disk;
- Active Storage kept in memory.
The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

- Factors *systematically* written to disk;
- Active Storage kept in memory.

Elimination tree

```
Factors

Factors Stack of
contribution
blocks
Active frontal
matrix
Active Storage

Contribution block
```
The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

- Factors *systematically* written to disk;
- Active Storage *kept in memory.*
Memory behaviour (serial postorder traversal)
Definition: Memory Efficiency on $p$ processors (or cores)

$$e(p) = \frac{S_{seq}}{p \times S_{max}(p)},$$

$S_{seq}$: serial storage, $S_{max}$: parallel storage

Results: Memory Efficiency of MUMPS (with factors on disk)

<table>
<thead>
<tr>
<th>Number of processors $p$</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>AUDI_KW_1</strong></td>
<td>0.16</td>
<td>0.12</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td><strong>CONESHL_MOD</strong></td>
<td>0.28</td>
<td>0.28</td>
<td>0.22</td>
<td>0.19</td>
</tr>
<tr>
<td><strong>CONV3D64</strong></td>
<td>0.42</td>
<td>0.40</td>
<td>0.41</td>
<td>0.37</td>
</tr>
<tr>
<td><strong>QIMONDA07</strong></td>
<td>0.30</td>
<td>0.18</td>
<td>0.11</td>
<td>-</td>
</tr>
<tr>
<td><strong>ULTRASOUND80</strong></td>
<td>0.32</td>
<td>0.31</td>
<td>0.30</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Outline

1. MUMPS

2. Limits to memory scalability

3. A new memory-aware algorithm

4. Preliminary results

5. Conclusion
Limits to memory scalability

Parallel multifrontal scheme

- **Type 1**: Nodes processed on a single processor
- **Type 2**: Nodes processed with a parallel 1D blocked factorization
- **Type 3**: Parallel 2D cyclic factorization (root node)
Parallel multifrontal scheme

★ **Type 1** : Nodes processed on a single processor
★ **Type 2** : Nodes processed with a parallel 1D blocked factorization
★ **Type 3** : Parallel 2D cyclic factorization (root node)
Limits to memory scalability

- Many simultaneous active tasks;
- Large master tasks;
- Large subtrees;
- Proportional mapping.
Many simultaneous active tasks;
Large master tasks;
Large subtrees;
Proportional mapping.
• Many simultaneous active tasks;
• Large master tasks;
• Large subtrees;
• Proportional mapping.
Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)

Elimination tree:

```
\[\begin{array}{c}
\text{d=0} \\
\text{d=1} \\
\text{d=2} \\
\text{d=3} \\
\text{d=4} \\
\end{array}\]
```

Mapping

- Initially: all processors on root node;
- Recursively split the set of processors on child subtrees.

Advantages and drawbacks:

- Fine-grain + coarse-grain parallelism;
- Bad memory efficiency.
Proportional mapping VS postorder traversal (1/2)

Proportional mapping:

- Initially: all processors on root node;
- Recursively split the set of processors on child subtrees.

Advantages and drawbacks:
- Fine-grain + coarse-grain parallelism; 
- Bad memory efficiency.
Proportional mapping VS postorder traversal (1/2)

Proportional mapping:

512

Mapping

- Initially: all processors on root node;
- Recursively split the set of processors on child subtrees.

Advantages and drawbacks

- Fine-grain + coarse-grain parallelism;
- Bad memory efficiency.
Proportional mapping VS postorder traversal (1/2)

Proportional mapping:

Mapping

- Initially: all processors on root node;
- Recursively split the set of processors on child subtrees.

Advantages and drawbacks

- Fine-grain + coarse-grain parallelism;
- Bad memory efficiency.
Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:

Mapping

- Initially: all processors on root node;
- Recursively split the set of processors on child subtrees.

Advantages and drawbacks

- Fine-grain + coarse-grain parallelism;
- Bad memory efficiency.
Proportional mapping:

- Initially: all processors on root node;
- Recursively split the set of processors on child subtrees.

Advantages and drawbacks:

- Fine-grain + coarse-grain parallelism;
- Bad memory efficiency.
Proportional mapping VS postorder traversal (2/2)

Elimination tree:

- Postorder traversal, node by node;
- All processors on each node.

Advantages and drawbacks:
- Only fine-grain parallelism;
- High memory efficiency.
Proportional mapping VS postorder traversal (2/2)

Postorder traversal:

- d=0
- d=1
- d=2
- d=3
- d=4

Traversal

- Postorder traversal, node by node;
- All processors on each node.

Advantages and drawbacks

/ Only fine-grain parallelism;
\ High memory efficiency.
Proportional mapping VS postorder traversal (2/2)

Postorder traversal:

- Postorder traversal, node by node;
- All processors on each node.

Advantages and drawbacks:

- Only fine-grain parallelism;
- High memory efficiency.
Postorder traversal:

- Postorder traversal, node by node;
- All processors on each node.

Advantages and drawbacks:
- Only fine-grain parallelism;
- High memory efficiency.
Postorder traversal:

- Postorder traversal, node by node;
- All processors on each node.

Advantages and drawbacks:

- Only fine-grain parallelism;
- High memory efficiency.
Proportional mapping VS postorder traversal (2/2)

Postorder traversal:

- Postorder traversal, node by node;
- All processors on each node.

Advantages and drawbacks:
- Only fine-grain parallelism;
- High memory efficiency.
Proportional mapping VS postorder traversal (2/2)

Postorder traversal:

Traversal

★ Postorder traversal, node by node;
★ All processors on each node.

Advantages and drawbacks

© Only fine-grain parallelism;
© High memory efficiency.
Postorder traversal:

- Postorder traversal, node by node;
- All processors on each node.

Advantages and drawbacks:

- Only fine-grain parallelism;
- High memory efficiency.
Postorder traversal:

- Postorder traversal, node by node;
- All processors on each node.

Advantages and drawbacks:

- Only fine-grain parallelism;
- High memory efficiency.
Proportional mapping VS postorder traversal (2/2)

Postorder traversal:

Traversal
- Postorder traversal, node by node;
- All processors on each node.

Advantages and drawbacks
- Only fine-grain parallelism;
- High memory efficiency.
Outline

1. MUMPS

2. Limits to memory scalability

3. A new memory-aware algorithm

4. Preliminary results

5. Conclusion
A new memory-aware algorithm

Memory-aware mapping algorithm

Elimination tree:

```
    d=0
    d=1
    d=2
    d=3
    d=4
```

Mapping

- Initially: all processors on root node;
- Recursively split the set of processors on child subtrees if memory allows for it.
A new memory-aware algorithm

Memory-aware mapping algorithm

Memory-aware mapping:

Mapping

★ Initially: all processors on root node;
★ Recursively split the set of processors on child subtrees if memory allows for it.
A new memory-aware algorithm

Memory-aware mapping algorithm

Memory-aware mapping:

512

\[ d=0 \]
\[ d=1 \]
\[ d=2 \]
\[ d=3 \]
\[ d=4 \]

Mapping

- Initially: all processors on root node;
- Recursively split the set of processors on child subtrees if memory allows for it.
A new memory-aware algorithm

Memory-aware mapping algorithm

Memory-aware mapping:

Mapping

- Initially: all processors on root node;
- Recursively split the set of processors on child subtrees if memory allows for it.
Memory-aware mapping:

Advantages

- **Robust**: guaranteed (if memory $M_0 < \frac{S_{seq}}{p}$).
- **Efficient**: available memory provides coarse-grain parallelism.
Outline

1. MUMPS

2. Limits to memory scalability

3. A new memory-aware algorithm

4. Preliminary results

5. Conclusion
Preliminary results

★ Excellent memory scalability:
  ▶ memory efficiency closed to 1.
★ Competitive (time) efficiency
  ▶ closed to proportional mapping (if enough memory);
  ▶ memory provides coarse-grain parallelism:

![Graph showing memory scalability and efficiency](image-url)
Outline

1. MUMPS

2. Limits to memory scalability

3. A new memory-aware algorithm

4. Preliminary results

5. Conclusion
Prototype of a *memory-aware* algorithm

- Maximizes the amount of coarse-grain parallelism with respect to the amount of memory available per processor/core.
- New static mapping implemented, with constraints on dynamic schedulers; experimented within the OOC version of MUMPS.
- Very good memory scalability obtained.

On-going work

- Further tuning and validation.
- Generalization to the in-core case.
- Reinject dynamic information to schedulers.