Ambiruptor
The Lexical Ambiguity Interruptor

Final Report

Maria Boritchev
Boumediene Brikei Sid
Victor Hublitz
Simon Mauras
Pierre Ohlmann
levgeniia Oshurko
Samir Tendjaoui
Thi Xuan Vu

May 13, 2016

Abstract

The main point of our project is to develop a word-sense disambiguation tool. Our aim is to be
able, given a certain text, to map each ambiguous word to the meaning it has in this context.
To this end, we use Wikipedia, and more specifically, its internal links, in order to produce
automatically an annotated corpus from which a machine learning framework is developed.
Using the obtained tool, we created an interactive application, giving users the possibility to
improve the word-sense disambiguation mapping.

Contents

(1 __Presentation|

[1.1 The Ambiruptor Project|

1.2 The Ambiruptor Team|

2 Research & Design|

2.1 Word-Sense Disambiguation|

2.2 Machine Learning|.

2.3 Feature extraction|

2.4 Data Mining|. e

[3 Implementation|

[3.5.1 Web Application|o

3.5.2 Firetox Plugin|.

[4 Results & Applications|

4.1 Examples|

10
10
10
12

13

1. Presentation

Word-Sense Disambiguation is a Natural Language Processing task that lies in the assignment
of the appropriate meaning to a word according to a given context, separating this meaning
from all other possible ones. Since the 1940s, this problem has proved its difficulty and the lack
of databases has forced the researchers working on it to label each word manually.

Nowadays, the Internet creates new possibilities to get big databases. The use of new
machine-learning methods combined to these databases has given more efficient results on this
open problem.

There are several possible applications of Word-Sense Disambiguation:

e Machine Translation;
e Information Retrieval;
e Semantic Parsing;

e Speech Synthesis and Recognition.

Indeed, one can think of Word-Sense Disambiguation in the context of Artificial Intelligence
research, as human speech recognition is essential in this field.

1.1 The Ambiruptor Project

The Ambiruptor project was created while discussing wordplays: what makes a wordplay funny?
Part of the answer lies in the existing ambiguity of words; the same word, depending on its
context, can have several meanings. This observation gave birth to the Ambiruptor project: we
wanted to create a tool able to automatically recognize “ambiguous” words and assign them the
right meaning according to the context.

Wikipedia’s internal structure contains some disambiguation pages, indexing which helps
us identify ambiguous words. As these pages group links corresponding to Wikipedia pages of
different meanings of the ambiguous words, our task can be summed up as assigning the right
link.

The Natural Language Toolkit (NLTK) is a Python package for natural language processing
(NLP). It provides over 50 corpora and lexical resources, along with a suite of libraries and
programs for symbolic and statistical NLP such as classification (maximum entropy, naive Bayes,
k-means, etc), tokenizing (splitting paragraphs into sentences, splitting sentences into words),
part-of-speech tagging corresponding to each words, etc.

The main objective of the Ambiruptor project is to produce an efficient tool that gives the
correct meaning of ambiguous words in a text. Our tool is based on several supervised machine
learning concepts, coded using NLTK. We use Wikipedia to build our learning corpus and to
annotate it according to its internal links.

All the code we produce is under the GNU GPLv3| license.

http://www.gnu.org/licenses/gpl-3.0.html

1.2 The Ambiruptor Team

Our team is composed of 8 master students of the ENS of Lyon: Maria Boritchev, Boumediene
Brikci Sid, Victor Hublitz, Simon Mauras, Pierre Ohlmann, Ievgeniia Oshurko, Samir Tendjaoui
and Thi Xuan Vu. The project’s coordinators are Simon Mauras and Ievgeniia Oshurko.

1.3 Home

Our project is materialized with a web application: http://37.187.123.90:5000/.

@ Ambiruptor

Home About Ambirupter

Welcome!

Welcome on the website of the Ambiruptor project. The disambiguation problem consists of finding the correct
sense of an ambiguous word in a given sentence. Our target is to use learning models in order to be able to
guess the correct meanings of words with the highest possible accuracy.

= (@) D
T ah
Check our Github
Check our Web-App! repository! Contact us!

http://37.187.123.90:5000/

2. Research & Design

First of all, we explored the state of the art of word-sense disambiguation, data mining and
machine learning. Then, we focused on the problem of matching those different modules together
to choose the parameters.

2.1 Word-Sense Disambiguation

There are several approaches to the Word-Sense Disambiguation problem. We can split them in
three different categories. Are usually considered:

e Dictionary-based methods;
e Unsupervised methods;
e Supervised methods.

Supervised learning is currently the most effective method, but it requires an annotated
corpus in order to train the algorithm. Our goal is to provide a tool using a supervised learning
algorithm on automatically built corpora. The advantage of this approach is that our tool
retains the accuracy of supervised methods and can easily be adapted to different situations
(e.g. different languages).

We considered two possible approaches to the fact that we need to disambiguate several
words. We could either get one single model that gives the correct meaning for every word, or
get one model per ambiguous word. The second approach was chosen for several reasons:

e The computations can be easily distributed;
e The feature extraction can be specific to the ambiguous word;

e The corpus for each model is smaller.

2.2 Machine Learning

Supervised approaches to WSD are based on machine learning, a method of data analysis that
automates analytical model building. Machine learning explores the study and construction of
algorithms that can learn from data and make predictions on data. Here, we focus on classifiers:
a particular class of algorithms used to identify (classify) which category a new input belongs
to, based on the knowledge of a classification for already-known data (also known as training
set). When using a classifier, the first step is to fit (or train) a model using labeled data. Then
we are able to predict the class of unlabeled data using similarities between the corpus and the
request.

Let us consider a small example: classification of data within two classes. Let F be a set
and S C E be the set of elements of the first class (then, second class is E'\ S). Our input is

(Xi,vi)i<i<n € (E x{0,1})" such that y; = 15(X;) for all i. A model is a set {Hy,},, of subsets
of E. The objective is to find n € N such that H,, and S are as close as possible (it is the fitting
part). Then our classification function is 1, .

In Natural Language Processing, Support Vector Machines are usually quite efficient. We
consider a vector space E and {H,}, the set of hyperplanes. We tried several other learning
models (see section

In order to classify data, we need to extract interesting values (features) which will help
to characterize the input, from raw text data. This process is called feature extraction and is
explained further.

2.3 Feature extraction

Word-Sense Disambiguation is a Natural Language Processing task for which the context of the
considered word is of major importance. In order to process this context, one needs to define
some features. These are key points to look for in the input sentence. Features help us catch
information and knowledge about the context of the target words to be disambiguated. The
process of disambiguation cannot be done without these. Features that can be considered are
part-of-speech labelling, morphological form identification and frequency considerations (see [1]).

Meaning Related words
Living plant green, algae, land, water, food, cell, ...

Manufacturing plant | factory, industry, manufactory, build, product,
engine, process, artisan, chemical, ...

Table 2.1: Related words for “plant”

If we want to disambiguate an occurrence of the word “plant” in a text, the presence of words
related to one of the meanings is a rather good hint.

2.4 Data Mining

The supervised learning approach for text disambiguation implies having a corpus with pre-
labelled ambiguous words. We have two ways of obtaining such a corpus: either by manually
labelling ambiguous words or by using existing resources to build our data automatically. The
first solution is more accurate but requires much more time, therefore we chose the second one.

Manual use of Wikipedia data for disambiguation has already been done in [2]. The important
point in our work is the fact that no human annotations are required. The main idea is to consider
that each meaning of an ambiguous word is represented by a wiki-page. The disambiguation
page allows us to get the different meanings of a given word. Links between wiki-pages are
considered labelled words. The Figure describes how we build a corpus to disambiguate a
word.

Lawyer

Erosion

Legislation

Restaurant

1

Bar

A
N

w2
P
<

Pressure

i

\

Wikipedia links

Different meanings of “Bar”

Bar (law)

Bar (river morphology)
Bar (unit)

Bar (tropical cyclone)

Bar (establishment)

3. Implementation

3.1 Design

Our goal was to develop the design of a library which would be easy to use, compatible with
other Python libraries, and which would allow us the simultaneous development of different
sub-modules of the project and ensure the re-usability of implemented features. Figure gives
a global overview of the disambiguation process that was adopted.

)
Wikipedia, ... Data Mining ‘ 3
Model training
Back-end Feature Machine
) -F;o-n-t—-e;lc-l -------------------- Extraction Learning
q 6
Prediction
Ambiguous text
4 5
User's query

Figure 3.1: General pipeline

The library is divided into three modules:

e Module miners includes tools for mining and formatting training corpus (currently,
Wikipedia mining tools are implemented).

e Module preprocessors includes data structures for representation of training data and
ambiguous text. It also encapsulates text preprocessing tools and feature extractors for
various features.

e Module learners consists of learning models that we use to build disambiguation model.

One of our goals was to allow people to use the front-end of our library without having
to start over data-mining, feature extraction and model fitting. Figure illustrates how the
front-end can be used to disambiguate words.

Trained model (server)

E Feature | Model for ty

: vector for ¢y outputs sense s
— Textwith | | [fae vodd for fy Labelled
-—’-P located targets vector for t1) outputs sense s1 text

WoW1WW3.... Wy,

Wolowaly...Wy wo(t(),S[])wl<f1,81)...U)n

Model for t,,
outputs sens sy,

Feature
vector for t,,

Figure 3.2: Pipeline of the front-end library

3.2 Data Mining

In section we described how we build the corpus for an ambiguous word using internal links.
Let’s explain our implementation choices.

Dumps of wikipedia articles can be downloaded at the url https://dumps.wikimedia.org/
enwiki/latest/. A dump file of the content of every english article (without the history) is
a ~120 GB XML file. The first problem is that such a file can’t fit into the memory of any
computer we have. We therefore chose to store the articles and the links in a SQLite database,
as:

e No need of any external SQL server;
e One database is stored in one file (~160GB);
e Fast queries are possible using indexes (B-trees).

We used Python modules xml.sax.xmlreader and sqlite3 to parse the XML file and build
the database. Then we sanitized (remove wikipedia tags) articles using the mwparserfromhell
package.

3.3 Features

We implemented several features among those presented in [I]. Source code can be found in the
module preprocessors.

First, the parts of speech of the words in a fixed window around the ambiguous word
gives informations on the structure of the sentence. For example we can disambiguate “in a
bar” using the fact that “bar” follows the preposition “in”. This is implemented in the class
PartOfSpeechFeatureExtractor.

Another set of features are the typical words. As we build one model for each ambiguous
word, we can have features that depend on words we want to disambiguate (target word).
Typical words are words that are often used close to the target one. For example, the word
“tree” close to “plant” is a big hint for the actual meaning of “plant”. This is implemented in the
class CloseWordsFeatureExtractor.

https://dumps.wikimedia.org/enwiki/latest/
https://dumps.wikimedia.org/enwiki/latest/

3.4 Learning Models

The following supervised Machine Learning techniques were used:
e Gaussian Naive Bayes;

e Decision Tree Classifier;

Random Forest Classifier;

K-Nearest Neighbors Classifier;
e SVM with Linear Kernel;
e SVM with RBF Kernel.

Each of the implemented learning models uses scikit-learn models as a kernel. It also
allows us to evaluate models with help of various estimators provided by scikit-learn.

3.5 Interfaces

We tried to develop several user-friendly interfaces to allow people to test our disambiguation
tool. One back-end has been implemented using Python and the micro-framework Flask. Ap-
plications follow a fat-client paradigm, it means that almost all functionalities are provided
by the front-end. Requests are sent to the server using http protocol, then JSON containing
disambiguated words is returned to the client.

3.5.1 Web Application

Our web-app can be found at the url http://37.187.123.90:5000/. We added a check-mode
that allows people to contribute to the efficiency of our tool. Whenever the guessed sense of a
word is wrong, users have the possibility to report the error and choose the correct definition of
the ambiguous word. The server then logs the corresponding sentence into a database. We man-
ually update the corpus and re-train our models to take those contributions into account. Figure
is a screenshot of the Web-App. We used HTML, CSS and Bootstrap (a JS framework) so
that the Web-App could be used on several platforms (mobiles, tablets).

3.5.2 Firefox Plugin

We tried to integrate our aplication in several browsers, especially well spread ones, such as
Mozilla Firefox. The user would select the word to disambiguate, and using the right click,
then choosing “disambiguate” in the menu, he or she would be able to get the Wikipedia page
corresponding to the right definition of the word, as shown in figure

http://37.187.123.90:5000/

Ambiruptee

I hawve a plant in my garden.

Erase

& Investigationunder... x

== SECTIONS

@ Ambiruptor

About App

Home

Ambirupted

I have a plant

Figure 3.3: Web-app

-plant-in-se-houston/128

¢ ||Q search

-‘ 720 Houston, TX -~ TODAY

CLOUDY eoir

4= TRAFFIC =1 vibeo Houston South Southe

BREAKING NEWS Main lanes of I-10 WB at Highway 6 re-open

in my garden.

Now everything is OK!

72°

NEWS

INVESTIGATION UNDERWAY
INTO MASSIVE FIRE AT SE

HOUSTON [gE%E:

What You Need to Know
About the 'Rules’ Trump
Is Complaining About
Updated seconds ago

I HPD questioning person
of interest in double
murder of man,

trans-woman
Updated 1 min ago

Select All

Search Google for "plant”
View Selection Source
1dead, 5injured in
HazMat situation near
uT

Updated 8 mins ago

Inspect Element (Q)

‘Affluenza’ Teen Set to
Stay in Jail for Nearly 2

Figure 3.4: Firefox plugin

"Brightest Flashlight
Ever” Selling Like

Crazy
Vir3

RECOMMENDED

Real Estate Experts
Agree: This Is Where
to Live in New York
Right Now...

Mansion Global by Dow Jones

5 of the Best Project
Management Apps
(and Microsoft
Project)

GetApp

5 former NBA players
who are slam dunking
itin Europe

4. Results & Applications

After working on our project for a year, we managed to get some results. We succeded in
creating a user-friendly tool, easy to master for non-coders. One could think of some applications
(especially in Human-Machine Interaction) of our work, and we hope that the Ambiruptor
project will continue its expansion.

4.1 Examples

Some examples can be found in the figure below. It illustrates the strengths but also the
weaknesses of our approach. We can notice that each typical word has an influence on the result
of our algorithm.

’ Sentence \ Guessed Sense \ Explanation ‘
This tire has a pressure of 5 bars Unit, pressure pressure is a typical word.
This lawyer works at the bar. Law lawyer is a typical word.
I'm going to drink a beer in a bar. Establishment beer is a typical word.
I'm going to drink a cognac in a bar. | City, Montenegro | No typical words — defaut answer.
A lawyer has a drink in a bar. Law lawyer is a typical word.

4.2 Statistics

Figures and contain the different scores we obtained using our tool on the words “bar”
and “plant”. We computed those scores using cross validation. The idea is to test our learning
model on labeled data that is not in the corpus.

During model step, we tried to find the best classifier and the best parameters. We mostly
used F1 score to estimate the efficiency of an model. It is an estimator that considers both
precision and recall. The precision score is the proportion of correctly guessed samples among
the samples that have been classified in one particular class; the recall is the proportion of
correctly guessed samples among one class.

Some algorithms achieved a very good accuracy but had a poor recall. This can be explained
by the fact that our corpora is not balanced at all. Indeed, if a corpus contains 90% of samples
for one meaning of one word, a naive classifier can classify everything in one class. The precision
score will be 90% which is not a good estimation of the efficiency of the model. When using F1
score and therefore recall, we can fix this bias.

We chose to use Support Vector Machine with a linear kernel. This result confirms what we
had read during the research part on the state of the art. We can compare our scores to those
obtained by the pre-existing disambiguation tools. When they achieved a 83.12% accuracy on
the word "bar" using a manually labeled corpus (see [2]), we get a score of 57.72% using an
automatically build corpus.

Those first results are satisfactory as there are a lot of possible improvements.

10

Classification scores

Rbf SVM | | IS EESURRSRURRORS SO
Naive Bayes |
Linear SVM _ l—
KNeighbors

Decision Tree

Figure 4.1: Scores for the word “bar”

Classification scores

Rbf SVM | | e
Naive Bayes a— ,,,,,,,,,
Linear SVM | | e
KNeighbors ‘ | ,,,,,,,,,, ,,,,,,,,,

Decision Tree — —

0.0 0.2 0.4 0.6 0.8 1.0
Scores

Figure 4.2: Scores for the word “plant”

11

W Accuracy
[Precision
 Recall

[Fl-score

Im Accuracy
[Precision
[Recall

[Fl-score

4.3 Conclusion

Our disambiguation tool is still a prototype and is therefore not completely functional. However,
everything is now ready to deploy at a bigger scale. With more resources, we could distribute
computations and be able to disambiguate more and more ambiguous words using more and
more features.

This project has been a great opportunity for all of us to discover Natural Language Process-
ing. We worked on a concrete problem that involved several domains such as Machine Learning
or Data Mining, with many applications (e.g. machine translation, semantic parsing). All of
us had fun working on this project, therefore we would like to thank our supervisors, OLGA
KupPRIIANOVA and EDDY CARON.

12

Bibliography

[1] Hwee Tou Ng and Hian Beng Lee. Integrating multiple knowledge sources to disambiguate
word sense: An exemplar-based approach. In Proceedings of the 34th annual meeting on
Association for Computational Linguistics, pages 40-47. Association for Computational Lin-
guistics, 1996.

[2] Rada Mihalcea. Using wikipedia for automatic word sense disambiguation. In HLT-NAACL,
pages 196-203, 2007.

13

	Presentation
	The Ambiruptor Project
	The Ambiruptor Team
	Home

	Research & Design
	Word-Sense Disambiguation
	Machine Learning
	Feature extraction
	Data Mining

	Implementation
	Design
	Data Mining
	Features
	Learning Models
	Interfaces
	Web Application
	Firefox Plugin

	Results & Applications
	Examples
	Statistics
	Conclusion

	Bibliography

