Final report, Blend’it project

Benjamin Boisson, Guillaume Combette, Dimitri Lajou,
Victor Lutfalla, Octave Mariotti} Raphaél Monat,
Etienne Moutot, Johanna Seif, Pijus Simonaitis

2015-2016

Abstract

The goal of this project, “Blend’it”, was to design two open-source plug-ins for Blender,
which is a computer graphics software. These two plug-ins aim to help artists creating
complex environments. The first of these plug-in should be able to realistically animate
crowds, and the other one to design static environments by making different elements such
as rivers and mountains automatically interact to produce realistic scenes.

Although this kind of software is already developed in the Computer Graphics industry,
there are often unavailable to the public and not free.

*was abroad during the second semester, he did not contributed to the second part of the project

Contents

1 Introduction

1.1 Objectives L e
1.2 Stateof theart o
1.3 Team o e e e
1.4 Choice of Blender.o
1.5 Structure of the project L L

2 Blender exploration team

2.1 Blender discovery
2.2 Unitary tests
23 Codecoverage
24 Code organization L

3 Crowd plug-in

3.1 Human animation e
3.2 Path generation
3.2.1 TImplementation
3.3 Path interpolation in Blendero 0oL
33.1 Creatingapath
3.4 GUL . . o
3.4.1 The Map Panel
3.42 The Crowd Panel
3.4.3 The Simulation Panel 0 00

4 Environment plug-in

4.1 OVerview e
4.2 Features L e
421 MountainS v o e e e e e e e e e e e e e e e e e e e
422 Roads
42.3 Vegetation (forests) Lo
424 Cities
4.3 Mixing Featureso L
4.3.1 FeatureTree
4.3.2 Environment e e e
4.3.3 Interaction with Blender L.
4.4 Graphical User Interface (GUT)

5 Conclusion

11
11
11
11
11
11
12
12
12
13
13
13

15

1 Introduction

1.1 Objectives

Blender is a complete open source 3D software, and can create 3D scenes from scratch, from mod-
eling to animation and rendering. The goal of this project is to improve Blender, by providing
two new plug-ins to help artists creating rich environments.

Our aim is to add to Blender the possibility to generate large, crowded environments. There
are two independents parts: first generate environments in a semi-automated way. Secondly,
generate and animate people in the environment. People’s movements must be consistent with
the environment and other people’s movements. There are some examples of what has been
created by some researchers in figures 1 and 2.

(a) Real picture (b) Animation example from [1]

Figure 1: A crossing in Tokyo

Note that Blend’it does not aim to be a realistic crowd generator, in the sense of a usable
simulator for sociological or scientific experiments. The goal is to provide a complete generator
for crowd and environment for an artistic purpose only, that looks like a realistic crowd.

Figure 2: Image taken from [2]

There have been a lot of researches around the procedural generation of crowds and envi-
ronments in computer graphics. But the large majority are implemented as research prototypes
or in commercial software. To the best of our knowledge, nothing exists for widely used free
software like Blender. 3D graphics is a domain that is still closed-source, and every professional
3D artist uses costly software. We think it is an important point to move some proprietary
technologies to the open-source world, to fill a little bit the gap.

1.2 State of the art

Animation of large crowds is really developed in the computer graphics industry, enabling com-
mercial 3D software to easily render massive scenes with large crowds. For example, a software
called Massive ([3], Fig. 3a) dramatically changed the habits of 3D studios: it helped generating
the armies being displayed in Lord of the Rings. The Golaem software ([4], Fig. 3b) is also
able to render massive crowds in different situations, and is used by the studio producing Game
of Thrones. Nowadays, even commercial standalone 3D software like 3DS MAX [5] is able to
generate realistic crowds. VUE is a software able to generate massive, realistic landscapes, as
presented in Fig. 4. However, these software are really expensive: Massive costs up to $16,000
per year, and Golaem $5000 per year. On the contrary, no open-source software provides this
kind of feature. In the past, scripts had been developed, but they were not providing realistic
results, and are not working anymore.

(a) Scene generated using Massive (b) Scene generated using Golaem

Figure 3: State-of-the-art crowd generation and animation

Figure 4: State-of-the-art landscape generation using VUE software

1.3 Team

We are 9 Master students from the Ecole Normale Supérieure de Lyon, France. As a part of our
First year of Master in Research in Computer Science, we need to develop and code a project
of our choice (here, “Blend’it”), during the whole year. We are supervised by an Associate

Professor from the ENS Lyon, Eddy Caron. There is a project leader, Etienne Moutot, and a
deputy leader, Raphaél Monat. Please do not hesitate to contact us, by writing an email at
first name . last name@ens-lyon.fr.

All our work is hosted on Github, and can be consulted on github.com/blendit. We also
have a website: blendit.github.io.

1.4 Choice of Blender.

The big advantage of producing a code based on Blender is that we can use its Python API, which
is very powerful. With it, one can manipulate every objects and part of the Blender interface
without re-compiling Blender or even modifying the source code. Thus, we can concentrate only
on the new parts of the project, that is our algorithms. We did not need to code another render
engine for example. The other advantage is the already existing Blender community on which
we can rely to have some feedback on our project.

1.5 Structure of the project

The two plug-in are currently independent, one is able to simulate the motion of crowds, and
one is able to generated environments. In each plug-in, we split our code into a “pure” part,
independent of Blender, and one interacting with the Python API of Blender. This has two
advantages: we can test the “pure” part easily (testing the Blender plug-in automatically is
more difficult), and we may code interface with other softwares too.

Outline

e In section 2, we present the work of the Blender exploration team, done by Raphaél Monat,
Etienne Moutot and Pijus Simonaitis.

e Section 3 presents the work done by Dimitri Lajou, Victor Lutfalla, Johanna Seif and Pijus
Simonaitis on the crowd simulation.

e Section 4 presents the environment plug-in, done by Benjamin Boisson, Guillaume Com-
bette, Raphaél Monat and Etienne Moutot.

e Section 5 concludes this report.

github.com/blendit
blendit.github.io

2 Blender exploration team

During the whole project, this team had two aims. Our first goal was to discover Blender and
Python while other teams focused on the bibliographical work, to then teach everyone how to
use Blender efficiently and code in Python. Our second goal was to guarantee the quality of our
code by setting up unitary tests and code coverage tools.

2.1 Blender discovery

Blender is written in C4++ and Python, but it has a powerful API in Python, so we did not
have to modify the C++ core of Blender. Blender is also able to show the Python source of its
interface, or give the Python command associated to a manual operation. These features were
really helpful to develop efficiently our programs.

2.2 Unitary tests

For each new class we implemented, we also created a unit test file. The execution was handled
by the unitary test library of Python. We linked our Github repositories with Travis, a website
that runs the tests every time a pull request is created.

The advantage of creating these tests is that it forced us to test deeply our code, and more
importantly, to notice when code modifications break some other parts of the code. This last
feature is really important for big projects, to avoid creating bugs when modifying the code.

2.3 Code coverage

We also linked our Github repositories with Coveralls, to see what part of the code was covered
by our unitary tests. To ensure a good coverage, the pull requests had to increase coverage, or
they would automatically be rejected.

2.4 Code organization

This team also organized globally the code of the project. The code of each plug-in is separated
into two parts: one independent from Blender, containing the core, that is, the main algorithms
and data structures. The second part implements the interface with Blender.

The advantage of this organization is that the first part can be tested automatically using
unit tests. The part using Blender cannot be tested automatically with Travis, because it needs
a lot of interaction with the graphical interface. Thus, we tried to put maximum of the complex
algorithm in the first part, to allow them to be tested extensively.

|

Crowd core Env core Pure Python |
1 Unit tests 1
e e [S S
| |
I Blender plugin Blender plugin

(crowd) (env) 1

| |

| Blender |

Figure 5: Code organization

3 Crowd plug-in

The goal of this work package was to implement and integrate into Blender an efficient and
realistic motion of a crowd. At first we wanted to implement two features: a general movement
algorithm and another algorithm that would control the animation of the crowd. The second
part was quite difficult to implement and thus we decided to concentrate ourselves on the first
part.

The initial goal was to implement two parts: one creating trajectories for the crowd and
another one for animating individual movements. The second part was really hard to implement
and was closely linked with the animation of models, which is a domain where we did not have
any expertise. We thus decided to focus on the first part.

Our code is split into two parts: one that is independent from Blender and one that depends
on it (see Fig. 5). The first part create a set of key points that will represent the movement of
one person and the second interpolates a trajectory from those points. Before presenting these
two parts, we explain the difficulties encountered when we tried to model human animation.

3.1 Human animation

At the beginning we considered animating Humans and started by analyzing a theoretical survey
of computer animation of Human walking |6] and looking for what was already done in Blender
concerning automatic walking. All Blender-related resources on walking animation are gathered
on a web-page [7]. Walk-o-matic and stride add-ons were used in previous versions of Blender
to “help interactively design rough passes of a walk” and “quickly create cycles for background
or extra characters”, however both were broken on Blender 2.7x (last version).

Due to the lack of existing tools concerning automatic walking we considered creating such
a tool ourselves. We started by analyzing tutorials on Blender character animation (for example
[8]) and creating such a motion manually. However we soon realized how difficult it is to generate
a realistic walk due to the complex physics behind the movements and decided that it is out of
the scope of our project. We have shifted our attention to the more basic task of creating a path
in Blender and making an object following it with varying speed given by our algorithm.

3.2 Path generation

The first algorithm is inspired by those two papers: [1] and [9]. We chose them because it relied
on graphs rather than cellular automaton, and we were more familiar with graphs. We also
thought this approach would be more precise.

The idea is the following: a graph (grid) algorithm will generate a general path for each
individual and another algorithm will prevent collisions between individuals.

Time is discretized, and for each time, we compute the direction to go for each individual.
We move the individual in this direction, and iterate this principle. This is how we get the final
set of points for each individuals.

3.2.1 Implementation
We develop here the implementation of 3 features: graph-based approximation, allowed velocity

fields to avoid collisions, and the final computation of the allowed movement.

The guide graph The first part that we tried is to use a graph to "approximate" the space
to compute trajectories. We created a data structure representing nodes and edges of the
graph. This was quite easy to do since the graph is supposed to be a grid, it is regular. Then

we needed a minimum distance (1 to 1) algorithm on the graph. For that we chose the A*
algorithm. Unfortunately, our implementation of the A* was really costly in time and even more
in memory. This fact forced us to abandon the graph in the rest of the development. We could
test it for small values, and for a small number of calls, but the A* procedure would have to
be called thousands of times which makes this impractical. To replace the graph we used the
euclidean distance, but we had to remove static obstacles. Indeed these obstacles were taken into
account in the graph (vertices are removed inside the obstacles) and impacted the shortest path
algorithm A* but euclidean distance cannot take into account such obstacles. Also the points
(representing people) were not able to avoid packed (with people or obstacles) places anymore
and just went straight to there goal. Packed places were taken into account by the edges of the
graph which weight depended on the crowdedness of the neighbour cells.

A A AA,
A A

A

N

(a) A setting in a crowd animation (b) The graph-based version

Figure 6: The idea of the graph

Allowed velocity field This part deals with collision avoidance, it is the part that took us
the more time to implement. The problem is the following, you have a set of individual (i.e.
points) with current velocities. You want for each individual a set of velocities that will ensure
that if we pick one in it then we will not collide with another individual on the way (see Fig. 7
for an example). To do that the algorithm makes a lot of geometrical computation as explained
in |9]. We used the Python library Shapely to represent geometrical structures.

This library has some very useful tools but some functionalities did not work very well with
floating-point numbers and the small approximations that they entail. The errors linked to the
floats are one of the main reason it took us so much time.

The other was that some geometrical shapes were hard to represent and to compute. Also
due to the absence of the guide graph, the individuals were not able to go around obstacles so
it induced bugs, the points tends to get closer and closer to the limits of the obstacle until they
cross it through errors and thus go through obstacles. In the end, this part does return collisions
free velocities in 95% of cases. There are still some bugs that we were not able to fix.

Computation of the allowed movement This part involves minimizing a function on the
velocity field of each individuals: each individual will choose a movement minimizing the energy
used to get to his/her goal. For that we had two options. The first one was to implement a
simplex algorithm but the graph did not yield linear constraints so this was not a valid way to
minimize our function. The second method was to choose an angle and increment it according
to a df and minimizing the objective function (either a graph-based distance or the euclidean
distance, corresponding the energy used) on those angles.

This part is fully functional but relied on floating-point numbers again, involving computa-
tional errors.

A

Figure 7: Allowed velocity field

3.3 Path interpolation in Blender

The algorithm described in the previous paragraphs outputs individual’s coordinates at every
time step and from these we have to interpolate a continuous path in Blender.

3.3.1 Creating a path
There are two ways to make an object move in Blender

1. Fix where an object should be at a given time and then modify the interpolation of the
movement to make it realistic.

2. Use Blender structures for paths (Bezier curves, NURBS curves) and various ways to
couple an object and a path (Follow Path Constraint, Clamp To Constraint).

All of these options generate movement, however our work was to find the one that could be
automated easily, that would be compatible with a data structure given by our algorithm, that
would be precise and easy to modify for the user afterwards.

The first option was compatible with our data structure. However, realistic interpolation of
the path and the possibility to modify a path afterwards posed us a lot of questions. We have
chosen the second option which is a more conventional one, makes a clear distinction between a
path and an object following it and is easy to modify for an artist afterwards.

The main problem to solve was a discrepancy between the data structures: position of an
object on the path (Bezier or NURBS) is given through its distance along the path from the
starting point while in the data structure given by our algorithm position of the point is accessed
through its coordinates. This being said we had to find a way to link a position in the space to
the length of the path from the starting point to that position. Blender 2.76 having no add-on
to measure the length of the path made this task more complicated as we had to familiarize
with the mathematics behind the interpolation of Bezier curves and NURBS.

We have chosen Bezier curves instead of NURBS because their mathematical properties
allowed us to guarantee that an individual will be at a given place at a given time while NURBS
interpolates a path that only comes close to the given points but not necessary passes through
them.

3.4 GUI

The approach we chose was to have a GUI that would be completely integrated in the Blender
GUL

There are three layers of GUI in Blender: windows, banners, and panels.

We chose to make panels for simplicity reasons and we put those in the right banner of the
3DVIEW window.

Once we mastered the making and integration of panels with simple functionalities in Blender
we started to separate the functionalities we wanted for the GUI of the crowd plug-in.

3.4.1 The Map Panel

The first panel we decided to create was one to create the map and grid on which the crowd will
evolve.
We created it with four main functionalities:

e save and load the current map
e adjust size and origin of the map
e adjust grid size (crucial for the algorithm)

e add exclusion zones

3.4.2 The Crowd Panel

The second panel provides three of methods to create a crowd:
e save and load
e initialization with default settings
e initialization with random settings

We also chose to add a customization feature: from an existing crowd (initialized with one of
the three methods above) the user can select an individual and change all of its settings: initial
position, goal, size, optimal speed, maximal speed and animation of the individual.

3.4.3 The Simulation Panel

The last panel allows the user to launch the computation of a crowd animation and to render it
in Blender.

The user must first set the time quantum, number of time quantum to be computed and
angle quantum and then the user can launch computation and load the resulting animation into
Blender’s 3SDVIEW.

There is also a save and load functionality for the animation.

(a) Map panel (b) Crowd panel (c) Simulation panel

Figure 8: The three panels of the GUI

10

4 Environment plug-in

4.1 Overview

The architecture of the plug-in comes from [2]|, to provide an intuitive way of building an
environment: by drawing features on a map. The most difficult part in this approach is that
intersecting features are allowed and should give a result consistent with user expectations.

As a starting point, we focused on generating a height map, using the concepts from [10]. It
had the advantage of being able to merge different environments (mountains, cities, ...) smoothly
whenever they intersect, rather than using the more convoluted conflict-resolution mechanism

of [2].

The basic unit managed by this plug-in is a feature, which lies in a certain area, has a certain
height profile and knows how to interact with the other features that may intersect it. From the
collection of all the features drawn on the map by the user, our plug-in builds a tree encoding
how to build the final height map by successively merging sets of features together.

4.2 Features

Features are individual “areas”. Each feature contain several pieces of information:
e The heightmap on it (the height of the terrain on every point of the feature).
e Models that can appear on the feature (trees, buildings, ...).
e How the feature interact with other features when intersecting

We now present some features we implemented.

4.2.1 Mountains

Our first implementation of the Mountain feature corresponded to what is presented in [10],
where mountains are generated procedurally. However, the 2D random functions we tried did
not yield satisfying results. That is why we switched to another version, where we import at
random a part of a heightmap taken from a website [11]. This website import the heightmaps
through satellite imaging.

4.2.2 Roads

Road are polylines with constant height. It means that a road is a succession of contiguous
segments, and the height of the feature is the same constant everywhere on the road.

4.2.3 Vegetation (forests)

Vegetation takes a model as input (as well as the polygonal shape). It duplicates this models
randomly over the shape. The height is zero everywhere.
Last version allow to set a list of models for one forest instead of only one model.

11

4.2.4 Cities

We planned a feature that could generate cities, following a three-step process. First, draw the
street network. For this task we chose to use the method of [12], which provides a more or less
intuitive way for the user to control the output. Then, divide each street-delimited block into
parcels. We chose to follow the approach of [13], which seemed to give realistic results. Finally,
put a building in each parcel. We did not look much into that last part because using buildings
of random height was thought to be a reasonable approximation.

However, even the first step turned out to be challenging to implement. The principle of the
chosen method was to describe the shape of the street network by a tensor field, mapping points
to 2 x 2 matrices. It is described by a combination of basic fields given by the user. The streets
are then drawn as the stream lines of the eigenvectors of the field. The main issue here was to
represent the street network under construction so that:

e street drawing starts from points belonging to old streets and satisfying certain constraints
e new intersections are correctly handled while drawing a street
e the right eigenvector is always chosen
without having to reimplement the computation of eigenvectors or the numerical approximation
of a differential equation.
4.3 Mixing Features

Now we want to mix these features to be able to generate full environments.

For that, we first generate a Feature Tree, to build a hierarchy of the different features. Using
this tree, we generate a heightmap and list of models of the environment (a model is a 2D
position on the map and a path to a 3D model). And with all these elements, we finally create
the Blender 3D scene.

Environment

Height Ma
Feature Tree '8 P

|
T~ _—1 |

Models

Figure 9: Organisation of the Environment plug-in

This algorithm does everything without knowing what the feature are. Thus, it can mix any
type of features. The user can define its own feature because the algorithm is general enough to
handle any features.

4.3.1 FeatureTree

This data structure takes as input a list of features, and outputs a structured tree of the features,
according how they are suppose to interact.

The height of a point on the full map is just a recursive call of the height in the tree (see
Fig. 10).

12

Node.z() = mix(z1, z2)

z1() z2()

Figure 10: Tree for height computation

Every feature has 3 different type of interaction with other features:

Blend: the intersection of the two features is the mean of the two features (mix = %) This
is what we use for mountains.

Replace: the feature erase all features it intersects with (mix = z1). This interaction is used
for lakes, and rivers.

Addition: the feature adds it height to features lower in the tree (mix = z1 4 22). This kind
of interaction is used for forests and roads.

When two features intersects and have different fusion modes, the priority is as follows:
Replace > Addition > Blend

The tree is generated by iterating over all feature intersections, and generating appropri-
ated nodes for the 3 different possible interactions. Thanks to the library Shapely, geometric
manipulation for generating intersections of polygons, were quite easy to code.

4.3.2 Environment

Now that the FeatureTree is generated, it is easy to generate the heightmap: for every pixel of
the heightmap, compute the height of this points. Heights are then normalized and written into
a png file.

For the models, we look at all models inserted by “individuals” features, and we add them
to the global list of models, removing those which are “erased” by Replace features. Then the
height (z position) of every model is computed, thanks to the previous heightmap and the (x,y)
position of every models.

4.3.3 Interaction with Blender

Now we have everything to create our environment! The Blender plug-in uses previous data
structures to generate a plane and applies to it the heightmap. [t then import all models and
insert them in the scene using their (x,y,z) position.

All parameters of the features and feature tree are modifiable via a graphical interface.

4.4 Graphical User Interface (GUI)

A picture of the interface is presented in Fig. 11. Using the interface, the user can choose the
feature he wants to draw. He can then draw it using a pencil integrated in Blender, drawing
polygons here. After having completed the drawing of the features, the user can ask for the
generation of the environment. It can then hide the polygons, and also modify parameters that
are feature-specific.

13

Top Persp

Vegetati v

Figure 11: GUT of the Environment plug-in, with two features (in blue and magenta)

14

5 Conclusion

At the end of this project, we were able to render the following animation using our two plug-
ins: blendit.github.io/demo.mp4. Our global proposal is mainly respected: we are able to
generate environments provided by the user in an intuitive way, and we are able to generate
crowds where people avoid each other. Thanks to a lot of planning, and to the unitary tests, we
did not have any tricky bug to fix during the development of our project. Still, we have been
slowed down by some difficulties: we did not realize the animation of individuals would take
so much time; we understood the graph implementation was too computationally expensive too
late to try another approach; we also did not had the time to develop as many features as we
wished concerning the generation of environments.

Future work

Our implementation is functional, but can be improved. Among possible improvements, we
could try to make both plug-in interact more. Concerning the crowd simulation part, it would
be interesting to develop an efficient version of the control of the path using a graph, and
maybe add options to create way-points. Another thing to do is to create an animation for the
individuals. Concerning the environment generation, the city feature is not ready yet, and live
modifications (going backward to edit a feature) are not supported.

15

blendit.github.io/demo.mp4

References

1]

4]

[5]

[10]

[11]

[12]

[13]

S. J. Guy, J. Chhugani, S. Curtis, P. Dubey, M. Lin, and D. Manocha, “Pledestrians: A least-
effort approach to crowd simulation,” in Proceedings of the 2010 ACM SIGGRAPH /Euro-
graphics Symposium on Computer Animation, SCA ’10, (Aire-la-Ville, Switzerland, Switzer-
land), pp. 119-128, Eurographics Association, 2010.

R. M. Smelik, T. Tutenel, K. J. De Kraker, and R. Bidarra, “A declarative approach to
procedural modeling of virtual worlds,” Comput. Graph., vol. 35, pp. 352-363, Apr. 2011.

M. Software, “Massive software.” http://www.massivesoftware.com/. Accessed: 2015-16-
12.

G. Crowd, “Golaem crowd simulation for maya.” http://golaem.com. Accessed: 2015-16-
12.

A. Software, “3ds max autodesk software.” http://wuw.autodesk.fr/products/3ds-max/
overview. Accessed: 2015-16-12.

F. Multon, L. France, M.-P. Cani, and G. Debunne, “Computer Animation of Human
Walking: a Survey,” Journal of Visualization and Computer Animation, vol. 10, pp. 39-54,
1999.

B. Foundation, “Blender wiki — ressources on animated walks.” http://wiki.blender.org/
index.php/Dev:Ref/Requests/Animation2.6. Accessed: 2015-16-12.

S. Lague, “Video tutorial: Blender character animation: Walk cycle.” https://www.
youtube.com/watch?v=DulUWxUitJos. Accessed: 2015-16-12.

J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, Robotics Research: The 14th Inter-
national Symposium ISRER, ch. Reciprocal n-Body Collision Avoidance, pp. 3—19. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011.

J.-D. Génevaux, E. Galin, A. Peytavie, E. Guérin, C. Briquet, F. Grosbellet, and B. Benes,
“Terrain modelling from feature primitives,” Computer Graphics Forum, vol. 34, no. 6,
pp- 211-227, 2015.

http://terrain.party. Accessed: 2016-08-05.

G. Chen, G. Esch, P. Wonka, P. Miiller, and E. Zhang, “Interactive procedural street mod-
eling,” ACM Trans. Graph., vol. 27, pp. 103:1-103:10, Aug. 2008.

C. A. Vanegas, T. Kelly, B. Weber, J. Halatsch, D. G. Aliaga, and P. Miiller, “Procedural
generation of parcels in urban modeling,” Comput. Graph. Forum, vol. 31, pp. 681-690,
May 2012.

16

http://www.massivesoftware.com/
http://golaem.com
http://www.autodesk.fr/products/3ds-max/overview
http://www.autodesk.fr/products/3ds-max/overview
http://wiki.blender.org/index.php/Dev:Ref/Requests/Animation2.6
http://wiki.blender.org/index.php/Dev:Ref/Requests/Animation2.6
https://www.youtube.com/watch?v=DuUWxUitJos
https://www.youtube.com/watch?v=DuUWxUitJos
http://terrain.party

	Introduction
	Objectives
	State of the art
	Team
	Choice of Blender.
	Structure of the project

	Blender exploration team
	Blender discovery
	Unitary tests
	Code coverage
	Code organization

	Crowd plug-in
	Human animation
	Path generation
	Implementation

	Path interpolation in Blender
	Creating a path

	GUI
	The Map Panel
	The Crowd Panel
	The Simulation Panel

	Environment plug-in
	Overview
	Features
	Mountains
	Roads
	Vegetation (forests)
	Cities

	Mixing Features
	FeatureTree
	Environment
	Interaction with Blender

	Graphical User Interface (GUI)

	Conclusion

