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Abstract—Data centers are critical, energy-hungry infrastruc-
tures that run large-scale Internet-based services. Energy
consumption models are pivotal in designing and optimizing
energy-efficient operations to curb excessive energy consumption
in data centers. In this paper, we survey the state-of-the-art tech-
niques used for energy consumption modeling and prediction for
data centers and their components. We conduct an in-depth study
of the existing literature on data center power modeling, covering
more than 200 models. We organize these models in a hierarchical
structure with two main branches focusing on hardware-centric
and software-centric power models. Under hardware-centric ap-
proaches we start from the digital circuit level and move on to
describe higher-level energy consumption models at the hardware
component level, server level, data center level, and finally sys-
tems of systems level. Under the software-centric approaches we
investigate power models developed for operating systems, virtual
machines and software applications. This systematic approach
allows us to identify multiple issues prevalent in power modeling of
different levels of data center systems, including: i) few modeling
efforts targeted at power consumption of the entire data center
ii) many state-of-the-art power models are based on a few CPU
or server metrics, and iii) the effectiveness and accuracy of these
power models remain open questions. Based on these observations,
we conclude the survey by describing key challenges for future
research on constructing effective and accurate data center power
models.

Index Terms—Data center, energy consumption modeling,
energy efficiency, cloud computing.

I. INTRODUCTION

DATA centers are large scale, mission-critical computing
infrastructures that are operating around the clock [1],

[2] to propel the fast growth of IT industry and transform the
economy at large. The criticality of data centers have been
fueled mainly by two phenomenons. First, the ever increasing
growth in the demand for data computing, processing and
storage by a variety of large scale cloud services, such as
Google and Facebook, by telecommunication operators such
as British Telecom [3], by banks and others, resulted in the
proliferation of large data centers with thousands of servers
(sometimes with millions of servers). Second, the requirement
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for supporting a vast variety of applications ranging from those
that run for a few seconds to those that run persistently on
shared hardware platforms [1] has promoted building large
scale computing infrastructures. As a result, data centers have
been touted as one of the key enabling technologies for the fast
growing IT industry and at the same time, resulting in a global
market size of 152 billion US dollars by 2016 [4]. Data centers
being large scale computing infrastructures have huge energy
budgets, which have given rise to various energy efficiency
issues.

Energy efficiency of data centers has attained a key impor-
tance in recent years due to its (i) high economic, (ii) en-
vironmental, and (iii) performance impact. First, data centers
have high economic impact due to multiple reasons. A typical
data center may consume as much energy as 25,000 households.
Data center spaces may consume up to 100 to 200 times as
much electricity as standard office space [5]. Furthermore, the
energy costs of powering a typical data center doubles every
five years [1]. Therefore, with such steep increase in electricity
use and rising electricity costs, power bills have become a
significant expense for today’s data centers [5], [6]. In some
cases power costs may exceed the cost of purchasing hardware
[7]. Second, data center energy usage creates a number of
environmental problems [8], [9]. For example, in 2005, the total
data center power consumption was 1% of the total US power
consumption, and created as much emissions as a mid-sized
nation like Argentina [10]. In 2010 the global electricity usage
by data centers was estimated to be between 1.1% and 1.5%
of the total worldwide electricity usage [11], while in the US
the data centers consumed 1.7% to 2.2% of all US electrical
usage [12]. A recent study done by Van Heddeghem et al. [13]
has found that data centers worldwide consumed 270 TWh of
energy in 2012 and this consumption had a Compound Annual
Growth Rate (CAGR) of 4.4% from 2007 to 2012. Due to
these reasons data center energy efficiency is now considered
chief concern for data center operators, ahead of the traditional
considerations of availability and security. Finally, even when
running in the idle mode servers consume a significant amount
of energy. Large savings can be made by turning off these
servers. This and other measures such as workload consolida-
tion need to be taken to reduce data center electricity usage. At
the same time, these power saving techniques reduce system
performance, pointing to a complex balance between energy
savings and high performance.

The energy consumed by a data center can be broadly
categorized into two parts [14]: energy use by IT equipment
(e.g., servers, networks, storage, etc.) and usage by infrastruc-
ture facilities (e.g., cooling and power conditioning systems).

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



DAYARATHNA et al.: DATA CENTER ENERGY CONSUMPTION MODELING: A SURVEY 733

Fig. 1. A breakdown of energy consumption by different components of a
data center [15]. The cooling infrastructure consumes a major portion of the
data center energy followed by servers and storage, and other infrastructure
elements.

Fig. 2. A systematic view of the energy consumption modeling and prediction
process. The data center system optimization cycle consists of four main steps:
feature extraction, model construction, model validation, and usage of the
model.

The amount of energy consumed by these two subcomponents
depend on the design of the data center as well as the efficiency
of the equipment. For example, according to the statistics
published by the Infotech group (see Fig. 1), the largest energy
consumer in a typical data center is the cooling infrastructure
(50%) [13], [15], while servers and storage devices (26%)
rank second in the energy consumption hierarchy. Note that
these values might differ from data center to data center (see
for example [16]). In this paper we cover a broad number of
different techniques used in the modeling of different energy
consuming components.

A general approach to manage data center energy consump-
tion consists of four main steps (see Fig. 2): feature extraction,
model construction, model validation, and application of the
model to a task such as prediction.

• Feature extraction: In order to reduce the energy con-
sumption of a data center, we first need to measure the
energy consumption of its components [17] and identify
where most of the energy is spent. This is the task of the
feature extraction phase.

• Model construction: Second, the selected input features
are used to build an energy consumption model using
analysis techniques such as regression, machine learning,
etc. One of the key problems we face in this step is that
certain important system parameters such as the power
consumption of a particular component in a data center
cannot be measured directly. Classical analysis methods

may not produce accurate results in such situations,
and machine learning techniques may work better. The
outcome of this step is a power model.

• Model validation: Next, the model needs to be validated
for its fitness for its intended purposes.

• Model usage: Finally, the identified model can be used
as the basis for predicting the component or system’s
energy consumption. Such predictions can then be used
to improve the energy efficiency of the data center, for
example by incorporating the model into techniques such
as temperature or energy aware scheduling [18], dynamic
voltage frequency scaling (DVFS) [19]–[21], resource
virtualization [22], improving the algorithms used by the
applications [23], switching to low-power states [24],
power capping [25], or even completely shutting down
unused servers [10], [26], etc. to make data centers more
energy efficient. However, we note that having an energy
model is not always necessary for energy consumption
prediction.

A model is a formal abstraction of a real system. Models for
computer systems can be represented as equations, graphical
models, rules, decision trees, sets of representative examples,
neural networks, etc. The choice of representation affects the
accuracy of the models, as well as their interpretability by
people [27]. Accurate power consumption models are very
important for many energy efficiency schemes employed in
computing equipment [28]. Multiple uses for power models
exist, including

• Design of data center systems: Power models are nec-
essary in the initial design of components and systems,
since it is infeasible to build physical systems to assess
every design choice’s effect on power consumption [28].
As an example, this approach was used for Data Center
Efficiency Building Blocks project by Berge et al. [29].

• Forecasting the trends in energy efficiency: In daily
operations of computer systems, users and data center
operators need to understand the power usage patterns
of computer systems in order to maximize their energy
efficiency. Physical power measurement alone does not
provide a solution since they cannot predict future power
consumption, a.k.a. “what if” scenarios [30]. Measure-
ments also do not provide a link between resource usage
and power consumption [28]. Experimental verification
using real test data is generally expensive and inflexible.
Energy models on the other hand are much cheaper and
more adaptive to changes in operating parameters [31].

• Energy consumption optimization: Many different power
consumption optimization schemes have been developed
on top of power consumption models which are repre-
sented as mathematical functions [32].

Power modeling is an active area of research, studying both
linear and nonlinear correlations between the system utilization
and power consumption [33].

However, modeling the exact energy consumption behavior
of a data center, either at the whole system level or the individ-
ual component level, is not straightforward. In particular, data
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center energy consumption patterns depend on multiple factors
such as hardware specifications, workload, cooling require-
ments, types of applications, etc., which cannot be measured
easily. The power consumed by hardware, software that runs
on hardware, and the cooling and power infrastructure of the
building in which the data center systems reside are all closely
coupled [34]. Furthermore, it is impractical to perform detailed
measurements of the energy consumption of all lower level
components, since the measurement infrastructure introduces
overhead to the system. Due to these reasons energy con-
sumption prediction techniques have been developed which can
estimate the level of energy consumed by a system for a given
workload. Energy consumption prediction techniques can also
be utilized for forecasting the energy utilization of a given data
center operating in a specific context.

The contributions of this paper are numerous. One of the key
contributions of this survey is to conduct an in-depth study of
the existing work in data center power models, and to organize
the models using a coherent layer-wise abstraction as shown
in Fig. 4. While there are many current power models for
different components of a data center, the models are largely
unorganized, and lack an overall framework that allows them to
be used together with each other to model more sophisticated
and complex systems. Furthermore, we give a more detailed
taxonomy of the makeup of a data center, as shown in Fig. 6,
and again place and relate existing work to our taxonomy. We
believe the breadth and organization of our approach makes this
survey a valuable resource for both researchers and practition-
ers seeking to understand the complexities of data center energy
consumption at all levels of the system architecture.

The rest of this paper is organized as shown in the Table I.

II. RELATED SURVEYS

While there has been a wide body of research on energy
consumption modeling and energy consumption prediction for
data centers, there has been relatively few surveys conducted in
this area. The surveys published till present can be classified un-
der five categories: computing, storage and data management,
network, infrastructure, and interdisciplinary.

The majority of existing surveys have been on the energy
consumption of computing subsystems. For example, the sur-
vey by Beloglazov et al. described causes for high power/
energy consumption in computer systems and presented a clas-
sification of energy-efficient computer designs. However, this
survey was not specifically focused on energy consumption
modeling. Venkatachalam et al. conducted a survey on tech-
niques that reduce the total power consumed by a microproces-
sor system over time [35]. Mittal’s survey on techniques for
improving energy efficiency in embedded computing systems
[42] is in the same line as Venkatachalam et al. work. How-
ever, both these works focused on embedded systems, whereas
our focus is on data centers, a far different type of system.
Mittal et al. presented a survey on GPU energy efficiency [43].
Reda et al. conducted a survey on power modeling and charac-
terization of computing devices [38]. They reviewed techniques
for power modeling and characterization for general-purpose
processors, system-on-chip based embedded systems, and

TABLE I
CONTENTS

field programmable gate arrays. The survey conducted by
Valentini et al. studied characteristics of two main power
management techniques: static power management (SPM) and
dynamic power management (DPM) [53].

Several surveys have been conducted focusing on storage
and data management in data centers. A survey on energy-
efficient data management was conducted by Wang et al. [37].
Their focus was on the domain of energy-saving techniques for
data management. Similarly, Bostoen et al. conducted a survey
on power-reduction techniques for data center storage systems
[40]. Their survey focused only on the storage and file-system
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TABLE II
COMPARISON OF RELATED SURVEYS

software whereas we focus on energy use in the entire data
center.

Surveys conducted on network power consumption issues
include the work done by Hammadi et al., which focused on
architectural evolution of data center networks (DCNs) and
their energy efficiency [44]. Bilal et al. conducted a survey on
data center networks research and described energy efficiency
characteristics of DCNs [45], [46]. Shuja et al. surveyed energy
efficiency of data centers focusing on the balance between
energy consumption and quality of service (QoS) require-
ments [52]. Rahman et al. surveyed about power management
methodologies based on geographic load balancing (GLB) [48].
Unlike our work, none of these surveys delve into the details
on the construction of power models. Furthermore, they mostly
only consider a single aspect of a data center. Another similar
survey on power management techniques for data centers was
presented by Mittal [49]. But again, their focus was not on
modeling.

Recently several data center infrastructure level surveys have
been conducted. For example, Ebrahimi et al. conducted a
survey on the data center cooling technology, and discussed the
power related metrics for different components in a data center
in detail [47].

The remaining related surveys are interdisciplinary, and
cover multiple aspects of data center power consumption. The
survey conducted by Ge et al. focused on describing power-
saving techniques for data centers and content delivery net-
works [39]. While achieving power savings is one application
of the models we survey, our goals are broader, and we seek
to survey general power modeling and prediction techniques.
Orgerie et al. [41] surveyed techniques to improve the energy
efficiency of computing and network resources, but did not
focus on modeling and prediction. Gu et al. conducted a survey
on power metering for virtual machines (VMs) in clouds [50].
But their work only focused on VM power models, where
our work is more comprehensive and structured. Kong et al.
[51] conducted a survey on renewable energy and/or carbon
emission in data centers and their aim is different from the aim
of this survey paper.

A chronologically ordered listing of the aforementioned sur-
veys is shown in Table II. In this survey paper we study the
existing literature from bottom up, from energy consumption at
the digital circuit level on through to the data center systems of
systems level. With this approach we can compare the energy
consumption aspects of the data centers across multiple com-
ponent layers. We believe that the bottom-up decompositional
approach we follow as well as the comprehensive coverage
of the literature on all components makes our work a unique
contribution to the data center and cloud computing research
communities.

III. DATA CENTER ENERGY CONSUMPTION:
A SYSTEM PERSPECTIVE

In this section we describe how a data center is organized and
the flow of electrical power within a typical data center. Later,
we present an organizational framework to help readers design
effective power models.

A. Power Consumption Optimization Cycle

Power flow and chilled water flow of an example data center
is shown in Fig. 3 [54]. Data centers are typically energized
through the electrical grid. However, there are also data centers
which use diesel, solar, wind power, hydrogen (fuel cells), etc.
among other power sources. The electric power from external
sources (i.e., the total facility power) is divided between the
IT equipment, the infrastructure facilities, and support systems
by the switch gear. Computer room air conditioning (CRAC)
units, a part of the cooling infrastructure, receive power through
uninterrupted power supplies (UPSs) to maintain consistent
cooling even during possible power failure. Note that certain
power components such as flywheels or battery backup may not
be available in many data centers. Fig. 3 acts as a model data
center for most of the remaining parts of this paper.

An overall view of the framework used in this survey is
shown in Fig. 4. In general we can categorize the constituents
of a data center as belonging to one of two layers, software and
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Fig. 3. Power flow in a typical data center [54]. Data centers are specifically designed to operate as server spaces and they have more control over their internal
energy flow.

Fig. 4. A holistic view of the context for energy consumption modeling and prediction in data centers. The constituents of a data center can be categorized into
two main layers: software layer and hardware layer.

hardware. The software layer can be further divided into two
subcategories, the OS/virtualization layer, and the application
layer. In the first half of this paper we describe the power
consumption modeling work in the hardware layer. Later, we
study power consumption modeling for software. Throughout
this process, we highlight various energy consumption mod-

eling and prediction techniques during this process which are
applied at various different levels of the data center systems of
systems.

Energy consumption optimization for such a complex sys-
tems takes the form of a system optimization cycle, as shown in
Fig. 2. Modeling and prediction are two parts of this process.
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Feature extraction constructs a model of the real world system
to simulate its energy consumption. Feature extraction is often
performed on miniature prototypes of the real world system
(e.g., [55]), though it is also possible to conduct such extrac-
tions at the whole data center scale.

Raw power consumption measurements are one of the key
inputs to this system optimization cycle. Many studies on the
energy consumption of computer systems have been conducted
using external power meters providing accurate measurements
[56], [57] or using hardware or software instrumentation [58].
However, techniques that require the use of external meters or
instrumentation are less portable because those require physical
system access or invasive probing [59]. In the latest data center
power metering techniques, power usage data is collected by
polling power distribution units (PDUs) connected to IT equip-
ment [60]. As mentioned earlier, PDUs are power strips that
are created specifically to be used in data center environments.
High-end intelligent PDUs offer per-socket measurements,
rich network connectivity, and optional temperature sensors
[61]–[63]. While dedicated PDU hardware provides accurate
data on power consumption, present use of PDUs is costly and
introduces system scalability issues. Hardware manufacturers
are starting to deploy various sensors on HPC systems to collect
power-related data as well as provide easier access to the gath-
ered data. Modern internal on-board power sensors (e.g., the on-
board power sensors on Tesla K20 GPUs [64]), power/thermal
information reporting software such as AMESTER (IBM Au-
tomated Measurement of Systems for Temperature and Energy
Reporting software) [65], HP Integrated Lights Out (iLO) [66]
are several such examples. However, such facilities might not
be available in many hardware platforms. Moreover, direct
power measurement based energy consumption optimization
techniques are rarely deployed in current data centers due to
their usability issues. A more viable approach that has been
widely used is to use hardware performance counters for energy
consumption prediction.

Performance counters are the second type of input that can be
used with the system optimization cycle. Performance counters
are a special type of register exposed by different systems
with the purpose of indicating their state of execution [67].
Performance counters can be used to monitor hundreds of
different performance metrics such as cycle count, instruction
counts for fetch/decode/retire, cache misses, etc. [68]. Perfor-
mance counter information is used in many different tools and
frameworks, alongside predefined power consumption models,
for predicting the energy usage of systems. In certain situations
performance counter based energy consumption modeling tech-
niques can be augmented with physical power measurement.
For example, Fig. 5 shows an approach for system power
measurement that uses a combination of sampled multimeter
data for overall total power measurements, and use estimates
based on performance counter readings to produce per-unit
power breakdowns [69].

The model construction process can be done by people as
well as by computers using various intelligent techniques [70].
The model then needs to be validated to determine whether or
not it is useful. In most of the power models presented in this
paper, this step has been performed manually. However, there

Fig. 5. A hybrid approach for system component level power consumption
estimation [69]. This approach integrates measurements obtained from a
multimeter with the performance counter readings to produce per-unit power
breakdowns.

are situations where automatic model validation is done with
the help of computers. Once validated the model can be used for
different tasks such as prediction of the energy consumption of
the data center. The experience gained by predicting the energy
consumption of a real system can be utilized for improving the
energy consumption model itself.

B. An Organizational Framework for Power Models

In this paper we map the energy consumption of a data center
and its components to an organizational framework. We denote
the instantaneous power dissipated at time t by,

Pt = f (
→
St,

→
At,

→
Et). (1)

The parameters in this equation are as follows,

•
→
St—represents the internal system state at time t. This
can be further divided into three subcategories: physical,
OS, and application software. Hardware configurations
such as the type of processor, amount of memory, disk,
and NIC structure are examples of the system state. Raw
power measurements and performance counter values
indicate the system status at a particular time.

•
→
At—represents input to the application at time t, includ-
ing for example application parameters and input request
arrival rates.

•
→
Et—represents the execution and scheduling strategy
[71] across the data center system at time t. Examples
for scheduling include control of the CPU frequency,
powering on or off the server, assignment of workload to
different nodes or cores, etc. Which software we use at a
particular time, how we configure the software stack,
load balancing, and scheduling algorithms also deter-
mines the execution strategy.

The power model we use can either be additive in the power
consumption of individual components, regression based, or
use machine learning. The t value associated with each para-
meter denotes the time aspect of these parameters. However, in
certain power models, e.g., the model in Equation (7), we do not
observe the time of the measurements. In such cases the power
is calculated using an average value over a time window. For
simplicity, in the rest of the paper we simply use the parameter

name, e.g.,
→
A , instead of the time parameterized name, e.g.,

→
At. This organizational model can be used for a number of
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Fig. 6. A taxonomy based overview of the data center energy consumption modeling literature surveyed in this paper. Roman numbers and capital letters near the
boxes indicate the section/subsection title in this paper.

purposes, including data center energy consumption prediction,
data center system planning, system/subsystem comparisons,
and energy consumption optimization. We refer to [72] for
some example uses.

When the model is used for power consumption prediction at
time t, it can be represented as follows,

Pt+1 = g(
→
St,

→
At,

→
Et), (2)

where the function parameters are subscripted with t =
0, 1, . . ., and the function g predicts the power usage of the
next time step. If one knows the details of a system’s physical
state and the input for the system, she can schedule (i.e.,

adjust
→
E ) the applications to operate most efficiently for a

given power budget. In this case the applications’ deployment

schedule is determined by the other three parameters (P,
→
S ,

and
→
A ). This general model of data center power consumption

is reflected in many of the models described in this paper.
However, the interpretation of the function f is different across
different power models, as the models are based on different
techniques and focus on different components. For example,
power models such as the one given in Equation (10) may use
a componentwise decomposition of power while models such
as the one shown in Equation (4) use a static versus dynamic
power decomposition.

A more detailed view of Fig. 4 is presented in Fig. 6.
The latter figure provides an overview of the areas surveyed
in this paper. We study models from two viewpoints, their
level of abstraction and the techniques employed. The bounds
of the abstractions follow the system boundaries as well as
the application components of the data center system being
modeled. Techniques described in this survey are of two types,
either hardware centric or software centric. Software centric
techniques can be further divided as performance counter based
and machine learning based. In the subsequent sections, we
first describe hardware centric techniques, starting from energy
consumption modeling at the digital circuit level.

IV. DIGITAL CIRCUIT LEVEL ENERGY

CONSUMPTION MODELING

Power models play a fundamental role in energy-efficiency
research of which the goal is to improve the components’
and systems’ design or to efficiently use the existing hardware
[7]. Desirable properties of a full system energy consumption
model include Accuracy (accurate enough to allow the desired
energy saving), Speed (generate predictions quickly enough),
Generality and portability (should be suitable for as many
systems as possible), Inexpensiveness (should not requires ex-
pensive or intrusive infrastructure), and Simplicity [73]. This
section provides an introduction to the energy consumption
fundamentals in the context of electronic components.

A. Energy vs Power

Energy (E) is the total amount of work performed by a
system over a time period (T) while power (P) is the rate at
which the work is performed by the system. The relationship
between these three quantities can be expressed as,

E = PT, (3)

where E is the system’s energy consumption measured in
Joules, P is measured in Watts and T is a period of time
measured in seconds. If T is measured in unit times then the
values of energy and power become equal.

The above expression can be slightly enhanced by consider-
ing energy as the integration of power values in a time period
starting from t1 and ends at t2. Note that we use the terms energy
and power interchangeably in this paper.

B. Dynamic vs Static Power

Complementary metal-oxide semiconductor (CMOS) tech-
nology has been a driving force in recent development of
computer systems. CMOS has been popular among the mi-
croprocessor designers due to its resilience for noise as well
as low heat produced during its operation compared to other
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semiconductor technologies. The digital CMOS circuit power
consumption (Ptotal) can be divided into two main parts as,

Ptotal = Pdynamic + Pstatic, (4)

where Pdynamic is the dynamic power dissipation while Pstatic is
the static power dissipation.

Dynamic power is traditionally thought of as the primary
source of power dissipation in CMOS circuits [74]. The three
main sources of dynamic power (Pdynamic) consumption in
digital CMOS circuits are switched capacitance power (caused
by the charging and discharging of the capacitive load on each
gate’s output), short-circuit power (caused by short-circuit cur-
rent momentarily flowing within the cell), and leakage power
(caused by leakage current irrespective of the gate’s state) [75].
These power components can be represented as follows,

Pdynamic = Pswitching + Pshort−circuit + Pleakage, (5)

where the first term Pswitching represents the switching com-
ponent’s (switching capacitance) power. The most significant
component of power discharge in a well designed digital circuit
is the switching component. The second term represents the
power consumption that happens due to the direct-path short
circuit current that occurs when both the N-type metal-oxide
semiconductor (NMOS) and P-type metal-oxide semiconductor
(PMOS) transistors are simultaneously active making the cur-
rent directly flow to ground. The leakage current creates the
third component which is primarily determined by the fabrica-
tion technology of the chip. In some types of logic styles (such
as pseudo-NMOS) a fourth type of power called static biasing
power is consumed [76]. The leakage power consists of both
gate and sub-threshold leakages which can be expressed as [77],

{
Pleakage = ngateIleakageVdd,

Ileakage = AT2e−B/T + Ce(r1Vdd+r2),
(6)

where ngate represents the transistor count in a circuit while
Ileakage represents the leakage current, and T corresponds to the
temperature. The values A, B, C, r1, and r2 are constants. Circuit
activities such as transistor switches, changes of values in reg-
isters, etc. contribute to the dynamic energy consumption [78].

The primary source of the dynamic power consumption is
the switched capacitance (Capacitive power [79]). If we denote
A as the switching activity (i.e., Number of switches per clock
cycle), C as the physical capacitance, V as the supply voltage,
and f as the clock frequency; the dynamic power consumption
can be defined as in Equation (7) [80]–[82],

Pcapacitive = ACV2f . (7)

Multiple techniques are available for easy scaling of the supply
voltage and frequency in large range. Therefore, the two para-
meters V and f attract a large attention by the power-conscious
computing research.

Static power (Pstatic) is also becoming and important is-
sue because the leakage current flows even when a transistor
is switched off [78] and the number of transistors used in
processors is increasing rapidly. Static power consumption of

a transistor can be denoted as in Equation (8). Static power
(Pstatic) is proportional to number of devices,

Pstatic ∝ IstaticV, (8)

where Istatic is the leakage current.
The above mentioned power models can be used to accu-

rately model the energy consumption at the micro architecture
level of the digital circuits. The validity of such models is a
question at the higher levels of the system abstractions. How-
ever, as mentioned in Section I such basic power models have
been proven to be useful in developing energy saving technolo-
gies. For example the power model described in Equation (7)
makes the basis of dynamic voltage frequency scaling (DVFS)
technique which is a state-of-the-art energy saving technique
used in current computer systems.

V. AGGREGATE VIEW OF SERVER ENERGY MODELS

IT systems located in a data center are organized as com-
ponents. Development of component level energy consumption
models helps for multiple different activities such as new
equipment procurement, system capacity planning, etc. While
some of the discussed components may appear at different
other levels of the data center hierarchy, all of the components
described in this section are specifically attributed to servers.
In this section we categorize the power models which provide
aggregated view of the server power models as additive models,
utilization based models, and queuing models.

A. Additive Server Power Models

Servers are the source of productive output of a data center
system. Servers conduct most of the work in a data center and
they correspond to considerable load demand irrespective of
the amount of space they occupy [83]. Furthermore, they are
the most power proportional components available in a data
center which supports implementation of various power saving
techniques on servers. In this sub section we investigate on
the additive power models which represent the entire server’s
power consumption as a summation of its sub components. We
follow an incremental approach in presenting these power mod-
els starting from the least descriptive models to most descriptive
models. These models cloud be considered as an improvement
over linear regression, where non-parametric functions are used
to fit model locally and are combined together to create the
intended power model [84].

One of the simplest power models was described by
Roy et al. which represented the server power as a summation
of CPU and memory power consumption [85]. We represent
their power model as,

E(A) = Ecpu(A) + Ememory(A), (9)

where Ecpu(A) and Ememory(A) are energy consumption of the
CPU and the memory while running the algorithm A. More
details of these two terms are available in Equations (54) and
(87) respectively. Jain et al. have described a slightly different
power model to this by dividing the energy consumption of
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CPU and memory into two separate components as data and
instructions [86].

More detailed power models have been created by consid-
ering other components of a server such as disks, network
peripherals, etc. Server energy consumption model described
by Tudor et al. [87] augments the above power model with I/O
parameters. Their model can be shown as,

Etotal = Ecpu + Ememory + EI/O, (10)

where energy used by the server is expressed as a function
of energy used by CPU, memory, and I/O devices. However,
most of the current platforms do not allow measuring the power
consumed by the three main sub systems (CPU, Memory, and
Disk) of servers separately. Only the full system power denoted
by Etotal can be measured [88]. Ge et al. have also described
a similar power model by expressing the system power con-
sumption as a summation of CPU, memory, and other system
components [89]. The power model described in Equation (10)
can be further expanded as [90],

Etotal = Ecpu + Ememory + Edisk + ENIC, (11)

where Ecpu, Ememory, Edisk, and ENIC correspond to energy
consumed by CPU, memory, disk, and network interface card
respectively. Furthermore, this model may incorporate an ad-
ditional term for energy consumption of mother board as de-
scribed in [91], [92] and in [93] or a baseline constant such as
described in [94].

The above energy model can be further expanded considering
the fact that energy can be calculated by multiplying average
power with execution time as [90],

Etotal = PcompTcomp + PNICTcomm + Pnet_devTnet_dev, (12)

where Pcomp denotes combined CPU and memory average
power usage. Tcomp is the average computation time. Tcomm
is the total network time and PNIC is the average network
interface card power. This energy model also takes into account
the energy cost from network devices’ power Pnet_dev and the
running time Tnet_dev when the devices are under load.

A slightly different version of this energy model can be
constructed by considering the levels of resource utilization by
the key components of a server [95] as,

Pt = Ccpu,nucpu,t + Cmemoryumemory,t + Cdiskudisk,t + Cnicunic,t,

(13)

where ucpu is the CPU utilization, umemory is the memory access
rate, udisk is the hard disk I/O request rate, and unet is the
network I/O request rate. Pt refers to the predicted power
consumption of server at time t while Ccpu, Cmemory, Cdisk,
and Cnic are the coefficients of CPU, memory, disk and NIC
respectively. This power model is more descriptive compared
to the previously described server power models (in Equations
(10) to (12)). System resource utilization values (u) can be
regraded as a reflection of the job scheduling strategy of the
modeled system. The more jobs get scheduled in the system,
the CPU utilization increases accordingly).

In an almost similar power model, Lewis et al. described
the entire system energy consumption using the following
equation [96],

Esystem = A0(Eproc + Emem) + A1Eem + A2Eboard + A3Ehdd,

(14)

where, A0, A1, A2, and A3 are unknown constants that are
calculated via linear regression analysis and those remain con-
stant for a specific server architecture. The terms Eproc, Emem,

Eem, Eboard, and Ehdd represent total energy consumed by the
processor, energy consumed by the DDR and SDRAM chips,
energy consumed by the electromechanical components in the
server blade, energy consumed by the peripherals that support
the operation on board, and energy consumed by the hard disk
drive (HDD). Use of single constant factor A0 for both CPU
and memory can be attributed to the close tie between CPU and
memory power consumption.

CPU power consumption generally dominates the server
power models [97]. This domination is revisited in multiple
places of this survey. One example detailed system power
model which possess this characteristic was described by
Lent et al. where power consumption of a server is expressed
as the sum of the power drawn by its sub components [98]. In
this power model, the power (P) consumed by a network server
hosting the desired services is given by,

P = I +
N−1∑

i=0

αNρN(i) +
C−1∑

j=0

αCρC(j) +
D−1∑

k=0

αDρD(k)

+ ψm

⎛

⎝
C−1∑

j=0

ρC(j)

⎞

⎠ + ψM

⎛

⎝
C−1∑

j=0

ρC(j)

⎞

⎠ , (15)

where I denotes idle power consumption. Lent et al. assumed
each of the subsystems will produce linear power consumption
with respect to their individual utilization. Then the power
consumption of a core, disk, or port subsystem can be estimated
as the product of their utilization (core utilization ρC, disk
utilization ρD, network utilization ρN ) times constant factor
(αC,αD, and αN ). These factors do not necessarily depend
on the application workload. The model shown above does
not have a separate subsystem for memory because the power
consumed by memory access is included in the calculations of
the power incurred by the other subsystems (especially by the
core). CPU instruction execution tends to highly correlate to
memory accesses in most applications [98]. The two compo-
nents ψm and ψM are made to model behaviors that could be
difficult to represent otherwise.

A different type of power models based on the type of
operations conducted by a server can be developed as follows.
In this approach which is similar to the power consumption of
CMOS circuits described previously, computer systems’ energy
consumption (i.e., data center energy consumption) is divided
into two components called static (i.e., baseline) power (Pfix)
and dynamic (i.e., active) power (Pvar) [75], [99], [100] which
can be expressed as,

Ptotal = Pfix + Pvar, (16)
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Fig. 7. An approximate distribution of peak power usage by components of a
warehouse scale computer deployed at Google in 2007 [102].

Fig. 8. Power breakdown across the components of two servers [103]. In the
case of Atom processor based server, memory consumes largest amount of
power while in Xeon based server, the CPUs are the main power consumers.

where the fraction between static and dynamic power depends
on both the system under consideration and the workload itself.

Static power (Pfix) consumption in the context of a server
is the power that is consumed by the system irrespective of
its state of operation. This includes power wasted because of
leaking currents in semiconductor components such as CPU,
memory, I/O and other motherboard components, fans, etc.
[101]. This category also includes power required to keep basic
operating system processes and other idling tasks running (E.g.,
Power required to keep the hardware clocks, timer interrupts,
network ports, and disk drives active [98]). The leaking currents
need to be kept minimum to avoid such energy waste. However,
this requires improvement of the lower level (semi-conductor
chip level) energy consumption [75].

Dynamic power consumption in the context of a server is
made by activities such as operation of circuits, access to disc
drives (I/O), etc. It depends mainly on the type of workload
which executes on the computer as well as how the workload
utilizes the system’s CPU, memory, I/O, etc. [101]. Further-
more, 30–40% of the power is spent on the disk, the network,
the I/O and peripherals, the regulators, and the rest of the glue
circuitry in the server.

Fig. 7 shows an example breakdown of power consumption
of a server [102] deployed in a Google data center. It should be
noted that the percentage power consumption among different
components are not fixed entities. For example Fig. 8 shows
power consumption comparison of two servers with one being a

mobile processor (Atom processor) [103]. In the case of Atom
processor based server, memory consumes the largest amount
of power while in the Xeon based server, the CPUs are the
main power consumers. The disk and the power supply unit are
another two large contributors to this collection [104] which are
specifically not shown in Fig. 8.

Note that most of the power models described in this sub-
section were based on component wise power consumption
decomposition. However, there can be other different types of
energy consumption models developed for a server based on
its phases of execution. One such example is the energy model
described by Orgerie et al. [105] (though its not specifically
attributed to servers by them),

E = Eboot + Ework + Ehalt, (17)

where Eboot and Ehalt corresponds to system booting and halting
energy consumption which is zero if the equipment need not be
booting or halting during its operation life cycle. However, use
of this type of operation phase based energy models is quite
rare in real world. On the contrary, system utilization based
power models are heavily used in data center power modeling.
We investigate this important are in the next subsection.

Another component wise power breakdown approach for
modeling server power is use of the VM power as a parameter
in the power model. This can be considered as an extension of
the power model described in Equation (37). A power model
which is based on this concept is described in [106] where the
server power is expressed as,

Pserver = Pbaseline +
n∑

i=1

Pvm(i), (18)

where Pserver represents the total power of a physical server
while Pbaseline is the baseline power that is empirically deter-
mined. Pvm is the power of an active VM, and n is the number
of VMs held by the server. This power model can be further
expanded by expressing the power usage of each and every VM.
Each and every VM’s power consumption can be expressed
as in Equation (184). Then the complete server power can be
expressed as,

Pserver = α

n∑

k=1

Ucpu(k) + β

n∑

k=1

Umem(k) + γ

n∑

k=1

Uio(k)

+ ne + Ebaseline, (19)

where n is the number of VMs running in the physical node.
A similar power model for server was created in [107] by
considering only CPU, disk and idle power consumption. In
that power model, CPUs and disks are considered as the major
components that reflect the system activities.

B. System Utilization Based Server Power Models

The second main category of server power models has been
created considering the amount of system resource utiliza-
tion by its components. Traditionally the CPU has been the
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largest power consumer in a server. Hence most of the system
utilization based power models leverage CPU utilization as
their metric of choice in modeling the entire system’s power
consumption. Different from previous subsection, we organized
the content in this subsection in a chronological order because
there is no clearly observable structural relationship between
these power models.

One of the earliest server utilization based power models
which appeared in year 2003 was an extension of the basic
digital circuit level power model described in Equation (7).
This was introduced by Elnozahy et al. where the fundamental
dynamic power model described in Equation (7) was extended
considering a simplification made on the system voltage [72],
[108]. They expressed voltage as a linear function in the fre-
quency where V = αf (α is a constant). This results in a power
model for a server running at frequency f as,

P(f ) = c0 + c1f 3, (20)

where c0 is a constant that includes power consumption of all
components except the CPU and the base power consumption
of CPU. c1 is a constant (c1 = ACα2 where A and C are
constants from Equation (7)).

In year 2006, Economou et al. described Mantis which is
a non-intrusive method for modeling full-system power con-
sumption and real-time power prediction. Mantis uses a one-
time calibration phase to generate a model by correlating AC
power measurements with user-level system utilization metrics
[104]. Mantis uses the component utilization metrics collected
through the operating system or standard hardware counters
for construction of power models. Mantis has been imple-
mented for two different server systems (highly integrated blade
server and a Itanium server) for which the power models are
depicted as,

Pblade = 14.45 + 0.236ucpu − (4.47E − 8)umem

+ 0.00281udisk + (3.1E − 8)unet, (21)

Pitanium = 635.62 + 0.1108ucpu + (4.05E − 7)umem

+ 0.00405udisk + 0unet,

where the first term in both the above equations is a constant
which represents the system’s idle power consumption. Each
ucpu, umem, udisk, and unet correspond to CPU utilization, off-
chip memory access count, hard disk I/O rate and network I/O
rate respectively.

One of the notable processor utilization based power models
is the work by Fan et al. (appeared in the year 2007) which
has influenced recent data center power consumption modeling
research significantly. Fan et al. have shown that the linear
power model can track the dynamic power usage with a greater
accuracy at the PDU level [6], [109]. If we assume the power
consumed by a server is approximately zero when it is switched
off, we can model the power Pu consumed by a server at any
specific processor utilization u (u is a fraction [110]) as [6],
[111], [112] in Equation (22),

Pu = (Pmax − Pidle)u + Pidle, (22)

where Pidle, Pmax are the average power values when the server
is idle and the average power value when the server is fully
utilized respectively. This model assumes server power con-
sumption and CPU utilization has a linear relationship. Certain
studies have used this empirical model as the representation of
the system’s total power consumption since Fan et al.’s study
[109] have shown that the power consumption of servers can be
accurately described by a liner relationship between the power
consumption and CPU utilization [113].

The above processor utilization based power model has been
highly influential in recent server power modeling research.
For example, the works by Zhang et al. and Tang et al. used
CPU utilization as the only parameter to estimate the system
energy consumption [114], [115]. However, there are certain
works which define slightly different utilization metric for the
power model in Equation (22). In one such works [116], the
power model appears in the context of modeling the energy
consumption of a CDN server. Yet, in [116] the utilization
metric has been changed as the percentage between the actual
number of connections made to a server s against the maximum
number of connections allowed on the server.

In the same work, Fan et al. also have proposed another
empirical, non-linear power model as follows [73], [75], [109],

Pu = (Pmax − Pidle)(2u − ur) + Pidle, (23)

where r is a calibration parameter that minimizes the square
error which needs to be obtained experimentally. In certain
literature the value of r is calculated as 1.4 [109]. Fan et al.
conducted an experiment which compared the accuracy of the
power models in Equation (22) and Equation (23) using a few
hundred servers in one of the Google’s production facilities.
Fan et al. mentioned that except for a fixed offset, the model
tracks the dynamic power usage extremely well. The error was
below 5% for the linear model and 1% for the empirical model.
Although the empirical power model in Equation (23) had
better error rate, one need to determine r calibration parameter
which is a disadvantage associated with the model.

Several notable works of system utilization based server
energy consumption modeling appeared in years 2010–2011.
One such work was presented by Beloglazov et al. [111]. They
considered the fact that CPU utilization may change over time
due to the variation of the workload handled by the CPU [111].
Therefore, CPU utilization can be denoted as a function of time
as [2], [117] in Equation (24),

E =
∫ t1

t0
P (u(t)) dt, (24)

where E is the total energy consumption by a physical node
during a time period from t0 to t1. u(t) corresponds to the CPU
utilization which is a function of time.

Multiple work have been done to model the aggregate power
consumption of a server [112]. Wang et al. presented an energy
model derived from experiments on a blade enclosure system
[118]. They modeled server power as shown in the following
equation,

PBj = gBuj + PB,idle, for any blade j. (25)
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They mentioned that CPU utilization (u) is a proxy for the
effect of active workload management while the slope gB and
the intercept PB,idle captures the effect of power status tuning.

In their work on planning and deployment of enterprise
applications, Li et al. conducted power consumption modeling
of a server [119]. Unlike the previously described approaches,
they used a normalized power unit Pnorm,

Pnorm = Psys − Pidle

Pbusy − Pidle
, (26)

where Psys is the system power consumption, Pidle is the idling
power consumption (i.e., the utilization is zero, (U = 0)), Pbusy
is the power consumption when the system is completely uti-
lized (U = 1). Furthermore, they described another model that
relates normalized power (Pnorm) and CPU utilization (U) as,

Pnorm(U) = 1 − h(U)−1, (27)

where h(U) = c1Uc2 + c3Uc4 + c5, while (c1, . . . , c5) are pa-
rameters to be fitted.

In an effort to build on the power model in Equation (23),
Tang et al. created somewhat sophisticated power consumption
model [120] as,

Px(t) = Px_idle + (Px_full − Px_idle)αxUx(t)βx , (28)

where Px_idle and Px_full are the power consumption of a server x
at idle and fully loaded states respectively. αx and βx are server
dependent parameters. Ux corresponds to the CPU utilization of
server x at time t. The notable difference from the power model
in Equation (23) is the addition of temporal parameter to the
power model and the feature of accounting multiple different
servers.

Yao et al. described the power consumption of a server as
follows [121],

P = bi(t)α

A
+ Pidle, (29)

where A, Pidle, and α are constants determined by the data
center. Pidle is the average idle power consumption of the server.
bi(t) denotes the utilization/rate of operation if the server i at
time t. Yao et al. selected the values α = 3, Pidle = 150 Watts,
and A such that the peak power consumption of a server is
250 Watts. Both the power models in Equations (28) and (29)
were developed in the year 2011.

A similar power model for a server i was made by Tian et al.
[122] in year 2014. However, they replaced the frequency
parameter with service rate(µαi

i ) and utilization of server ui as,

Pi = uikiµ
αi
i + P∗

i , (30)

where P∗
i represents the static power consumption of server

i. This type of power models are also known as Power-Law
models in certain literature [123]. It can be observed that
when considering one decade period from the year 2003, many
of the utilization based power models have appeared around
2010–2011 period. This indicates there are many recent work
being carried out in this area.

Certain power models consider the System’s CPU die tem-
perature along with the CPU utilization to calculate the heat
generated by the server. In a steady-state such heat dissipated
by the server can be equated to the server power dissipation.
In one such work the power dissipation by a server (Pserver) is
given by a curve-fitting model [124],

Pserver = PIT + Psfan, (31)

where PIT represents the server heat generation excluding the
heat generation by server cooling fan (Psfan). The component
of the above model can be expanded as,

PIT = 1.566 × 10−5 + 42.29u + 0.379T + 0.03002T2, (32)

where the R2 value of the curve-fitting line was 0.9839. T is the
CPU die temperature and u is the CPU utilization.

Furthermore, in certain works [125] the server’s CPU usage
and operation frequency are used for modeling a server’s power
consumption. The work by Horvath et al. is an example where
they expressed the server power consumption as,

Pi = ai3fiui + ai2fi + ai0, (33)

where pi, fi, ui represent the power consumption, proces-
sor’s frequency, and utilization of node i respectively. aij(j =
0, 1, 2, 3) are system parameters which can be determined by
using the system identification of the physical server. They used
the stead-state result of the M/M/n queuing model. The node
utilization u is described as u = x

sn where x is the number of
concurrent tasks in current sampling cycle. Arrival rate s is
the number of served tasks and n is the server’s core count.
When constructing the server power model they assumed that
all servers are homogeneous with parameters ai3 = 68.4, ai2 =
14.6, ai1 = −14.2, ai0 = 15.0.

C. Other Server Power Models

Additive and utilization based power models represent ma-
jority of the server power models. However, there are multiple
other power models which cannot be specifically attributed
to these two categories. This sub section investigates on such
power models. We follow a chronological ordering of power
models as done in the previous section.

In a work on operational state based power modeling,
Lefurgy et al. have observed that server power consumption
changes immediately (within a millisecond) as the system’s
performance state changes from irrespective of the previous
performance state [126]. Therefore, they concluded that power
consumption of a server for a given workload is determined
solely by the performance settings and is independent of the
power consumption in previous control periods. Furthermore,
from the performance experiments conducted by Lefurgy et al.,
it was observed that a linear model fits well with an R2 > 99%
for all workloads. Therefore, they proposed a server power
model as,

p(k) = At(k) + B, (34)

where A and B are two system dependent parameters. p(k) is
the power consumption of the server in the kth control period
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while t(k) is the performance state of the processors in the kth
control period. Furthermore, they created a dynamic model for
power consumption as,

p(k + 1) = p(k) + Ad(k). (35)

In a detailed work on server power modeling with use of
regression techniques, Costa et al. [127] introduced a model
for describing the power consumption of a computer through
use of a combination of system wide variables (i.e., sys-
tem wide metrics such as host_disk.sda_disk_time_write (av-
erage time a write operation took to complete), host_cpu.X_
cpu.system_value (processes executing in kernel mode), etc.)
Yi, i = 1, . . . , I; variables Xjl, j = 1, . . . , J describing individ-
ual process Pl, l = 1, . . . , L. They took the power consumption
of a computer with no load be denoted by P0, and the respective
coefficients of the regression model be called αi for system
wide variables, and βj for per process variables. Based on the
above definitions, the power consumption P of a computer can
be denoted as,

P = P0 +
I∑

i=1

αiYi +
J∑

j=1

βj

L∑

l=1

Xjl. (36)

Regression based power modeling has been shown to perform
poorly on non-trivial workloads due to multiple reasons such
as, level of cross dependency present in the features fed to
the model, features used by previous approaches are outdated
for contemporary platforms, and modern hardware components
abstract away hardware complexity and do not necessarily
expose all the power states to the OS. The changes in the power
consumption are not necessarily associated with changes in
their corresponding states [128].

Queuing theory has been used to construct server power mod-
els. In one such work, Gupta et al. created a model for power
consumption of a server [113]. They assumed that servers
are power proportional systems (i.e, assuming server power
consumption and CPU utilization has a linear relationship)
[113]. They described the power consumption of a server as,

P(λ) = λ

µ
(Pcpu + Pother) +

(
1 − λ

µ

)
Pidle, (37)

where Pcpu and Pother represent the power consumption of
the processor and other system components while Pidle is the
idle power consumption of the server. They assumed that the
processor accounts for half of the system power during active
periods and the system consumes 10% of its peak power
during idle periods. They used queuing theoretic models for
capturing the request processing behavior in data center servers.
They used the standard M/M/1 queuing model which assumes
exponentially distributed request inter-arrival time with mean 1

λ

and an exponentially distributed service time with mean 1
µ .

In a work conducted in year 2012, Enokido et al. created
Simple Power Consumption (SPC) model for a server st where
the power consumption rate Et(τ ) at time τ is given by [129],

Et(τ ) =
{

Rt, if Qt(τ ) ≥ 1,

min Et, otherwise,
(38)

where Rt shows the maximum power consumption rate where a
rotation speed of each sever fan is fixed to be minimum. In the
SPC model if at least one process pi is performed, the electric
power is consumed at fixed rate Rt on a server st at time τ

(Et(τ ) = Rt). If not the electric power consumption rate of the
server st is minimum.

Furthermore, they created an extended power model for a
server considering the power consumption of cooling devices
(i.e., fans) [129]. They did not consider how much electronic
power each hardware component of a server like CPU, memory,
and fans consume. They rather considered aggregated power
usage at macro level. In their Extended Simple Power Consump-
tion (ESPC) model, Et(τ ) shows the electric power consump-
tion rate [W] of a server st at time τ (t = 1, . . . , n), min Et ≤
Et(τ ) ≤ max Et (See Equation (39)). Different from the model
described in Equation (112) they used an additional parameter
Rt in this model. Then the ESPC is stated as,

Et(τ ) =

⎧
⎪⎨

⎪⎩

max Et, if Qt(τ ) ≥ Mt,

ρt.Qt(τ ) + Rt, if 1 ≤ Qt(τ ) ≤ Mt,

min Et, otherwise,

(39)

where ρt is the increasing ratio of the power consumption rate
on a server st . ρt ≥ 0 if Qt(τ ) > 1 and ρt = 0 if Qt(τ ) = 1.

In another system utilization based energy consumption
model by Mills et al. the energy consumed by a compute node
with CPU (single) executing at speed σ is modeled as [130],

E (σ, [t1, t2]) =
∫ t2

t1

(
σ 3 + ρσ 3

max

)
dt, (40)

where ρ stands for overhead power which is consumed regard-
less the speed of the processor. The overhead includes the power
consumption by all other system components such as memory,
network, etc. Although the authors mentioned the energy con-
sumption of a socket, their power model is generalized to the
entire server due to this reason.

In certain works power consumption of a server is calculated
by following a top down approach, by dividing the total power
consumption of servers by the number of servers hosted in
the data center [131]. However, such power models are based
on a number of assumptions such as uniform server profiles,
homogeneous execution of servers, etc.

Certain power consumption modeling techniques construct
metrics to represent the energy consumption of their target
systems. In one such work, Deng et al. defined a metric called
system energy ratio to determine the best operating point of a
full compute system [133]–[135]. For a memory frequency of
fmem they defined the system energy ratio (K) as,

K(fmem) = TfmemPfmem

TbasePbase
, (41)

where Tfmem corresponds to the performance estimate for
an epoch at frequency fmem. On the otherhand Pfmem =
Pmem(fmem) + Pnonmem, where Pmem(f ) is calculated according
to the model for memory power for Micron DDR SDRAM
[136]. Pnonmem accounts for all non-memory subsystem com-
ponents. The corresponding values for the Tfmem and Pfmem
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Fig. 9. M/M/1 ◦ M, M, k queue Markov chain [132] representation of a server. The model allows one to determine an optimal policy for a single server system
under a broad range of metrics.

at a nominal frequency are denoted as Tbase and Pbase.
Note that when considering the multiple memory frequencies
(fmc1, fmc2, . . . , fmcn) the term Pfmem can be expanded further
as Pfmem = ∑

i Pfmci
+ Pnonmem [134]. The definition of K was

further expanded by Deng et al. as,

K
(

f 1
core, . . . , f n

core, fmem

)
=

Tf 1
core,...,f n

core,fmem
Pf 1

core,...,f n
core,fmem

TbasePbase
,

(42)

where Tbase and Pbase are time and average power at a nomi-
nal frequency (e.g., maximum frequencies). Furthermore, they
expressed the full system power usage as,

P
(

f 1
core, . . . , f n

core, fmem

)
= Pnon + Pcache

+ Pmem(fmem) +
n∑

i=1

Pi
core

(
f i
core

)
, (43)

where Pnon is the power consumed by all system components
except cores, the shared L2 cache, and the memory subsystem.
Pnon is assumed to be fixed. The average power of the L2 cache
is denoted by Pcache and is calculated by using the cache’s leak-
age and the number of accesses during the epoch. Pmem(f ) is the
average power of L2 misses (which makes the CPU to access
memory) and is calculated based on the description given in
[137]. The value of Pi

core(f ) is calculated based on the core’s
activity factor following the same techniques used by [18] and
[69]. Deng et al. used several L1 and L2 performance counters
(Total L1 Miss Stalls (TMS), Total L2 Accesses (TLA), Total
L2 Misses (TLM), and Total L2 Miss Stalls (TLS)) and per-core
sets of four Core Activity Counters (CAC) which track com-
mitted ALU instructions, FPU instructions, branch instructions,
and load/store instructions to estimate core power consumption
[135]. They found that power usage of cores is sensitive to the
memory frequency.

Power consumption states can be used for construction of
server power models. Maccio et al. described an energy con-
sumption model for a server by mapping its operational state
into one of the four system states: LOW, SETUP, BUSY, and

IDLE where each of the power states are denoted by ELOW ,
ESETUP, EBUSY , and EIDLE. They modeled the server power
consumption as a Markov chain [132] (shown in Fig. 9). The
state (n1, n2) means that the server is off when n1 = 0 and
on when n1 = 1. There are n2 jobs in the system. The model
allows one to determine an optimal policy for a single server
system under a broad range of metrics which considers the
expected response time of a job in the system, the expected
energy consumed by the system, and the expected rate that the
server switches between the two energy states (off/on).

We described the research conducted on modeling the energy
consumption of a data center server (as a complete unit) upto
this point. All of these models are linear models while some
of them listed in equations (9) , . . . , (17) are componentwise
breakdown of the power of processors. The server power mod-
els in equations (22)–(24), and (28) are examples for non-linear
models and those are based on CPU utilization. The power
model in Equation (37) is different from the rest of the power
models since it utilized queuing theory. A summary of the
server power consumption models is shown in Table III. Many
of the aforementioned power models denote a server’s energy
consumption as a summation of the power drawn by its subcom-
ponents. In the next two sections (Sections VI and VII) of this
paper we conduct a detailed investigation of the attempts made
to model the power consumption of these sub components.

VI. PROCESSOR POWER MODELS

Today, CPU is one of the largest power consumers of a
server [6]. Modern processors such as Xeon Phi [138] consists
of multiple billions of transistors which makes them utilize
huge amount of energy. It has been shown that the server
power consumption can be described by a linear relationship
between the power consumption and CPU utilization [139].
CPU frequency to a large extent decides the current power
utilization of a processor [140]. Comprehensive CPU power
consumption models rely on specific details of the CPU micro-
architecture and achieve high accuracy in terms of CPU power
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TABLE III
SUMMARY OF SERVER POWER CONSUMPTION MODELING APPROACHES

Fig. 10. Power breakdown of (a) single-core [142] and (b) multicore processors [143]. Note that leakage power is significant portion in the multicore processor.

consumption modeling [69], [141]. This section first provide a
general overview for processor power modeling. Next, it delves
into the specific details of modeling power consumption of
three major categories of processors used in current data center
systems: Single-core CPUs, Multicore CPUs, and GPUs.

A. Processor Power Modeling Approaches

Similar to system power consumption, processor power con-
sumption can be modeled at very high level as static and
dynamic power consumption. When analyzing the ratio be-
tween the static power and dynamic power it has been ob-
served that processors presenting a low or very low activity
will present a too large static power compared to dynamic
power. Importance of the leakage and static power increases
in very deep submicron technologies. Hence static power has
become an important concern in recent times. A real world
example of this phenomenon can be observed in the power
breakdown of two single-core and multicore processors shown
in Fig. 10 [142], [143]. While the two charts are based on
two types of categorizations it can be clearly observed that

multicore processor has significant amount of power leakage.
Another observation to note is that processor caches contribute
to a significant percentage of processor power consumption.
While not shown in Fig. 10, caches in IBM POWER7 processor
consumes around 40% of the processor’s power [144].

Two high level approaches for generating power models for
processors are circuit-level modeling (described in Section IV)
and statistical modeling (related techniques are described in
Sections IX and X). Circuit-level modeling is a more accurate
but computationally expensive approach (for example it is
used in Wattch CPU power modeling framework [81]). Statical
modeling on the other hand has a high up-front cost while the
model is being trained, but this technique is much faster to
use [145].

Statistical approaches for processor power modeling [18],
[141], [146] are based on the data analysis conducted on the
processor performance counters. Micro architectural events for
the performance measurement purpose can be obtained from
most modern microprocessors. Heuristics can be selected from
the available performance counters to infer power relevant
events and can be fed to an analytical processor to calculate



DAYARATHNA et al.: DATA CENTER ENERGY CONSUMPTION MODELING: A SURVEY 747

the power. Multiple different power modeling tools being de-
veloped based on CPU performance counters. Virtual Energy
Counters (vEC) is an example tool that provides fast estimation
of the energy consumption of the main components of modern
processors. The power analysis is mainly based on the number
of cache references, hits, misses, and capacitance values. vEC
can address this problem but results in loss of coverage.

However, certain works have expressed the negative as-
pects of use of performance counters for power modeling.
Economou et al. have pointed out that performance monitoring
using only counters can be quite inaccurate since most proces-
sors allow for the measurement of only a limited number of con-
current counter readings [104]. Processor counters provide no
insight into the I/O system such as disk and networking which
makes it difficult to create accurate processor power models.
According to [141] performance counters can provide good
power estimation results and they have estimated power within
2% of the actual power. According to Jarus et al. and Costa et al.
the average error lies less than 10% range [127], [147]. How-
ever, in general the availability of heuristics is limited by the
types of the performance counters and the number of events
that can be measured simultaneously [146].

B. Power Consumption of Single-Core CPUs

While we are living in a multicore era, it is better to investi-
gate on the single-core power models first, because many of the
current multicore processor power models are reincarnations
of single-core power models. This subsection is organized as
two main parts. In the first half we describe the additive power
modeling techniques of single-core processors. In the second
half we investigate of the use of performance counters for power
modeling of single-core processors.

Additive power modeling efforts are present in the context
of single-core CPUs. One such power model was described by
Shin et al. [148] as,

Pcpu = Pd + Ps + P0, (44)

where Pd, Ps and P0 correspond to dynamic, static, and always-
on power consumption. The dynamic power is expressed using
the Equation (7). They mentioned that it is sufficient to include
the two major consumers of leakage power in the static power
model, which are subthreashold leakage and gate leakage
power. Since the static power consumption is also dependent
on the die temperature they incorporated Td as a term in their
power model which is expressed as,

Ps(Td) = Vdd

(
K1T2

d e
K2Vdd+K3

Td + K4e(K5Vdd+K6)

)
, (45)

where Kn is a technology constant. They then expanded the
right-hand side of the equation as a Taylor series and retained
its linear terms as,

Ps(Td) =
∞∑

n=0

(
1
n!

)
dnPs(Tr)

dTn
d

(Td − Tr)
n,

≈ Ps(Tr) + dPs(Tr)

dTd
(Td − Tr), (46)

where Tr is a reference temperature, which is generally some
average value within the operational temperature range.

Additive power models for single core CPUs can be created
by aggregating the power consumption of each architectural
power components which comprises of the CPU. Following this
approach, Bertran et al. expressed the total power consumption
of a single core CPU [149] as,

Ptotal =
(

i=n∑

i=1

Ai × Pi

)

+ Pstatic, (47)

where the weight of component i is represented as Pi and the
activity ratio of the component i is represented as Ai while
there are total n components n the CPU. The dynamic power
consumption of component i is represented by Ai × Pi, while
Pstatic represents the overall static power consumption of all
components. In their case study they used an Intel Core 2 Duo
processor and they identified more than 25 microarchitectural
components. For example, in their modeling approach they
divided the whole memory subsystem into three power compo-
nents: L1 and L2 caches and the main memory (MEM) (which
includes the front side bus (FSB)). They also defined INT, FP,
and SIMD power components which are related to the out-
of-order engine of Core 2 Duo processor. Note that definition
of a power component has been a challenge faced by them
since certain microarchitectural components are tightly related
to each other. Furthermore, there are certain microarchitectural
components that do not expose any means of tracing their
activities level.

As mentioned in the previous subsection, complete system
power consumption can be measured online through micro-
processor performance counters [18], [150]. Counter-based
power models have attracted a lot of attention because they
have become a quick approach to know the details of power
consumption [151]. Bircher et al. showed that well known
performance related events within a microprocessor (e.g., cache
misses, DMA transactions, etc.) are highly correlated to power
consumption happening outside the microprocessor [152]. Cer-
tain studies have used the local events generated within each
subsystem to represent power consumption. Through such per-
formance counter based energy consumption prediction, the
software developers are able to optimize the power behavior
of an application [153].

One of the earliest notable efforts in this area, Isci et al.
described a technique for a coordinated measurement approach
that combines real total power measurement with performance-
counter-based, perunit power estimation [69]. They provided
details on gathering live, per-unit power estimates based on
hardware performance counters. Their study was developed
around strictly co-located physical components identifiable in
a Die photo. They selected 22 physical components and used
the component access rates to weight the component power
numbers. If each hardware component is represented as Ci the
power consumption of a component P(Ci) can be represented as,

P(Ci) = A(Ci)S(Ci)M(Ci) + N(Ci), (48)

where A(Ci) corresponds to the access counts for component
Ci. M(Ci) is the maximum amount of power dissipated by
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each component. The M(Ci) value is estimated by multiplying
the maximum power dissipation of die by the fraction of area
occupied by the component. S(Ci) corresponds to a scaling
factor introduced to scale the documented maximum processor
power by the component area ratios. N(Ci) corresponds to fixed
power dissipation made by each component. The total power of
the processor (Ptotal) is calculated as,

Ptotal =
22∑

i=1

P(Ci) + Pidle. (49)

where the total power Ptotal is expressed as the sum of the
power consumption of the 22 components and the idle power
(Pidle). Note that in Equation (48) M(Ci) and S(Ci) terms
are heuristically determined, M(Ci) is empirically determined
by running several training benchmarks that stress fewer ar-
chitectural components and access rates are extracted from
performance counters [154].

Processor cache hit/miss rates can be used to construct simple
power model. In such power model described by Shiue et al.,
the processor energy consumption is denoted as [155],

E = RhitEhit + RmissEmiss, (50)

where Ehit is the sum of energy in the decoder and the energy in
the cell arrays, while Emiss is the sum of the Ehit and the energy
required to access data in main memory.

In another similar work Contreras et al. used instruction
cache misses and data dependency delay cycles in the Intel
XScale processor for power consumption estimation [156].
Assuming a linear correlation between performance counter
values and power consumption they use the following model
to predict the CPU power consumption (Pcpu),

Pcpu = A1(Bfm) + A2(Bdd) + A3(Bdtlb)

+ A4(Bitlb) + A5(Bie) + Kcpu, (51)

where A1, . . . , A5 are linear parameters (i.e., power weights)
and Kcpu is constant representing idle processor power con-
sumption. The performance counter values of instruction fetch
miss, number of data dependencies, data TLB misses, in-
structions TLB misses, number of instructions executed (i.e.,
InstExec) are denoted by Bfm, Bdd, Bdtlb, Bitlb, and Bie respec-
tively. However, they mentioned that in reality non-linear rela-
tionships exist.

While modern CPUs offer number of different performance
counters which could be used for power modeling purposes its
better to identify some key subset of performance counters that
can better represent the power consumption of a CPU. One
work in this line is done by Chen et al. where they found
that five performance counters are sufficient to permit accurate
estimation of CPU power consumption after conducting exper-
iments with different combinations of hardware performance
counters [157]. The five performance counters are,

1) number of L1 data cache references per second (α),
2) number of L2 data cache references per second (β),
3) number of L2 data cache references per second (γ ),

4) number of floating point instructions executed per second
(η), and

5) number of branch instructions retired per second (θ).

After assuming each access to system components such as L1,
L2 caches consumes a fixed amount of energy, a power model
for CPU can be created as follows,

P = b0 + b1α + b2β + b3γ + b4η + b5θ + b6f 1.5, (52)

where f is the CPU frequency of which the exponent 1.5
was determined empirically. bi, i = 0, . . . , 6 are task-specific
constants that can be determined during pre-characterization.
b0 represents the system idle and leakage power.

Merkel et al. [158] constructed a power model for processors
based on events happening in the processor. They assumed
that processor consumes a certain fixed amount of energy for
each activity and assign a weight to each event counter that
represents the amount of energy the processor consumes while
performing the activities related to that specific activity. Next,
they estimated the energy consumption of the processor as a
whole by choosing a set of n events that can be counted at the
same time, and by weighting each event with its corresponding
amount of energy αi. Therefore, they determine the amount of
energy the processor consumes during a particular period of
time by counting the number of events that occur during that
period of time as follows,

E =
n∑

i−1

αici. (53)

Another performance counter based power model for CPUs
was introduced by Roy et al. They described the computational
energy (Ecpu(A)) consumed by a CPU for an algorithm A as
follows [85],

Ecpu(A) = PclkT(A) + PwW(A), (54)

where Pclk is the leakage power drawn by the processor clock,
W(A) is the total time taken by the non-I/O operations per-
formed by the algorithm, T(A) is the total time taken by the
algorithm, and Pw is used to capture the power consumption
per operation for the server. Note that the term “operation” in
their model simply corresponds to an operation performed by
the processor.

It can be observed that the complexity of the performance
counter based power consumption models of single core pro-
cessors have increased considerably over a decade’s time (from
year 2003 to 2013). Furthermore, it can be observed that a
number of performance counter based power models have
appeared in recent times.

C. Power Consumption of Multicore CPUs

Most of the current data center system servers are equipped
with multicore CPUs. Since the use of different cores by
different threads may create varied levels of CPU resource con-
sumption, it is important to model the energy consumption of a
multicore CPU at the CPU core level. Server’s power consump-
tion depends on the speed at which the core works. A high level
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Fig. 11. An abstract architecture of a multicore processor [159]. All the components that lie within core-level rectangles are limited to specific core and cannot
be shared with other cores.

architecture of a multicore processor is shown in Fig. 11 [159].
It consists of several dies with each one having several cores.
Notable power consumers inside a processor include ALU,
FPU, Control Unit, On/Off-chip Cache, Buses which are shown
in Fig. 11. Cores are highlighted in yellow color while dies
are denoted with dashed lines. Currently there are two main
approaches for modeling the power consumption of a multicore
processor: queuing theory and component wise breakdown of
the power consumption. We will first describe the multicore
CPU power models constructed using queuing theory. Next,
we will move on to listing the power models constructed via
component-wise breakdown/additive power modeling.

The work by Li et al. is an example of use of the first
approach (queuing theory) for modeling the power consump-
tion of multicore processors. They treated a multicore CPU as
an M/M/m queuing system with multiple servers [160]. They
considered two types of core speed models called idle-speed
model (a core runs at zero speed when there is no task to
perform) and constant-speed model (all cores run at the speed
s even if there is no task to perform) [161]. Such constant
speed model has been assumed in several other work such as
[149] which helps to reduce the complexity of the power model.
When constant speed model is employed for modeling the
power consumption of a multicore processor, the processor’s
total energy consumption can be expressed as [159],

Pn =
n∑

j=1

Pc(j), (55)

where Pn denotes the power consumption of n cores and
Pc(j) corresponds to the power dissipation of a core j. Power
consumption of a single core Pc(j) can be further described

using a power model such as the ones described in the previous
section (Section VI-B).

One of the simplest forms of denoting the maximum energy
consumption of a core (Emax) is as follows,

Emax = Dmax + Lcore, (56)

where Dmax is the maximum dynamic energy consumption of
the core, Lcore is the leakage energy of the core which can
be obtained by measuring core power when the core is in halt
mode [162].

However, Li et al. improves over such basic core power
model by considering different levels of core speed. In the idle
speed model, the amount of power consumed by a core in one
unit of time is denoted as,

Pcore = ρsα =
(

λ

m

)
Rs(α−1), (57)

where power allocated for a processor running on speed s is
sα,λ is the task arrival rate, m is the number of cores, R is the
average number of instructions to be executed, ρ is the core
utilization. The power consumed (P) by server S can be de-
noted by,

P = mρsα = λRs(α−1), (58)

where mρ = λx̄ represents the average number of busy cores in
S. Since processor core consumes some power P∗ even if it is
idling, the above equation is updated as follows,

P = m(ρsα + P∗) = λRs(α−1) + mP∗. (59)

In the constant speed model the parameter ρ becomes 1 because
all cores run at the speed s even if there is no task to run.
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Hence, the power consumption in the constant speed model can
be denoted as,

P = m(sα + P∗). (60)

However, in the constant speed model the CPU speed (i.e.,
the execution strategy) is kept constant. In general idle-speed
model is difficult to implement compared to constant speed
model because most of the current processors do not support
running different cores at different speeds.

While CPU core can be treated as the smallest power con-
sumer in a multicore CPU, another approach for accounting
for power consumption of a multicore CPU is by modeling
the power consumption as a summation of power consumed by
its threads. Although it cannot be counted as a queuing theory
based power model, Shi et al. described the amount of power
consumed by a workload W in a multicore computer system
as [163],

P = (Pidle + CPt)T, (61)

where Pidle is the idle power consumption, C is the concurrency
level of the workload, and Pt is the average power dissipation
of a thread. T is the total time taken to complete the workload.
The CPt accounts for the total dynamic power dissipation by all
the threads executed by the multicore processor.

The second approach for multicore CPU power consumption
modeling is component wise breakdown (i.e., additive) which
deep dives into lower level details of the processor. Note that
the rest of the power models described in this subsection are
ordered based on the complexity of the power model. One
notable yet simple power models in this category was intro-
duced by Basmadjian et al. This is a generic methodology
to devise power consumption estimation models for multicore
processors [159]. They stated that the previous methods for
modeling power consumption of multicore processors are based
on the assumption that the power consumption of multiple
cores performing parallel computations is equal to the sum
of the power of each of those active cores. However, they
conjectured that such assumption leads to the lack of accuracy
when applied to more recent processors such as quad-core.
They also took into consideration the parameters such as power
saving mechanisms and resource sharing when estimating the
power consumption of multicore processors. This approach had
an accuracy within maximum error of 5%. Their power model
can be denoted as,

Pproc = Pmc + Pdies + Pintd, (62)

where Pmc, Pdies, and Pintd denotes the power consumption
of chip-level mandatory components, the constituent dies, and
inter-die communication. They also described power models
for each of these power components. It can be observed that
the power consumed by chip-level mandatory components and
inter-die communication is modeled using/extending the Equa-
tion (7) which indicates even higher level system components
may be modeled by adapting such lower level power models.

Another method for component wise breakdown is dividing
the power consumption into dynamic and static power where

dynamic power is due to power dissipated by cores, on-chip
caches, memory controller (i.e., memory access). Then the total
CPU power can be modeled as [164],

Pproc = Pcore +
3∑

i=1

giLi + gmM + Pbase, (63)

where Pbase is the base/static package power consumption.
The component

∑3
i=1 giLi + gmM represents the power con-

sumption due to cache and memory access. Here, Li is access
per second to level i cache, gi is the cost of a level i cache
access. Pcore can be often represented as Pcore = Cf 3 + Df ,
where C and D are some constants [164]. Note that this is
analogous with the server power model described in Equation
(20). Furthermore, due to the cache and memory access is
proportional to the CPU frequency, the above power model can
be further simplified as,

Pproc = F(f ) = af 3 + bf + c, (64)

where a, b, and c are constants. Constants a and b are appli-
cation dependent because cache and memory behavior can be
different across applications. bf corresponds to cores’ leakage
power and power consumption of cache and memory controller.
af 3 represents the dynamic power of the cores while c = Pbase
is the base CPU power.

In a slightly more complicated power model, Jiménez et al.
characterized the thermal behavior and power usage of an IBM
POWER6™-based system [165]. This power model consists of
several components which can be shown as,

P = NactcPactc + αK + βL + γ M + σN, (65)

where Nactc is the number of active cores, the incremental
power consumption increase for a core that exists its sleep state
is represented by Pactc. The power consumption due to activity
in the chip is modeled by using Instructions Per Cycle (IPC) is
represented as K and the amount of L1 load misses per cycle
(L1LDMPC) is represented as L. Similarly the memory system
contribution to the power consumption is modeled by using the
number of L2 misses per cycle (L2LDMPC and L2STMPC)
which are represented by M and N respectively. α, β, γ , and σ
are regression parameters.

In another work Bertran et al. developed a bottom-up power
model for a CPU [166]. In a bottom-up processor power model
the overall power consumption of the processor is represented
as the sum of the power consumption of different power com-
ponents. The power components are generally associated with
micro-architecture components which allow the users to derive
the power breakdown across the components. They modeled
power consumption at each component level to obtain the final
bottom-up power model. Their model is defined as,

Pcpu =
N∑

k=1

Pdynk +
M∑

k=1

SQk + RM + Puncore, (66)

which comprises of the power consumption of each hardware
thread enabled on the platform, the SMT effect (SMTeffect
denoted by S) of the cores with SMT enabled (SMT_enabledk
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denoted by Qk), the CMP effect as a function of the number of
cores enabled (CMPeffect denoted by R), and the uncore power
consumption (Puncore). The total number of threads is denoted
by N while total number of cores is denoted by M. They used
system performance counters to calculate the parameters such
as S in their power model. Furthermore, Bertran et al. presented
a Performance Monitoring Counter (PMC) based power models
for power consumption estimation on multicore architectures
[167]. Their power modeling technique provides per compo-
nent level power consumption. In another work Bertran et al.
did a comparison of various existing modeling methodologies
in Top-down and Bottom-up fashion [168].

In another such examples Bertran et al. used an accumulative
approach for modeling multicore CPU power consumption
assuming each core behaves equally [149]. Since all the cores
behave equally, the single core model described in Equation
(47) can be extended as follows for multicore model,

Ptotal =
⎛

⎝
j=ncore∑

j=1

(
i=m∑

i=1

AijPi

)
+ Pstatic

⎞

⎠ , (67)

where Pi of each component is same as in the single core CPU
power model described previously (in Equation (47)). However,
Aij need to be modified to perform per core accounting.

Similarly core level power model can be implemented with-
out considering the power consumption of individual compo-
nents. For example, Fu et al. described the processor power
consumption P(k) of a multicore processor as [169],

P(k) = Ps +
n∑

i=1

xi(k)
[
Pi

ind + Pi
d(k)

]
, (68)

where k is a control period, Ps represents the static power of all
power consuming components (except the cores). xi represents
the state of core Ci. If core i is active, xi = 1, otherwise xi = 0.
The active power which is dependent on the frequency of the
core is represented as Pi

d(k) = αifi(k)βi , where both αi and
βi are system dependent parameters. The definition of active
power Pi

d(k) can be linked with the dynamic power consump-
tion of a digital circuit described in Equation (7) where αi(k)βi

corresponds to ACV2 of Equation (7).
A more detailed power model compared to the above men-

tioned two works (in Equations (67) and (68)) was described
by Qi et al. [170] which is shown in Equation (69). Their
power model was for multicore BP-CMP (block-partitioned
chip-multiprocessor) based computing systems. Their power
model had an additional level of abstraction made at block level
compared to the previously described multicore power models.
In their work they considered a CMP with 2k processing cores,
where k ≥ 1. They assumed the cores are homogeneous. Con-
sidering the fact that it is possible to provide different supply
voltages for different regions on a chip using voltage island
technique, the cores on one chip was partitioned into blocks.
In this model (which is shown below),

P = Ps +
nb∑

i=1

⎛

⎝xiPi
ind +

nci∑

j=1

yi,jP
i,j
d

⎞

⎠ , (69)

the Ps denotes the static power from all the power components,
while xi represents the state of the block Bi. It sets xi = 1 if
any core on the block is active and the block is on, otherwise
xi = 0 and Bi is switched off. Pi

ind is the static power of core i
and it does not depend on the supply voltage or frequency. yi,j
represents the state of the j’th core on block Bi. The frequency
dependent active power for the core is defined as Pi,j

d = Cef .f m
i ,

where both Cef and m are system dependent parameters. All the
cores on block Bi run at the same frequency fi. However, it does
not depend on any application inputs. Note that the three power
models (in Equations (67)–(69)) described in this subsection
share many similarities.

In another processor energy consumption modeling work
which cannot be attributed to either queuing theory based or
component wise break down models, Shao et al. developed
an instruction-level energy model for Intel Xeon Phi processor
which is the first commercial many core/multi-thread x86-based
processor [171]. They developed an instruction-level energy
model for Xeon Phi through the results obtained from an energy
per instruction (Epi) characterization made on Xeon Phi. Their
model is expressed as,

Epi = (p1 − p0)(c1 − c0)/ f
N

, (70)

where N is the total number of dynamic instructions in the
microbenchmark used during the energy consumption charac-
terization. The power consumed by microbenchmark is calcu-
lated by subtracting the initial idle power (p0) from the average
dynamic power (p1). The initial idle power includes power for
fan, memory, operating system, and leakage. The values c0 and
c1 correspond to the cycle before the microbenchmark starts
and the cycle right after the microbenchmark finishes respec-
tively. Therefore, (c1 − c0) corresponds to the total number of
cycles executed by the microbenchmark. The f corresponds to
the frequency at which the dynamic power is sampled.

D. Power Consumption of GPUs

Graphical Processing Units (GPUs) are becoming a com-
mon component in data centers because many modern servers
are equipped with General Purpose Graphical Processing
Units (GPGPUs) to allow running massive hardware-supported
concurrent systems [172]. Despite the importance of GPU’s on
data center operations the energy consumption measurement,
modeling, and prediction research on GPUs is still in its in-
fancy. In this section we structure the GPU power models as
performance counter based power models and as additive power
models. Furthermore, we categorize the additive power models
as pure GPU based models and as GPU-CPU power models.

The first category of GPU power models described in this
paper are performance counter based power models. One of the
examples is the work by Song et al. which combined hardware
performance counter data with machine learning and advanced
analytics to model power-performance efficiency for modern
GPU-based computers [59]. Their approach is a performance
counter based technique which does not require detailed under-
standing of the underlying system. They pointed out deficien-
cies of regression based models [128] such as Multiple Linear



752 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 1, FIRST QUARTER 2016

Fig. 12. GPUWattch methodology to build power models [175]. The process shown in this figure iteratively identifies and refines the inaccuracies in the power
model.

Regression (MLR) for GPU power modeling [57] such as lack
of flexibility and adaptivity.

In another work on use of GPU performance counters, so-
phisticated tree-based random forest methods were employed
by Chen et al. to correlate and predict the power consumption
using a set of performance variables [173], [174]. They showed
that the statistical model predicts power consumption more
accurately than the contemporary regression based techniques.

The second category of GPU power models are the additive
power models. The first sub category is the pure GPU based
additive power models. Multiple different software frameworks
to model CPU/GPU power models currently exist which can
be categorized as additive power models. In their work on
GPUWattch, Leng et al. described a GPU power model that
captures all aspects of GPU power at a very high level [175].
GPUWattch can be considered as an extension of Wattch CPU
power model into the domain of GPUs. Fig. 12 shows an ab-
stract view of the process followed in GPUWattch for building
robust power models.

In this process a bottom-up methodology is followed to build
an initial model. The simulated model is compared with the
measured hardware power to identify any modeling inaccura-
cies by using a special suite of 80 microbenchmarks that are
designed to create a system of linear equations that correspond
to the total power consumption. Next, they progressively elimi-
nate the inaccuracies by solving for the unknowns in the system.
The power model built using this approach achieved an average
accuracy that is within 9.9% error of the measured results for
the GTX 480 GPU [175]. In a different work Leng et al. has also
reported almost similar (10%) modeling error of GPUWattch
[176]. The power model shown below is a very high level
representation of the GPU power they model which consisted
of the leakage(Pleakage), idle SM (Pidlesm), and all components’
(N in total) dynamic power as,

P =
N∑

1

(αiPmaxi) + Pidlesm + Pleakage, (71)

where dynamic power of each component is calculated as the
activity factor (αi) multiplied by the component’s peak power

Pmaxi . MCPAT is another framework similar to GPUWattch that
models the power consumption of processors [143], [177]. In
MCPAT the total GPU power consumption is expresses as a
summation of the power consumed by different components of
a GPU as [177],

P =
∑

Pcomponent,

= Pfpu + Palu + Pconstmem + Pothers,
(72)

where Pfpu, Palu, and Pconstmem correspond to power dissipated
by arithmetic and logic unit (ALU), floating point unit (FPU),
and constant memory (Fig. 13).

Similar to the digital circuit level power breakdown shown
in Equation (4), Kasichayanula et al. divided the total power
consumption of a GPU Streaming Multiprocessor (SMs) into
two parts called idle power and runtime power [178]. They
modeled the runtime power (P) of the GPU as,

P =
e∑

i−1

(NsmPu,iUu,i) + Bu,iUu,i, (73)

where Nsm is the number of components, Pu,i is the power con-
sumption of active component, e is the number of architectural
component types, Bu,i is the base power of the component, Uu,i
is the utilization. The block diagram of the McPAT framework.

It should be noted that the power consumption of GPUs
change considerably due to the memory bandwidth utilization.
See Fig. 14 for an example [179]. If the memory power can
be reduced by half, it will lead to a 12.5% saving of the
system power. From Fig. 14 it can be observed that the GPU
cores (functional units) dominate the power consumption of the
GPUs. Furthermore, the off-chip memory consumes a signifi-
cant portion of power in a GPU.

In another example for additive power models, Hong et al.
described modeling power consumption of GPUs [154]. They
represented the GPU power consumption (Pgpu) as a sum of
runtime power (runtime_power) and idle power (IdlePower).
Runtime power is also divided among power consumption of
Streaming Multiprocessors (SMs) and memory. To model the
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Fig. 13. Block diagram of the McPAT framework [143]. McPAT framework uses an XML-based interface with the performance simulator. McPAT is the first
integrated power, area, and timing modeling framework for multithreaded and multicore/manycore processors [143].

Fig. 14. Power breakdown for NVIDIA and AMD GPUs [179]. The off-chip
DRAM accesses consume a significant portion of the total system power.

runtime power of SMs, they decomposed the SM into several
physical components and accounted for the power consumption
of each component. For example, RP_Const_SM is a constant
runtime power component. Therefore, the complete GPU power
model described by them can be denoted as,

Pgpu = Nsms

n∑

i=0

Si + Pmem + Pidle,

n∑

i=0

Si = Pint + Pfp + Psfu + Palu + Ptexture + Pcc

+ Pshared + Preg + Pfds + Pcsm,

(74)

where Nsms represents the number of streaming multiprocessors
and a streaming component i is represented by Si. Runtime

power consumption of memory is represented by Pmem while
the idle power is represented by Pidle. The terms Pint, Pfp, Psfu,
Palu, Ptexture, Pcc, Pshared, Preg, Pfds correspond to integer arith-
metic unit, floating point unit, SFU, ALU, Texture cache,
Constant cache, shared memory, register file, FDS components
of the GPU. Pcsm is a constant runtime power component for
each active streaming multiprocessor.

The second sub category of the additive GPU power models
is the models that combine both the GPU and external (CPU)
power consumption aspects. Certain works which model GPU
power consumption as part of the full system power model
currently exist. One such example is the power model described
by Ren et al. considering the CPU, GPU, and main board
components [180]. Their model can be represented as,

Psystem(w) =
n∑

i=1

Pi
gpu(w

i) +
m∑

j=1

Pj
cpu(w

j) + Pmainboard(w),

(75)

where Psystem, Pcpu, Pgpu and Pmainboard represent the power of
the overall system, GPU, CPU, and main board respectively.
Number of GPUs and CPUs are represented as N and M which
involve in the computing workload w. Workloads assigned to
GPUi and cpuj are represented by wi and wj respectively. In a
similar work [182] that expresses the power consumption of
a GPU in the context of its corresponding CPU, the energy
consumption of the GPU is expressed as,

Egpu = tgpu(Pavg_gpu + Pidle_cpu) + Etransfer, (76)

where tgpu, Pavg_gpu, Pidle_cpu, and Etransfer represent the time
spent on GPU, average power consumption of GPU, idle power
consumption of CPU and the energy consumed for transfer
between CPU and GPU respectively.

In a similar line of research Marowka et al. presented ana-
lytical models to analyze the different performance gains and
energy consumption of various architectural design choices for
hybrid CPU-GPU chips [181]. For such asymmetric CPU-GPU
execution scenario, they assumed that a program’s execution
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TABLE IV
SUMMARY OF PROCESSOR POWER CONSUMPTION MODELING APPROACHES

time can be composed of a time fraction where the program
runs sequentially (1 − f ), and a time fraction of the program’s
parallel execution time where the program runs in parallel on
the CPU cores (α), and a time fraction of the program’s parallel
execution time where the program runs in parallel on the GPU
cores (1 − α). They also assumed that one core is active during
the sequential computation and consumes a power of 1, while
the remaining (c − 1) idle CPU-cores consume (c − 1)kc and g
idle GPU-cores consume gwgkg. Therefore, during the parallel
computation on the CPU-cores only, c CPU-cores consume c
power and g idle GPU-cores consume gwgkg power. During
the parallel computation on the GPU-cores only, g GPU-cores
consume gwg power and c idle CPU-cores consume ckc power.
In such scenario, the power consumption during the sequential,
CPU, and GPU processing phases can be represented as,

Ps = (1 − f )
{
1 + (c − 1)kc + gwgkg

}
,

Pc = αf
c

{c + gwgkg},

Pg = (1 − α)f
gβ

{gwg + ckc}. (77)

This requires (1 − f ) to perform sequential computation, and
times (1−α)f

gβ and αf
c to perform the parallel computations on

the GPU and CPU respectively. Note that (1 − f ) is a time
fraction of the program’s parallel execution time where the
program runs in parallel on the CPU cores (α), and (1 − α) is a
time fraction of the program’s parallel execution time where
the program runs in parallel on the CPU cores. Therefore,
they represented the average power consumption Wa of an
asymmetric processor as,

Wa = Ps + Pc + Pg

(1 − f ) + αf
c + (1−α)f

gβ

. (78)

We list down a summary of the processor power consumption
modeling approaches in Table IV.

VII. MEMORY AND STORAGE POWER MODELS

Traditionally, processors have been regarded as the main
contributors to server power consumption. However, in recent
times contribution made by memory and secondary storage for
data center power consumption has increased considerably. In
this section we first investigate on the memory power consump-
tion and then move on to describing the power consumption
of secondary storage such as hard disk drive (HDD) and flash
based storage (SSD).

A. Memory Power Models

The second largest power consumer in a server is its memory
[139]. Even in large petascale systems main memory consumes
about ≈30% of the total power [183]. IT equipment such as
servers comprise of a memory hierarchy. The rapid increase
of the DRAM capacity and bandwidth has contributed for
DRAM memory sub system to consume a significant portion
of the total system power [184]. The DDR3 and Fully Buffered
DIMM (FB-DIMM) dual in-line memory modules (DIMMs)
typically consume power from 5W up to 21W per DIMM
[139]. In the current generation server systems, DRAM power
consumption can be comparable to that of processors [184].
Fig. 15 shows the organization of a typical DRAM [185].
Therefore, memory subsystem’s power consumption should be
modeled considering different components that make up the
memory hierarchy. For example, Deng et al. divided power con-
sumption of memory subsystem into three categories: DRAM,
register/phase locked loop (PLL), and memory controller power
[133]. However, most of the current studies on memory subsys-
tem power consumption are based on Dynamic Random-Access
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Fig. 15. Typical 16 Megabit DRAM (4M × 4) [185]. Note that the DRAM includes a refresh circuitry. Periodic refreshing requires disabling access to the DRAM
while the data cells are refreshed.

Memory (DRAM) power consumption. Commodity DRAM
devices recently have begun to address power concerns as low
power DRAM devices.

In the rest of this subsection we categorize the memory power
models as additive power models and performance counter
based power models. Furthermore, we organize the content
from the least complex power models to most complex power
models.

In the context of additive power modeling, one of the fun-
damental approaches is representing the power consumption as
static and dynamic power. This can be observed in the context
of DRAM power models as well. Lin et al. employed a simple
power model in their work [186]. The model estimated the
DRAM power (Pdm) at a given moment as follows,

Pdm = Pstatic_dm + α1µread + α2µwrite, (79)

where α is a constant that depends on the processor. The static
power consumption of the DRAM is denoted by Pstatic_dm,
while the read and write throughput values are denoted by µread
and µwrite respectively.

In another additive power model, over all energy usage of the
memory system is modeled as [187],

E = EIcache + EDcache + EBuses + EPads + EMM, (80)

where the energy consumed by the instruction cache, data cache
is denoted by Icache and Dcache respectively. EBuses represents
the energy consumed in the address and data buses between
Icache/Dcache and the data path. EPads denotes the energy con-
sumption of I/O pads and the external buses to the main mem-
ory from the caches. EMM is calculated based on the memory
energy consumption model described in [155].

Another similar power modeling work was conducted by
Ahn et al. [188]. Static power mainly comprises of power
consumed from peripheral circuits (i.e., DLL and I/O buffers)
such as transistors, and refresh operations. Since DRAM access
is a two step process, dynamic power can be further categorized
into two parts. First is the activate precharge power that is dis-
charged when bitlines in a bank of a DRAM chip are precharged

(During this process data in a row of the bank is delivered to the
bitlines and latched (activated) to sense amplifiers by row-level
commands). The second type of power is read-write power
which is consumed when a part of the row is read or updated
by column-level commands. The dynamic power consumption
is proportional to the rate of each operation. Since a row can be
read or written multiple times when it is activated, the rates of
activate-precharge and read-write operations can be different.
They modeled the total power consumed by a memory channel
(i.e., total main memory power Pmem) as,

Pmem = DSRσ + Erwρrw + DEapfap, (81)

where D is the number of DRAM chips per subset, S is the
number of subsets per rank, R is the number of ranks per
channel, σ is the static power of the DRAM chip, Erw is the
energy needed to read or write a bit, ρrw is the read-write
bandwidth per memory channel (measured, not peak), Eap is the
energy to activate and precharge a row in a DRAM chip, and fap
is the frequency of the activate-precharge operation pairs in the
memory channel.

In an expanded version of the power models shown in Equa-
tions (79) and (81), Rhu et al. [189] modeled DRAM power as,

P = Ppre_stby + Pact_stby + Pref + Pact_pre + Prd_bank

+ Prd_io + Pwr_bank + Pwr_io, (82)

where Ppre_stby, Pact_stby,Pref , Pact_pre,Prd_bank,Prd_io, Pwr_bank,

Pwr_io repesent precharge standby power, active standby power,
refresh power, activation & precharge power, read power and
write power categorized as power consumed by DRAM bank
and IO pins respectively. This power model was based on
Hynix GDDR5 specification. Another similar power model
based on background power and operation power was described
by David et al. in [190]. They applied an extended version of
this memory power model for Dynamic Voltage Frequency
scaling where the memory power consumption at voltage v and
frequency f is given by,

Pf ,v = Pf − Pf PvstepNf , (83)
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where they conservatively assumed the total power reduction
per voltage step as 6% thus Pvstep = 0.06.

Malladi et al. created a model to represent the expectation for
memory energy E[E]. During this process first they modeled
a stream of memory requests as a Poisson process where
they assumed that the time between requests follow an expo-
nential distribution and the inter-arrival times are statistically
independent [191]. When Ti is an exponentially distributed
random variable for the idle time between two memory re-
quests, the exponential distribution is parametrized by 1/Ta
where Ta is the average inter-arrival time. They represented
the power dissipation during powerdown and powerup as Pd
and Pu respectively. If the idleness exceeds a threshold Tt the
memory power-down happens, and a latency of Tu has to be
faced when powering-up the memory. Powerdown is invoked
with probability f = P(Ti > Tt) = e−Tt/Ta where f is the power
down fraction. In this scenario the power dissipation by DRAM
is Pd for (Ti − Tt) time while powered-down and dissipates Pu
for (Tt + Tu) time while powered-up. Ti is the only random
variable; E[Ti] = Ta,

E[E] = f × E [Pd(Ti − Tt) + PuTt + PuTu] + (1 − f )E[PuTi]
= f [Pd(Ta − Tt) + PuTt + PuTu] + (1 − f )[PuTa]
= Pd

[
f (Ta−Tt)

]
+Pu

[
f (Tt+Tu) + (1 − f )Ta

]
, (84)

where the expectation for memory energy is given by E[E].
Another power model for DRAM energy consumption was

introduced by Lewis et al. in [92]. The model is based on
the observation that energy consumed by the DRAM bank is
directly related to the number of DRAM read/write operations
involved during the time interval of interest. Energy consump-
tion of a DRAM module over the time interval between t1 and
t2 is expressed as,

Emem =
∫ t2

t1

(( N∑

i=1

Ci(t) + D(t)

)
Pdr + Pab

)
dt, (85)

where Ci(t), i = 1, 2, . . . , N is the last-level cache misses for
all N constituent cores of the server when executing jobs,
D(t) is the data amount due to disk access or OS support and
due to performance improvement for peripheral devices. Pdr is
the DRAM read/write power per unit data. Pab represents the
activation power and DRAM background power. The value of
Pab was calculated by using the values mentioned in the DRAM
documentation. In the case of AMD Opteron server used by
Lewis et al., the value of Pab was amounted to 493 mW for one
DRAM module.

All the above mentioned power models are additive power
models. However, some power models are specifically de-
veloped using performance counter values (still these models
can be considered as additive power models). In one such
works Contreras et al. parametrized memory power consump-
tion (Pmem) using instruction fetch miss and data depen-
dencies [156],

Pmem = α1(Bfm) + α2(Bdd) + Kmem. (86)

Here, α1 and α2 are linear “weighting” parameters. An impor-
tant point about this power model is that it re-uses performance
events used for CPU power model described in Equation (51).
Bfm and Bdd correspond to instruction fetch miss and number of
data dependencies respectively.

A completely different approach for modeling the memory
power was followed by Roy et al. [85]. In their work on energy
consumption of an algorithm A they modeled the memory
power consumption as,

Emem(A) = PckeT(A) + PstbyTact(A)α(A)

+ Eactα(A) + (R(A) + W(A)) TrdwrPrdwr, (87)

where α(A), R(A), and W(A) represent the number of activa-
tion cycles (α and β pair), the number of reads, and writes
respectively executed by A. Tact(A) denotes the average time
taken by one activation by A. The power model comprised of
three components, the first component Pcke captures the leakage
power drawn when the memory is in standby mode, with none
of the banks are activated. The second component Pstby captures
the incremental cost over and above the leakage power for
banks to be activated and waiting for commands. The third
component captures the incremental cost of various commands.
Since α and β commands are always paired together, the energy
cost of these two commands is represented as Eact. The energy
usage of R and W commands is captured as PrdwrTrdwr.

B. Hard Disk Power Models

Hard Disk Drive (HDD) is currently the main type of sec-
ondary storage media used in data center servers. HDD contains
disk platters on a rotating spindle and read-write heads floating
above the platters. Disk is the subsystem that is hardest to model
correctly [88]. This is because of the difficulty arising due to the
lack of visibility into the power states of the hard disk drive and
the impact of disk hardware caches.

Two components in the power consumed by HDDs (Disk
drives in general) are called static power and dynamic power
[193]. There are three sources of power consumption within a
HDD: The Spindle Motor (SPM), Voice Coil Motor (VCM),
and the electronics [194] (See Fig. 16 [192], [195]). The power
consumption of electronics can be modeled by following the
same techniques discussed under the section on CPU, and mem-
ory power consumption modeling. However, in the context of
HDD the electromechanical components such as SPM accounts
for most of the power consumption.

In this subsection we organize the HDD power models
following a chronological ordering. One of the earliest work
in this category is the work by Sato et al. [196]. The Power
consumption by SPM can be expressed as [194], [196],

Pspm ≈ nω2.8
spm(2r)4.6, (88)

where, n is the number of platters of the HDD, ωspm is the
angular velocity of the SPM (i.e., RPM of the disk), and r is
the radius of the platters. Since the platters are always rotating
when the disk is powered, the above equation denotes the
static power consumption by the disk irrespective of whether
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Fig. 16. Block diagram of a hard disk system [192]. The electromechanical subsystem consumes 50% of the total idle power with the remaining 50% dissipated
in the electronics.

it is merely idling or actively performing I/O operations. The
VCM power belongs to the dynamic portion of the HDD power
consumption. VCM power consumption happens only when a
disk seek needs to be performed. This also happens only during
specific phases of a seek operation.

Hylick et al. observed that read energy consumption of
multiple hard disk drives has a cubic relationship with Logical
Block Number (LBN) [197]. Note that the amount of LBNs
in a hard disk indicates its capacity. The read energy (Er)

consumption with the LBN (L) can be indicated as,

Er ∝ L3. (89)

Furthermore, they modeled the total amount of energy con-
sumed by a drive servicing a set of N requests (considering I
time idle) comprised of S seeks as [198],

Etotal =
N∑

i=0

Eactive +
S∑

i=0

Eseek +
I∑

i=0

Eidle, (90)

where Etotal is the total energy, Eseek is the seek energy, and
Eidle is the idle energy in Joules.

Dempsey is a disk simulation environment which includes
support for modeling disk power consumption [199]. To obtain
a measure of the average power consumed by a specific disk
stage S, Dempsey executes two workload traces which differ
only in the amount of time spent in stage S. Then the average
power consumption for disk stage S is represented using the
following equation,

P̄s = E2 − E1

T2 − T1
, (91)

where Ei represents the total energy consumed by trace i and
Ti is the total time taken by trace i. They referred this method
of estimating the average power consumption of an individual
stage as the Two-Trace method.

Hibernator is a disk array energy management system de-
veloped by Zhu et al. (circa year 2005) that provides energy
savings while meeting performance goals [200]. They assumed
that the most recent observed average request arrival rate at disk
i in the disk array as αi. For a disk that is spinning at speed j, the
service time tij can be measured at run time. If the mean and the
variance of the service time can be denoted as K(tij), the disk
utilization ρij can be calculated as ρij = αiK(tij). If the disk i
needs to change its speed in the new epoch, the disk cannot
service requests while it is changing its spin speed. If the length
of the transition period is denoted as Ti, if disk i does not service
requests, the total energy for disk can be denoted as,

Eij =P′
ijTepochρij+P′′

ij(Tepoch−Tepochρij−Ti)+P′′′
ij Ti, (92)

where Eij is the energy consumption of keeping disk i at speed
j in the next epoch. P′

ij, P′′
ij, and P′′′

ij correspond to active power,
idle power at speed j, and transition power. The active time
during which disk i is serving requests is Tepoch × ρij since the
request arrival rate is independent of the disk speed transition.
The power components such as P′′′

ij are simple divisions of the
entire power at different states.

Bircher et al. estimated the dynamic events of the hard disk
drive through the events such as interrupts and DMA access
[150]. In another power model, the energy consumed by the
VCM for one seek operation can be denoted as [193]–[195],

Evcm = nJvcmω2
vcm

2
+ nbvcmωvcm

3
, (93)

where Jvcm is the inertia of the arm actuator, bvcm is the friction
coefficient of the arm actuator, and ωvcm is the maximum
angular velocity of the VCM [194]. When the average seek time
tseek is expressed as tseek = 2 Davg

ωVCM
the power consumption of

VCM can be modeled as,

PVCM = EVCM

tseek
, (94)
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Fig. 17. Power state machine of a hard disk drive [202]. There are at least three
power states in modern disk drives called active, idle, and standby.

where Davg is the average angular seek distance. The power
models for spindle motor (Equation (88)) and voice coil motor
(Equation (94)) can be combined as follows to model the entire
hard disk power consumption [195],

E = PSPMt0 + PVCMt2 + Ec, (95)

where t2 is the actual seek time while Ec correspond to the
energy consumption of the electronic part of the disk system
(Ec ≈ 40% of total system idle power).

Similar to other components of a server, the HDD power con-
sumption is dependent on low level issues such as the physical
design of the drive, dynamic behavior of the electromechani-
cal components [194]. However, most of the power modeling
techniques represent disk power consumption at higher level
abstraction based on HDD power states. Each state corresponds
to a category of high level activity and each state has an
associated cost. Transitioning between different states may also
incur power costs and extra latencies. The power consumption
of a HDD can be shown as a state machine where the nodes
correspond to the power states and the edges denote the state
transitions (See Fig. 17).

At least three modes of operation (i.e., power states) exists
for power-manageable disk: active, idle, and standby (See
Fig. 17) [201], [202]. In the idle state the disk continues
spinning, consuming power Pid. In the active state the disk
consumes power Pact for transferring data while in the standby
state, the disk is spun down to reduce its power consumption to
Psb. The remaining time is the idle time when disk i is spinning
at speed j, but does not service requests.

In another HDD power modeling attempt, Bostoen et al.
[201] modeled the energy dissipation in the idle mode (Eid) as a
function of the idle time Tid (the time between two I/O requests)
as follows,

Eid(Tid) = PidTid, (96)

while in the standby mode, the disk energy consumption Esb
can be represented as a function of idle time Tid as,

Esb(Tid) = Psb(Tid − Tdu) + Edu = PsbTid + E′
du, (97)

where E′
du = Edu − PsbTdu is the extra energy dissipated during

disk spin-down and spin-up taking the standby mode as a
reference.

A summary of the HDD power models is shown in Table V.

C. Solid-State Disk Power Models

Flash memory based solid state disks (also known as solid
state drives) (SSD) are becoming a crucial component of mod-
ern data center memory hierarchies [203], [204]. SSD has be-
come a strong candidate for the primary storage due to its better
energy efficiency and faster random access. Design of the flash
memories is closely related to the power budget within which
they are allowed to operate. Flash used in consumer electronic
devices has a significantly lower power budget compared to that
of an SSD used in data centers.

In this subsection we organize the power models based on
their chronological order. In a typical Flash memory device,
multiple silicon Flash memory dies are packed in a 3D stacking.
These Flash memory dies share the I/O signals of device in a
time-multiplexed way. Park et al. termed the I/O signals of the
package as channel while they termed a memory die as way.
Park et al. expressed the per-way power consumption of write
operation (Ppw) [205] as,

Ppw = (Psw − Pidle)

# active Flash dies at the plateau
, (98)

where the denominator of the right-hand side represents the
number of flash dies that are turned on during the plateau period
of the write operation. The power consumption by sequential
write operations is denoted by Psw. In their work they measured
the power during the plateau period where all the flash dies and
the controller are active. Per-way power consumption of read
operation can be calculated in the same manner.

Among the multiple different power consumption models for
SSDs, Mohan et al. presented FlashPower which is a detailed
power model for the two most popular variants of NAND flash
[206] called single-level cell (SLC) and 2-bit multilevel cell
(MLC) based NAND flash memory chips. FlashPower uses
analytical models to estimate NAND flash memory chip energy
dissipation during basic flash operations such as read, program
and erase, and when the chip is idle. While they modeled
the Flash power consumption in a very detailed manner we
highlight three of the highest level models they described in
their work below. They modeled the total energy dissipated per
read operation for SLC flash and fast page of MLC flash as,

Er =Esp,r+Eup,r+Ebl1,r+Ebl0,r+Esl,r+Erpre+Ess,r + Edec,r,

(99)

where Esp,r is the energy to bias the wordline of the selected
page to ground, Eup,r is the energy to bias the unselected pages
to Vread, Erpre is the energy to transit from the read to the
precharge state (Erpre), Edec,r is the energy for the decode oper-
ation estimated using CACTI [207], Ebl1,r and Ebl0,r correspond
to the energy dissipated during transitioning from logical “1”
to “0” and vice versa. They used the CACTI’s DRAM sense
amplifier model to find the amount of energy dissipation for
sensing. The term Ess,r corresponds to this term.

In a similar energy modeling attempt, Mohan et al. denoted
the total energy dissipated when programming the SSD (i.e.,
program operation) as,

Ep = Edec,p + Epgm + Eppre, (100)



DAYARATHNA et al.: DATA CENTER ENERGY CONSUMPTION MODELING: A SURVEY 759

TABLE V
SUMMARY OF MEMORY POWER CONSUMPTION MODELING APPROACHES

where Edec,p = Edec,r which is estimated using CACTI, Epgm
is the maximum energy for programming, Eppre is the energy
to transit from program state to precharge state. In the erasure
operation of a flash memory, the erasure happens at the block
level. The controller sends the address of the block to be
erased. The controller uses only the block decoder and the
energy for block decoding (Edec,e) is calculated using CACTI.
They modeled the total energy dissipated in the erase operation
Eerase as,

Eerase = Edec,e +
Nec∑

i=0

Ese(Vse,i) + Eepre, (101)

where Ese(Vse,i) is the energy for suberase operation with Vse,i
is the voltage used for that purpose where i denotes the iteration
count of the suberase operation. The erase operation ends with
a read operation. They took the energy for transitioning from
the erase to precharge as the same as energy to transition from
read to precharge (Eepre = Erpre).

The power state transition between these different states used
by FlashPower is shown in Fig. 18. Note that Fig. 18(a) and
(b) show the power transition for SLC and MLC NAND flash
chips respectively. The bubbles show the individual states while
solid lines denote state transitions. A summary of the SSD
power models is shown in Table VI.

D. Modeling Energy Consumption of Storage Servers

Storage systems deployed in data centers account for con-
siderable amount of energy (ranked second in the energy con-
sumption hierarchy as described in Section I) consumed by the
entire data center. Some studies have shown that the energy
consumption of storage may go up to 40% of the entire data
center [208]. The storage portion of a data center consists of
storage controllers and directly-attached storage [209]. Power
consumption of storage systems is unique because they contain
large amounts of data (often keeps several copies of data in
higher storage tiers). In backup storage systems, most of the
data is cold because backups are generally only accessed when
there is a failure in higher storage tier [208].

Inoue et al. conducted power consumption modeling of a
storage server [210]. They introduced a simple power consump-
tion model for conducting storage type application processes

where the maximum electric power of a computer is consumed
if at least one storage application process is performed on
the computer. They used a power meter to measure the entire
storage server’s power since it is difficult to measure the power
consumption at individual component level. They measured the
power consumption rate of the computer in the environment
φ(m, w) where w(0 ≤ w ≤ 1) is the ratio of W processes to
the total number m of concurrent processes. They measured
the power consumption rate eφ(t) where ten processes are
concurrently performed (m = 10). Their read (R) Write (W)
energy consumption model can be represented as,

eφ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a) max W, if m ≥ 1 and w = 1,

(b) max R, if m ≥ 1 and w = 0,

(c) (12.66w3−17.89w2+9.11w)(max W−max R)
3.88+max R ,

if m ≥ 1 and 0 < w < 1,

(d) min E if m = 0,

(102)

where max W and max R correspond to the maximum rate at
which the read and write operations are performed. They did
experiments in a real environment and obtained an equation
(Equation (102) (c)) for power consumption when concur-
rent processes are performed. While we list down this stor-
age server power model in this subsection, most of the data
center storage power modeling attempts were described in
Section VII-A–C.

VIII. DATA CENTERS LEVEL ENERGY

CONSUMPTION MODELING

The power models described in this paper until this point
have been focused on modeling energy consumption at individ-
ual components. When constructing higher level power models
for data centers it is essential to have knowledge on the details
of such lower level components which accounts for the total
data center power consumption. This section investigates on
the data center power models constructed on the higher levels
of abstractions. First, we describe modeling the energy con-
sumption of a group of servers and then move on to describing
the efforts on energy consumption modeling of data center
networks. Modeling the data center cooling power consumption
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Fig. 18. Power state machines of NAND Flash [206]. (a) Power state machine for a SLC NAND Flash chip. (b) Power state machine for a 2-bit MLC NAND
Flash chip.

TABLE VI
SUMMARY OF DISK POWER CONSUMPTION MODELING APPROACHES

distribution and the metrics for data center energy efficiency are
described next.

A. Modeling Energy Consumption of a Group of Servers

The aforementioned lower level power models can be ex-
tended to build higher level power models. While the basics
remains the same, these higher level power models pose in-
creased complexity compared to their lower level counterparts.
One of the frequently sought higher level abstractions is a
group of servers. In this subsection we investigate on various
different techniques that have been followed for modeling the
power consumption of a group of servers. The power models

developed for group of servers can be categorized into three
subcategories as queuing theory based power models, power
efficiency metrics based power models, and others.

First, we consider use of queuing theory for modeling energy
consumption of a group of servers. Multiple different types of
parameters need to be considered in the context of a group of
servers compared to a single server’s power model. For exam-
ple, there is a time delay and sometimes a power penalty asso-
ciated with the setup (turn the servers ON) cost. Gandhi et al.,
Artalejo et al., and Mazzucco et al. have studied about server
farms with setup costs specifically in the context of modeling
the power consumption of such systems [211]–[213] which we
elaborate next.
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Fig. 19. K-server farm model [214]. The model assumes that the jobs at a
server are scheduled using the Processor-Sharing (PS) scheduling discipline.

In their work Gandhi et al. developed a queuing model for
a server farm with k-servers (see Fig. 19) [211], [214]. They
assumed that there is a fixed power budget P that can be split
among the k servers in the cluster, with allocating Pi power
to server i where

∑k
i=1 Pi = P. In their work they modeled

the server farm with setup costs using M/M/k queuing system,
with a Poisson arrival process with rate λ with exponentially
distributed job sizes, denoted by random variable S ∼ Exp(µ).
They denoted the system load as ρ = λ

µ where 0 ≤ ρ ≤ k. For
stability they need λ < kµ. In their model a server can be in one
of four states: on,idle,off, or setup. When a server is serving
jobs its in the on state and its power consumption is denoted
by Pon. If there are no jobs to serve, the server can either
remain idle, or be turned off, where there is no time delay
to turn off a server. Furthermore, if a server remains idle, it
consumes non-zero power Pidle and they assumed Pidle < Pon.
The server consumes zero power if it is turned off. Hence
0 = Poff < Pidle < Pon. To transit a server from off to on mode
it must under go setup mode where it cannot serve any requests.
During the setup time, the server power consumption is taken
as Pon. They denoted the mean power consumption during the
ON/IDLE state as,

Pon|idle = ρPon + (k − ρ)Pidle, (103)

where ρ is the expected number of on servers and (k − ρ) is the
expected number of idle servers.

A sightly different version of the above power model was
described by Lent [215]. This model assumed that the servers
are homogeneous and there exists an ideal load balancing
among the nodes that are running. The power consumption of
the computing cluster is modeled as,

P(λ) = nk(I + Jρ) + n(1 − k)H, (104)

where λ is the job arrival rate. k = m/n is the ratio of running to
hibernating nodes. I is the idle power consumed by each server
while j is the power increment for utilization level of ρ. H is the
node power consumption while in hibernate mode. Note that
the original power model described in [215] has an additional
term called O which describes the power consumption of other

equipment in the data center facility such as UPSs, network
equipment, etc.

In [211] servers are powered up and down one at a time
[216]. Mitrani et al., worked on the problem of analyzing and
optimizing the power management policies where servers are
turned on and off as a group [216]. They mentioned that in a
large-scale server farm it is neither desirable nor practical to
micro-manage power consumption by turning isolated servers
on and off. In their model the server farm consists of N servers
of which m are kept as reserve (0 ≤ m ≤ N). The jobs arrive
at the farm in a Poisson stream with a rate λ. The operational
servers accept one job at a time and the service times are
distributed exponentially with a mean of 1/µ. The availability
of the reserve servers is controlled by two thresholds U and
D (0 ≤ U ≤ D). If the number of jobs in the system increases
from U to U + 1 and the reserves are OFF they are powered ON
as a block. They become operational together after an interval
of time distributed exponentially with mean 1/ν in which the
servers are consuming power without being operational. Even
if U ≥ N by the time the reserves are powered on jobs may
have departed leaving some or all of them idle. Similarly, if the
reserves are powered ON (or powered up) and the number of
jobs in the system drops from D + 1 to D, then they are powered
down as a block. When all servers are ON, the reserves are not
different from other servers, the system behaves like an M/M/N
queue.

In a slightly different work from [211] where it does not
allow for jobs to queue if no server is available, Mazzucco et al.
modeled the power consumption by a cluster of n powered on
servers as [213],

P = ne1 + m̄(e2 − e1), (105)

where e1 is the energy consumed per unit time by idle servers.
Energy drawn by each busy server is denoted by e2 while
the average number of servers running jobs is denoted by m̄

(m̄ ≤ n, m̄ =
⌈

T
µ

⌉
, where T is the system’s throughput, 1

µ is
the service time). While Gandhi et al., Mitrani et al., and
Mazzucco et al. described interesting observations related to the
power consumption of server farms, such observations are out
of the scope of this survey. More details of these observations
are available from [211].

In another energy consumption modeling attempt for group
of data center servers following a system utilization based
model was created by Liu et al. [217]. Different from the power
model in Equation (22), the Liu et al.’s work considers u as
the average CPU utilization across all servers in the group
of servers being considered. They calculate the IT resource
demand of interactive workload i using the M/G1/1/PS model,
which gives 1

µi−λi(t)/ai(t)
≤ rti. Their IT power model which

covers all the IT energy consumption of a data center is
defined as,

d(t) =
∑

i ai(t)
Q

(Pi + (Pb − Pi)ui) +
∑

j nj(t)

Q
Pb, (106)

where ui =
(

1− 1
µirti

+
∑

j nji(t)
ai(t)

)
. This power model has been de-

rived by using the server power model shown in Equation (22).
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The term ai(t) represents the minimum CPU capacity needed,
which can be expressed as a linear function of the arrival rate
λi(t) as ai(t) = λi(t)

µi−1/rti
. The value of µi is estimated through

real measurements and the response time requirements rti based
on the SLAs. Each batch job is denoted by j and at time t
it shares nji(t) ≥ 0 CPU resource with interactive workload i
and uses additional nj(t) ≥ 0 resources by itself. Furthermore,
they used an IT capacity constraint as

∑
i ai(t) + ∑

j nj(t) ≤ D
assuming the data center has D CPU capacity in total.

The second clearly observable category of power models
for group of servers is the power models developed based
on a data center performance metric. Unlike the lower level
power models, it can be observed that such power efficiency
metrics are utilized to create power consumption models at
the higher levels of data center power hierarchy. Use of PUE
metric for calculating the non-IT power consumed by servers is
a simple way to relate the Non-IT power with the servers. One
such example is where Qureshi et al. [218] created a power
consumption model for a group of n servers deployed in an
Internet scale system by merging the power model described
in Equation (22) with the Power Usage Effectiveness (PUE)
metric of the data center as follows,

P ≈ n
(
Pidle + (Ppeak − Pidle)U + (ηpue − 1)Ppeak

)
, (107)

where n denotes the server count, Ppeak is the server peak
power in Watts, Pidle is the idle power, and U is the average
server utilization, and PUE is denoted by ηpue. In this model
(ηpue − 1) term denotes the ratio between the non-IT power and
IT-Power in the context of a server. Hence, the term (ηpue −
1)Ppeak corresponds to the amount of non-IT power being
apportioned to a server. Overall this power model tries to unify
the entire data center energy consumption under the unit of a
server which distinguishes this power model from Fan et al.’s
work in Equation (22).

A different perspective of modeling the power consumption
by a group of servers was made by Pedram [219]. Total power
consumption of a data center which consists of N server chassis
was modeled by Pedram. The data center power model can be
shown as,

Pdc =
(

1 + 1
η(Ts)

) N∑

i=1

Pch
i , (108)

where η represents the Coefficient of Performance (COP) which
is a term used to measure the efficiency of a CRAC unit. The
COP is the ratio of heat removed (Q) to the amount of work
necessary (W) to remove that heat [220]. Pch

i denotes the total
power consumption of a chassis. Note that a chassis may host
multiple servers (each consuming power Ps

j ) and the chassis
may consume a baseline power Pb

i (which includes fan power
and switching losses). Hence the total chassis power can be
stated as,

Pch
i = Pb

i +
∑

j

Ps
j . (109)

In the rest of this subsection we describe the power models of
group of servers which cannot be categorized under the queuing
theory based or energy efficiency metric based power models.
In one such works a parallel system’s power consumption was
expressed as [56], [59], [221],

E =
.∑

i=1

t2∫

t1

Pi(t)dt =
.∑

i=1

P̄iTdelay, (110)

where energy E specifies the total number of joules in the time
interval (t1, t2), as a sum product of the average power (P̄i)
(i ∈ set of all the nodes .) times the delay (Tdelay = t2 − t1)
while power Pi (i ∈ set of all the nodes .) describes the rate of
energy consumption at a discrete point in time on node i. This
is essentially an extension for the power model described in
Equation (24) (However, in this case it is for entire system.). A
similar extension of a single server power model to represent
a server cluster power was made by Elnozahy et al. [108]
where they represented the power consumption of a cluster of n
identical servers operating at frequency f as [72],

P(f ) = n × (c0 + c1f 3), (111)

where all the parameters remain the same as described in
Equation (20).

Aikebaier et al. modeled energy consumption of a group of
computers [222] with two power consumption models: simple
and multi-level models. They considered the scenario of a
system S which is composed of computers c1, . . . , cn(n ≥ 1)

with m ≥ 1 processes p1, . . . , pm running [223]. First they
measured the amount of electric power consumed by web
applications in a cluster system composed of Linux Virtual
Server (LVS) systems. They abstract out the essential properties
which dominate the power consumption of a server [224].
Based on the measurement results they presented models for
energy consumption of a computer. They denoted Ei(t) as the
electric power consumption (Watts per time unit) of a computer
ci at time t[W/time unit](i = 1, . . . , n). Furthermore, max E
and min E indicate the maximum energy consumption and
minimum energy consumption of a computer ci [129], respec-
tively (min Ei ≤ Ei(t) ≤ max Ei, max E = max(max E1, . . . ,
max En), min E= min(min E1, . . . , min En)). In the simple
model, the normalized energy consumption rate ei(t) is given
depending on how many number of processes are performed as,

ei(t) =
{

max ei, if Ni(t) ≥ 1,

min ei, if Ni(t) < 1,
(112)

where min ei and max ei correspond to min Ei/ max E and max
Ei/ max E respectively. This model simply says that the power
consumption can vary between two levels min ei and max ei for
computer ci. In this model they assumed that the electric power
is maximally consumed even if a single process is run by the
computer. They developed a multi-level model extending the
aforementioned power model as well [129].

While the above server group power models considered only
power consumption by servers, there are certain other work
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TABLE VII
SUMMARY OF POWER CONSUMPTION MODELING APPROACHES FOR A GROUP OF SERVERS

Fig. 20. A typical fat-tree data center network [227]. Many data centers are built using a fat-tree network topology due to its high bisection bandwidth [231].

that model the energy consumption of a group of servers along
with the network devices which interconnect them. While such
work can be listed under Section VIII-B or Section VIII-F, we
list down such work here since they are more specific to the
compute cluster. The work by Velasco et al. is an example for
such power modeling attempt [225]. They modeled the power
consumption of cluster i, Pi

cluster as,

Pi
cluster = ai

⎛

⎝M
2

(Pagg + Pedge) +
M2/4∑

s=1

Pserver
(
ki

s
)
⎞

⎠ (113)

where ai is a term which indicates whether the cluster is
active and Pagg and Pedge denote the power consumption of
aggregation and edge switches. When combined with a term
for power consumption of core switches, the data center’s total
IT devices’ power consumption can be modeled as,

PIT = M2

4
Pcore +

M∑

i=1

Pi
cluster. (114)

It could be observed that in multiple server group level power
models (or even at the server level power models such as
shown in Equations (29), (30), and (25)) the homogeneity of the
servers is assumed across the server cluster. While the energy
consumption behavior might be similar across multiple servers,
the models’ constants might change slightly per server basis due
to slight differences in electro-mechanical characteristics of the

Fig. 21. A distributed data center network [225]. Each location collects user
traffic towards the set of federated data centers which consists of five data
centers strategically located around the globe.

hardware components of the servers. A summary of power con-
sumption modeling approaches for groups of servers is shown
in Table VII.

B. Modeling Energy Consumption of Data Center Networks

In this section we discuss the power modeling work con-
ducted on a group of servers connected via a data center
network as well as the scenarios such as multiple data center
systems being linked via wide area networks (i.e., distributed
data centers [226], see Fig. 21 for an sample [225]). When
modeling energy consumption at such higher level abstraction,
we need to consider the energy cost of communication links and
intermediate hardware (See Fig. 20 for an example of a data
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Fig. 22. Simplified model of a global network [233]. The network comprises of an array of multiport switches interconnected by optical transport systems and
connected to user devices via an access network.

center network [227], [228]). Such energy costs are significant
in the global Internet infrastructure. Most of the existing data
center networks exhibit very small dynamic range because the
idle power consumption is relatively significant compared to
the power consumption when the network is fully utilized [229].
Multiple research have been conducted to address such network
power consumption issues [230].

Next, we move on to exploring the data center network level
energy consumption modeling efforts.

1) Modeling Network Link Power Consumption: Energy
consumption modeling conducted focusing the data center
networks consider the entire network’s energy consumption
including network devices as well as network links. We follow
chronological ordering of power models in this subsection.

Additive power consumption models are present at the data
center network level. Heller et al. described the total network
energy consumption based on the level of power consumption
by a link. Their energy model can be expressed as [227],

Enet =
∑

(u,v)∈E

Xu,va(u, v) +
∑

u∈V

Yub(u), (115)

where a(u, v) is the power cost for link (u,v), b(u) is the power
cost for switch u, Xu,v is a binary decision variable indicating
whether link (u,v) is powered ON. Yu,v is a binary decision
variable indicating whether switch u is powered ON. The power
cost of a link and a switch are considered fixed (there is no such
thing as a half-on Ethernet link). The same power model has
been used in a work conducted on data center network power
consumption optimization by Widjaja et al. [232].

Tucker et al. [233] described a power model for a global
network where they modeled the network as a minimal array
of switching devices that connected using a configurable non-
blocking multi-stage Clos architecture [234]. Fig. 22 shows the
network model they used in their study. In [233] Tucker et al.
modeled the energy per bit (Enet) in the network as,

Enet =
s∑

i=1

Eswitch,i +
s−1∑

i=1

Ecore,i + Eaccess, (116)

where Enet is the energy consumed by each bit in each stage of
switching and in each transport system. Eswitch,i is the energy

Fig. 23. A core-level subgraph of a 4-ary fat-tree data center network [235].
The diagram includes four pods each of which contains edge switches, aggre-
gation switches, and servers.

per bit in stage i of switching. Ecore is the energy per bit in
a transport system at the output of a switch in stage i of the
network in Fig. 22. Etransport is the two-way transport energy per
bit in the access network. s is the number of stages of switching.

In the same line of research of the power model shown in
Equation (116), Zhang et al. [235] modeled the total power
consumption of network switches and links (Pc

total) in a core-
level subgraph (such as shown in Fig. 23) as,

Pc
total =

Nc∑

i=1

Nc∑

j=1

xi,jPL
i,j +

Nc∑

i=1

yiPN
i , (117)

where xi,j ∈ 0, 1 and yi ∈ 0, 1 represent the power status of link
(i, j) ∈ E and node i ∈ V respectively. xi,j ∈ 0, 1 is a binary
variable which is equal to 1 if the link between i and j is
powered on or 0 otherwise. Similarly yi is set to 1 if the node i is
powered on or 0 otherwise. Somewhat similar power model for
this model has been used for power consumption optimization
of a data center network by Jin et al. in [236].

Another work which is almost similar to Zhang et al. was
conducted by Li et al. described two power models for data
center network traffic flows [237]. Specifically they modeled
the total amount of network energy used for transmitting a
group of traffic flows in a data center as,

E =
∑

i∈I

⎛

⎝Piti +
∑

j∈J(i)

Qi,jt′i,j

⎞

⎠ , (118)
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where I and J(i) represent the set of switches and the set of
ports in switch i, respectively. The fixed power consumption in
switch i is denoted by Pi, while the active working duration of
switch i is denoted by ti. The active working duration of port
j in switch i is denoted by t′i,j. This general power model was
further extended by Li et al. by assuming that all the switches
run with fixed power P and all the ports have equal power Q.
They further assumed the bandwidth capacity of each port as
C. With these assumptions, they modeled the total data center
network energy consumption as,

E = P
∑

i∈I

mi

UiC|J(i)| + Q
∑

i∈I

∑

j∈J(i)

m′
i,j

CU′
i,j

, (119)

where mi and m′
i,j represent the aggregate traffic amount travel-

ing through switch i and its port j respectively, while Ui and U′
i,j

represent the average utilization ratio of switch i and its port j
in the transmission duration, respectively.

While there are high level power models being developed
to the entire data center networks, there are multiple works
conducted focusing on individual network devices deployed in
a data center network which is explored next.

2) Modeling Network Device Power Consumption: Data
center network is the skeletal structure upon which proces-
sors, memory, and I/O devices are dynamically shared and is
generally regarded as a critical design element in the system
architecture. In this skeletal structure, network devices such
as routers, switches, etc. play a pivotal role in data center
operations. In most of the situations networking devices such
as routers are provisioned for peak loads, yet they operate at
low average utilization levels. Router may consume between
80–90% of its peak power when it is not forwarding any packets
[238] (i.e., the networking devices display almost no energy
proportionality [239]). For example, one of the latest releases
of CISCO data center routers Cisco Nexus X9536PQ: 36-port
40 Gigabit Ethernet QSFP + line card consumes 360 W as typ-
ical operational power while its maximum power of operation
is 400 W [240]. Therefore, measures need to be taken to model
the energy consumption of networking devices such as routers
which enables development of energy efficient operation tech-
niques. Multiple work have been conducted to model the energy
consumption of routers and switches. In this subsection we
investigate on the network devices power models based on their
level of complexity from least complex to most complex power
models.

Additive (componentwise breakdown) power models repre-
sent one of the least complicated types of power models for
network devices. The simplest power model which can be cre-
ated for a network device is dividing its power consumption as
static and dynamic portions. Energy consumption of a network
device operating with a traffic load ρ can be expressed as [241],

E(ρ) = Estatic + Edynamic(ρ), (120)

where Estatic is the static power consumption independent from
traffic and Edynamic(ρ) is the dynamic part that is a function of
the traffic load ρ.

Another way of constructing additive power models,
Vishwanath et al. [242] presented the power consumption P of

Fig. 24. Structure of a router/switch with control plane, data plane, and envi-
ronmental units highlighted [242]. Packet processor conducts lookups using the
forwarding tables.

an IP router/Ethernet switch as the sum of the power consumed
by its three major subsystems (which can be observed clearly
in Fig. 24),

P = Pctrl + Penv + Pdata, (121)

where the terms Pctrl, Penv , and Pdata represents the power
consumption of the control plane, environmental units, and the
data plane respectively. They further represented the Pctrl, Penv ,
and part of Pdata which are fixed as Pidle. The load dependent
component of Pdata was expanded to two more terms based on
packet processing energy and store & forward energy as,

P = Pidle + EpRpkt + Esf Rbyte, (122)

where Ep is the per-packet processing energy, and Esf is the
per-byte store and forward energy which are constants for a
given router/switch configuration. Rpkt is the input packet rate
and Rbyte is the input byte rate (Rpkt = ⌈Rbyte/L⌉, where L is the
packet length in bytes).

Total energy used by a switch can be modeled in an additive
power model as [234], [243],

E =
j∑

i=1

EIi + Esupply + Econtrol −
k∑

j=1

EOi, (123)

where all the input/output energies to/from the switch are
denoted as EIi and EOi. The supply and control energies for the
switch are denoted as Esupply and Econtrol respectively.

A slightly extended version of the energy consumption of
network elements can be made by taking the integration of
power consumed by the device [244]. The incremental energy
(Einc) due to the introduction of an additional traffic flow can
be stated as,

Einc =
∫ t2

t1
P (C + /C(t)) − P(C)dt =

∫ t2

t1
/P(t)dt,

= ∂P(C)

∂C

∫ t2

t1
/C(t)dt = ∂P(C)

∂C
Nbit = Eb(C)Nbit,

(124)
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where Nbit is the number of transmitted bits and Eb(C) is
the energy-per-bit for the network element with throughput C.
The incremental power consumption increase was taken to be
negligible. The authors mentioned that to use this power model
in reality, they need to derive the form of Eb(C) for the given
element/elements.

Vishwanath et al. presented a methodology for constructing
quantitative power models based on vendor neutral measure-
ments on commercially available routers and switches [242].
The system architecture of the router/switch they used in their
study is highlighted in Fig. 24.

A linear regression based energy consumption model for
residential and professional switches was introduced by
Hlavacs et al. [245] where the energy consumption E(P) of the
device is given by,

E(P) ≈ P̂(B) =
{

α + βlogB, B > 1,

α, B ≤ 1,
(125)

where α and β correspond to intercept and regression coef-
ficient respectively. B is the bandwidth measured in kbit/s.
They conducted measurements with real switches on multiple
different aspects and reported the results. For example, they
calculated the TCP regression model for a classical 8 port Fast
Ethernet switch (Netgear FS608v2) as,

P̂tcp(B) = 2.588 − 0.0128logB. (126)

In the same line of research on power consumption modeling
of network switches, Mahadevan et al. [246] modeled the
energy consumption of a network switch as,

Pswitch = Pchassis + αPlinecard +
configs∑

i=0

βiPconfigsiSi, (127)

where Plinecard is the power consumed by linecard with all ports
disabled and α is the number of active cards in the switch. The
variable configs is the number of configurations for the port
line rate. Pconfigs_i is the power for a port operating at speed i
while βi is the number of ports of that category. Here i can be 0,
10 Mbps, 100 Mbps, 1 Gbps, etc. Si is the scaling factor to
account for a port’s utilization.

In the line of router power modeling, AHN et al. measured
the power consumption of an edge router (CISCO 7609) [247].
They found that the power consumption is in direct proportion
to the link utilization as well as the packet sizes. Based on this
observation they defined basic model for power consumption
of a router interface as Pinterface(ρ, s, c) where ρ means the
link utilization, s is the packet size, and c is the computing
coefficient which concerns the power consumption overhead
by routing protocols. Since the power consumption during the
routing protocol exchange is negligible, they simplified their
model as Pint(ρ, s) which can be stated as,

Pint(ρ, s) = Php + Ppt

= Ehp × α + Ept × β,
(128)

where the header processing power consumption denoted by
Php, packet transferring power consumption denoted by Ppt,
packet header processing energy is denoted as Ehp in Joules,

and the per bit transfer energy as Ept(Joule/bit). The data rates
of packets per second is denoted by α while bits per second is
denoted by β.

3) Power Consumption of Network Interfaces: Network in-
terface card (NIC) is a significant contributor to the system
power consumption. Most network hardware operate constantly
at maximum capacity, irrespective of the traffic load, even
though its average usage lies far below the maximum [248].
Traditional Ethernet is power-unaware standard which uses
a constant amount of power independently from the actual
traffic flowing through the wires. However, recent high speed
Gigabit Ethernet interface cardsmay consume up to 20 W which
makes it reasonable to introduce power saving mechanisms
for such network interfaces. Furthermore, in an experiment
conducted on TCP energy consumption, Bolla et al. observed
that their System Under Test (SUT) which was a Linux work-
station equipped with 4-core Intel i5 processor, the NIC power
consumption varied between (10% to 7%) when the system
transitioned from idling to active mode of operation [249]. In
both idle and active modes they measured a constant 7 W of
power consumed by the NIC. This results in considerable power
consumption when running a large scale server installation.
Therefore, NIC should be taken into consideration when mod-
eling the overall data center system power consumption.

Network interface card can be either in idle mode or in active
mode at any given time [250]. If Eidle is the power of the idle
interface and Pdynamic is the power when active (either receiving
or transmitting packets) the total energy consumption of the
interface (Enic) can be represented as,

Enic = PidleTidle + PdynamicTdynamic, (129)

where Tidle is the total idle time. Tdynamic represents the total
active time in a total observation period T. The value of T can
be denoted as,

T = Tdynamic + Tidle, (130)

where the average NIC power Pnic during the period T can be
denoted as,

Pnic = (T − Tdynamic)Pidle + PdynamicTdynamic

T
= Pidle + (Pdynamic − Pidle)ρ, (131)

where ρ = Tdynamic/T is the channel utilization (i.e., normal-
ized link’s load). The time periods and the power values depend
on the particular network technology employed [250]. The NIC
power models described above (in Equations (129) and (131))
are dividing the NIC power consumption as static and dynamic
portions.

The choice of network technology could affect utilization
of other computer system components (especially CPU) [250].
E.g., In serial point-to-point communications, the CPU is nor-
mally used to execute a significant number of communication-
related operations which easily increases the dynamic power
consumption of CPU. On the other hand embedded network
technologies such as Infiniband can move much of the commu-
nication work to the embedded architecture. Such behavior can
be accommodated in the CPU power models. CPU utilization
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Fig. 25. An example power delivery system for a data center [255]. The system is an example for a high-availability power system with redundant distribution
paths.

u, can be denoted as u′ + γρ where u′ and γρ correspond to
non-network and network dependent CPU load respectively.
γ (γ ≥ 0) models the impact of a given network technology on
CPU load based on network utilization ρ. The smaller γ values
represent network communications that are dependent on the
CPU while larger γ values could be used to model the higher
CPU dependency of other network interfaces.

4) Power Consumption of Optical Networks: Optical inter-
connects provide a viable solution offering high throughput,
reduced latency and reduced energy consumption compared to
current networks based on commodity switches [251]. In this
subsection we describe the optical network power models from
the least complicated to most complicated.

Kachris et al. [251] created a power model for a reference
network architecture designed based on commodity switches.
Their reference power model is represented as,

Pref =
∑

racks

(Ptor + Ptrans) + Paggrsw + P10gbps, (132)

where Ptor is the power consumed by the Top-of-Rack Switch,
Ptrans is the power for the 1 Gbps Ethernet transceivers, Paggrsw
is the power of the aggregate switch, and P10gbps is the power
of the 10 Gbps Ethernet transceivers. In their model, the en-
ergy dissipated by Wavelength Division Multiplexing Passive
Optical Network (WDM PON [253]) network for inter track
communication was represented as,

Pwdm =
∑

racks

(Ptor + Ptrans + Psfp) + Paggrsw + Pwa, (133)

where Psfp is the power of the optical WDM MMF (multimode
fiber [254]) transceivers, Pwa is the power of the WDM array
port in the aggregate switch. Kachris et al. also described
power models for six different optical data center network
architectures [228]. They described the power consumption of
an Arrayed Waveguide Granting Routing (AWGR) based with
buffers scheme as,

P =
∑

Ptrx +
∑

Ptwc +
∑

Pbuffer,

= nPtrx + nPtwc + an(Poe + Peo + Psdram), (134)

where Ptrx is the power of optical transceiver, Ptwc is the power
of the tunable wavelength converter, Pshbuffer is the power of
the Shared Buffer, Poe,eo is the power of the O/E and E/O
converters. P.sdram, n, and a denotes power usage of SDRAM,
number of the Top of the Rack switches, and probability of con-

Fig. 26. A WDM transmission system of length L, which comprises an
optical transmitter, m identical stages of optical gain, and an optical receiver
[233], [243].

tention respectively. This is an additive power model. A similar
technique has been used for modeling the power consumption
of the rest of the architectures of which the details can be found
at [228].

The power consumption of a WDM transmission system
comprising m identical optically amplified stages as shown in
Fig. 26 can be modeled as [243],

Ptot = mPA + PTX/RX, (135)

where PA is the supply power to each amplifier and PTX/RX is
the supply power to each WDM transmitter/receiver pair. PTX
and PRX are the transmitter and receiver supply powers.

Van Heddeghem et al. modeled the total power dissipation
of an optical multilayer core network (Pcore) as the sum of its
constituting layers,

Pcore = Pip + Pethernet + Potn + Pwdm, (136)

where the terms Pip, Pethernet, Potn, and Pwdm represents the
power consumption by the IP layer, Ethernet layer, optical
transport network, wavelength division multiplexing respec-
tively [252]. Each of these parameters were expanded further
as follows,

Pip = δ
[
2σipγ

]
, (137a)

Pethernet = δ
[
2σethγ

]
, (137b)

Potn = δ
[
2σotnγ

]
, (137c)

Poptsw = δ [2σoxcH] , (137d)
Ptransponders = δ [2σtrH] , (137e)

Pamplifiers = δ

[
1
f
σola

⌊
α

Lamp

⌋
H

]
, (137f)

Pregereneration = δ

[
σre

⌊
α

Lregen

⌋
H

]
, (137g)
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TABLE VIII
SUMMARY OF POWER CONSUMPTION MODELING APPROACHES FOR DATA CENTER NETWORKS

where γ =
(

1
ηpr

+ H
)

of which ηpr accounts for traffic protec-
tion which equals to 2 for 1 + 1 protection. For unprotected
traffic the value remains as 1. H represents the average hop
count, ηc accounts for the cooling and facilities overhead power
consumption in a data center measured by PUE. The value of
term δ is given by δ = ηcηprNdDC where Nd stands for the total
number of IP/Multi Protocol Label Switching(MPLS) demands
and DC is the average demand capacity.

A summary of power consumption modeling approaches
for data center networks is shown in Table VIII. Next, we
move onto describing one of the most important, yet non-IT
component of a data center: the power conditioning unit.

C. Modeling Energy Consumption of Power
Conditioning Systems

Power conditioning system of a data center is responsible of
delivering electric power to the loads of the system (IT and
mechanical equipment). Maintaining adequate power quality
levels and consistency of power supply is a must [256]. Power
conditioning system of a data center consumes significant
amount of energy as the power wasted during transformation
process which can be traced in its power hierarchy. Distribution
of uninterrupted electrical power into a data center requires
considerable infrastructure (such as transformers, switchgears,
PDUs, UPSs, etc. [257]). In a typical data center power hierar-
chy, a primary switch board distributes power among multiple
Uninterrupted Power Supply sub-stations (UPSs). Each UPS
in turn, supplies power to a collection of PDUs. A PDU is
associated with a collection of server racks and each rack
has several chassis that host the individual servers. Such an
arrangement forms a power supply hierarchy within a data
center [258], [259]. An illustration of such power hierarchy is
shown in Fig. 25 [255], [260], [261].

PDUs are responsible for providing consistent power supply
for the servers. They transform the high voltage power distrib-
uted throughout the data center to voltage levels appropriate
for servers. PDUs incur a constant power loss which is pro-

portional to the square of the load which can be represented as
[262], [263],

Ppdu_loss = Ppdu_idle + πpdu

(
∑

N

Psrv

)2

, (138)

where Ppdu_loss represents power consumed by the PDU, while
πpdu represents the PDU power loss coefficient, and Ppdu_idle
which is the PDU’s idle power consumption. The number of
servers in the data center is represented by N.

UPSs on the other hand act as the temporary power utilities
during power failures [262]. Note that in different data center
designs UPS can sit before PDU or it can sit in between PDU
and the server(s). UPSs incur some power overheads even when
operating on utility power which can be modeled as,

Pups_loss = Pups_idle + πups

(
∑

M

Ppdu

)
, (139)

where πups denotes the UPS loss coefficient. Pelley et al.
mentioned that PDUs typically waste about 3% of their input
power while for UPSs it amounts for 9% of UPS input power at
full load. Next, we describe the power modeling efforts related
to data center cooling systems.

D. Modeling Data Center Cooling Power Consumption

Even a carefully designed, racked blade system using low-
voltage components can consume up to 22 kW of power [264].
These levels of power consumption generate considerable heat
that has to be disposed in order for servers to operate within
a safe operating temperature range. Cooling systems are used
to effectively maintain the temperature of a data center [265].
Cooling power is the biggest consumer of the non-computing
power in a data center followed by power conversion and other
losses [266]–[268]. Fig. 27 provides a breakdown of the cooling
power in a data center [82]. The data center cooling power is
a function of many factors such as layout of the data center,
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Fig. 27. An example power breakdown of a data center HVAC [82]. The three
major power consumers in the HVAC includes fans (39%), chillers (39%), and
cooling water pumps (18%).

the air flow rate, the spatial allocation of the computing power,
the air flow rate, and the efficiency of the CRAC units. In
this subsection first we investigate on the server (i.e., system)
level fan power models. Next, we describe the CRAC unit level
power models which can be considered as an extension of the
fan power models. Finally, we list down some of the power
modeling work that cannot be specifically categorized into the
aforementioned two categories.

1) Power Consumption of System Fans: Cooling fans lo-
cated inside a system unit represents another important energy
consumer of a data center server. For example, one of the
studies made by Vasan et al. have shown that the fans consumed
about 220.8 W (18%) while the CPU power consumption was
measured at 380 W (32%) [269], while the total approximate
system power consumption was measured at 1203 W. In an-
other study conducted by Lefurgy et al. it was observed that
fan power dominated the small configuration of IBM p670
server power envelope (51%) while in large configuration it
represented a considerable portion (28%) of the server power
envelope [270]. Furthermore, fan power is a cubic function of
fan speed (Pfan ∝ s3

fan) [16], [271]. Hence over-provisioning of
cold air into the servers can easily lead to energy inefficiencies
[272]. These statistics indicate that power consumption by
system fans is of considerable amount that need to be accounted
in modeling the power hierarchy of a modern data center.

In one of the most simplest fan power models cooling power
can be expressed as a function of the IT power as [217],

fa(d) = kd3, (140)

where 0 ≤ d ≤ d, k > 0. The parameter k depends on the
temperature difference (tra − toa) which is based on the heat
transfer theory. Here toa is the outside air temperature and tra
is the temperature of the (hot) exhausting air from the IT racks.
d is the maximum capacity of the cooling system that can be
modeled as d = C(tra − toa).

In an extended version of the power model shown in
Equation (142), Meisner et al. [273] described the Computer
Room Air Handler (CRAH) power consumption as,

Pcrah = Pidle + Pdynf 3, (141)

where f is the fan speed of CRAH (between 0 to 1.0) and
Pidle and Pdyn represent the idle and dynamic power usage of
CRAH unit.

In certain literature, fan power consumption is added to an
aggregated quantity called “Electromechanical Energy Con-
sumption” [92]. It is typical that multiple fans exist in a server.
The power drawn by the ith fan at time t can be denoted by,

Pi
fan(t) = Pbase

(
RPMi

fan(t)

RPMbase

)3

, (142)

where Pbase is the base power consumption of the unloaded sys-
tem without running any applications (Note that the RPMbase
corresponds to the fan’s rpm while running the base workload).
This value is obtained in [92] by measuring the current drawn
on the +12V and +5V lines using a current probe and an
oscilloscope. Therefore, if there are total N fans installed in the
server, the total electromechanical energy consumption (Eem)
over a given task execution period of Tp is denoted by,

Eem =
∫ Tp

0

(
N∑

i=1

Pi
fan(t)

)

dt, (143)

where the Pi
fan(t) is denoted by the power model in Equa-

tion (142).
Unlike other components of a computer system, the sys-

tem fans have received less attention from power modeling
researchers. Mämmelä et al. measured the power consumption
of system fans by directly attaching cabling to the measurement
device [274]. Based on the performance results they obtained,
they constructed a power model for system fans as,

Pfan = 8.3306810−15a4 + 8.51757ω4 − 2.9569d4

− 1.1013810−10a3 + 54.6855ω3 − 76.4897d3

+ 4.8542910−7a2 + 258.847ω2 − 1059.02d2

− 6.0612710−5a + 32.6862ω + 67.3012d − 5.478,
(144)

where ω denotes the fan width (in mm), d denotes the fan depth
(in mm), and a presents the revolutions per minutes. This is a
fourth order, relatively complicated polynomial power model.

2) CRAC Power Models: Typically, the largest consumer of
power and the most inefficient system in a data center is CRAC.
Factors that affect such operation of the CRAC unit include the
operational efficiency and the air distribution design of the unit
[275]. Percentage of the cooling power varies, but can be up
to 50% or more in a poorly designed and operated data center
[276], [277]. About 40% of the total energy consumption in the
telecom industry is devoted to cooling equipment in data cen-
ters [278]. Most of this energy is consumed by the site chiller
plant, CRAC, and by the air handlers (CRAH [279]) [280]. Heat
dissipation in a data center is related to its server utilization
[281]. Studies have shown that for every 1W of power utilized
during the operation of servers an additional 0.5–1 W of power
is consumed by the cooling equipment to extract the heat out
from the data center [118]. Power consumption of the data
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center cooling equipment generally depends on two parameters,
first the amount of heat generated by the equipment within the
data center and second due to the environmental parameters
such as temperature [282]. Here we organize the CRAC power
modeling efforts from least complicated to most complicated
power models.

One of the simplest power models for CRAC was described
by Zhan et al. They partitioned the total power budget among
the cooling and computing units in a self consistent way [283].
They modeled the power consumption ck of a CRAC unit k as,

ck =
∑

i pi

η
, (145)

where
∑

i pi is the power consumption of servers with their heat
flow directed towards the CRAC unit. η is the Coefficient of
Performance (CoP). Based on the physical measurements they
have created an empirical model for η of a commercial water-
chilled CRAC unit as,

η = 0.0068t2 + 0.0008t + 0.458, (146)

where t is the supply air temperature of the CRAC unit in
degrees Celsius.

Moore et al. [220] modeled the cooling power consump-
tion as,

C = Q
η(T = Tsup + Tadj)

+ Pfan, (147)

where Q is the amount of server power consumption, η(T =
Tsup + Tadj) is the η at Tsup + Tadj. Note that Tsup is the temper-
ature of the cold air supplied by the CRAC units. They assumed
a uniform Tsup from each CRAC unit. Tadj is the adjusted CRAC
supply temperature. η is the coefficient of performance which
gives the performance of the CRAC units. η is the ratio of
heat removed (Q) to the amount of work necessary (W) to
remove that heat which can be expressed as η = Q/W [220].
A higher η value shows a more efficient process which requires
less work to remove a constant amount of heat. Pfan is the total
power consumed by the CRAC fans. A similar power model for
modeling the cooling power consumption is described in [284].

Additive power models can be observed in data center
cooling power models as well. In one such work Das et al.
developed models for power consumption of cooling support
systems. Their model included the computer room air condi-
tioning fan, refrigeration by chiller units, pumps of the cooling
distribution unit, lights, humidity control and other miscella-
neous items [285]. They modeled the total power dissipation of
a data center (Prf ) [286] as,

Prf = Pit + Ppdu + Pcrac + Pcdu + Pmisc, (148)

where Prf corresponds to the raised floor power, Pit is the power
consumed by the IT equipment. Pcrac is the power consumed by
computer room air conditioning units. The power losses happen
due to uninterruptible power supply (UPS) systems and losses
associated with the power distribution are represented as Ppdu.
They used Pcdu to denote the power dissipation for the pumps
in the cooling distribution unit (CDU) which provide direct

cooling water for rear door and side-car heat exchange mounted
on a few racks. This model is almost equal to the model of
raised floor power described by Hamann et al. in [287] where
the latter has a term Plight to denote the power used for lighting.
The total CRAC power consumption and total CDU power can
be denoted as follows,

Pcrac =
∑

i

Pcraci, and Pcdu =
∑

j

Pcduj, (149)

where i and j correspond to CRAC and CDU respectively. The
CRAC system used in their study equipped with variable fre-
quency drivers (VFDs) which showed the following empirical
relationship between fan power Pcraci and relative fan speed θi
for a respective CRAC,

Pcraci = Pcraci,100(θi)
2.75, (150)

where Pcraci,100 is the fan power at θi = 100%. Furthermore,
they showed that under steady state conditions (i.e., after
thermal equilibrium is reached) the energy balance requires
that the total raised floor power (Prf ) equal the total cooling
power (Pcool), that is provided by both the cracs, Pcool(crac),
and the rear-door/side-car heat exchanger or CDU, Pcool(cdu).
Therefore, raised floor power Prf can be denoted as,

Prf = Pcool =
∑

i

Pcool(craci) +
∑

j

Pcool(cduj). (151)

The cooling power of CRACs and CDUs can be denoted as the
product of the fluid flow rate in cfm (Cubic feet per minute), the
temperature differential (δTi) between the cold fluid emerging
from the unit and the hot fluid returned back to the unit, and
the density and specific heat of the fluid. Therefore, these two
quantities can be denoted as,

Pcool(craci) = φcraci/Ti/3293
[
cfm◦F/kW

]
, (152)

Pcool(cduj) = φcduj/Tj/6.817
[
cfm◦F/kW

]
. (153)

Furthermore, they showed that since all raised floor power
needs to be cooled by the chilling system, which requires power
for refrigeration (Pr) that can be approximated as,

Pchiller = Pr/η, (154)

where η is the coefficient of performance of the chiller system
described earlier of this section. They assumed a value of 4.5 for
η which they mentioned to be somewhat typical for large-scale
centrifugal chilling systems based on the case study results of a
large scale data center described in [288].

Certain power models such as the one described by
Kaushik et al. for a data center in [289] express the power
consumption of a system as a ratio. Cooling power consumption
increase (from P1 to P2) due to the requirement of air-flow
increase within the data center from V1 to V2 can be represented
as follows [276], [290],

V2

V1
= R2

R1
=

(
P2

P1

)3

, (155)

where R1 and R2 correspond to the rounds per minute (RPM)
values of the fan.



DAYARATHNA et al.: DATA CENTER ENERGY CONSUMPTION MODELING: A SURVEY 771

TABLE IX
SUMMARY OF DATA CENTER COOLING POWER DISTRIBUTION MODELING APPROACHES

Certain power models take into account the temporal features
of data center power usage. In one such work Tu et al. described
a data center total power consumption [291] as the sum of
the server, power conditioning system, and the cooling system
power draw, that can be expressed as a time-dependent function
of b(t) (b(t) = fs(x(t), a(t))),

b(t) + fp (b(t)) + f t
c (b(t)) ! gt (x(t), a(t)) , (156)

where x(t) is the number of active servers and s(t) ∈ [0, x(t)] is
the total server service capability at time t. To get the workload
served in the same time slot s(t) > a(t). They also described a
similar power model for water chiller cooling system as,

f t
c (b(t)) = Qtb2(t) + Ltb(t) + Ct, (157)

where Qt, Lt, Ct ≥ 0 depend on outside air and chilled water
temperature at time t.

In a similar power model, Zheng et al. described a power
consumption model CRAC systems [292]. They summarized
the total power consumption of cooling system as,

Pcoolingj =
{

αjU2
j + βjUj + γj + θj, if Uj ≤ 25%,

θj, Otherwise,
, (158)

where θ is the power consumption made by CRAC (this was
simplified as a fixed power consumption). αj,βj, and γj corre-
spond to the chiller power consumption coefficients in the data
center j. Uj is the system utilization (%) in data center j. If the
total workload in the data center j (Uj) is less than 25% of the
total data center processing capacity, all chillers can be turned
off to save cooling system energy. This is the reason why such
division of the cooling energy happens in their power model.

Similar to the use of PUE in the previous section, it can be
observed that multiple power models have been developed con-
centrating the CoP metric. A summary of data center cooling
power distribution modeling techniques is shown in Table IX.

E. Metrics for Data Center Efficiency

High levels of energy has been consumed by data centers
to power the IT equipment contained within them as well as
to extract the heat produced by such equipment. Data center

Fig. 28. An illustration of how PUE is defined [263]. Data center efficiency is
defined as the fraction of input power delivered to the IT load.

industry’s heavy reliance on power has historically triggered
the requirement for use of metrics for tracking the operational
efficiency of data centers [293], [294]. In this section we de-
scribe few key power consumption metrics used for measuring
the energy efficiency of data centers. Such description is needed
because certain data center power consumption models have
used these metrics. In this section we organize the metrics based
on their significance for energy efficiency measurement from
most significant to least significant.

One of the most widely used data center energy efficiency
metric is Power Usage Effectiveness (PUE) [295], [296]. It
is a metric to compare different data center designs in terms
of their electricity consumption [297] (See the illustration in
Fig. 28 [263]). PUE of a data center (ηpue) is calculated as,

ηpue = Total data center annual energy
Total IT annual energy

, (159)

where the Total data center annual energy is the sum of
power drawn by cooling, lightening, and IT equipment. PUE
is a value greater than 1 (ηpue ≥ 1) since data centers draw
considerable amount of power as non-IT power. Google data
centers reported a PUE of 1.12 in 2013 [298]. A higher PUE
translates into a greater portion of the electricity coming to the
data center spent on cooling and the rest of the infrastructure (A
visual explanation is available in [299]). While PUE is widely



772 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 1, FIRST QUARTER 2016

Fig. 29. Relationship between DPPE, ITEU, ITEE, PUE, and GEC metrics
[309]. DPPE is designed to increase as the values of these four indicators
increase (the inverse value for PUE).

recognized as the preferred energy efficiency metric for data
centers [300], a good PUE value is not enough to guarantee the
global efficiency of the data center, because PUE metric does
not consider the actual utilization (applications and workloads
[301]) of computational resources [302], [303]. Furthermore,
typical PUE reports communicate the minimum data center
infrastructure power use. Hence, can only be used to determine
the minimum potential energy usage of the corresponding
facility [304].

Another metric used in data center energy efficiency mea-
surement is Data Center Infrastructure Efficiency (DCiE)
which is expressed as follows [41], [305],

ηdcie = 1
ηpue

= IT Devices Power Consumption
Total Power Consumption

× 100%.

(160)

DCiE is the reciprocal measurment for PUE. While both these
metrics are used by data center vendors, PUE has been used
more commonly than DCiE [306].

Patterson et al. described two new data center energy con-
sumption metrics called IT-power usage effectiveness (ITUE)
and Total-power usage effectiveness (TUE) [307]. ITUE is
defined as total IT energy divided by computational energy.
TUE is the total energy into the data center divided by the
total energy to the computational components inside the IT
equipment. TUE can be expressed as product of ITUE and PUE
metrics.

Data center Performance Per Energy (DPPE) is a metric
which indicates the energy efficiency of the data center as a
whole. DPPE is a metric for indicating data center productiv-
ity per unit energy [308]–[310]. DPPE (ηdppe) is defined as
follows,

ηdppe = Throughput at the data center
Energy consumption

. (161)

Another performance related to the data center energy con-
sumption is the Green Energy Coefficient (GEC) [309]. In
simple terms GEC is the ratio between the green energy (e.g.,
wind power, solar power, etc.) consumed by the data center
and the total data center energy consumption. In practice, PUE
and GEC are measured for the entire data center level where
as ITEU and ITEE are measured only for some measurable
IT devices. The relationship between the aforementioned data
center energy consumption metrics can be shown as in Fig. 29.

Data Center Energy Productivity (DCeP) is a metric intro-
duced by Sego et al. for measuring the useful work performed
by a data center relative to the energy consumed by the data

center in performing the work [311]. Therefore, DCeP (ηdcep)

can be expressed as,

ηdcep = W
Etotal

= Useful work produced
Total energy consumed by the data center

,

(162)

where the Useful work produced is measured through physical
measurements. The total energy consumed is gathered during
an interval of time called the assessment window. DCeP metric
allows the user to define the computational tasks, transactions,
or jobs that are of interest, and then assign a measure of
importance of economic value to each specific unit of work
completed.

Similar to higher level data center energy consumption
efficiency metrics, several power related metrics have been
proposed for measuring data center cooling system efficiency.
The Data Center Cooling System Efficiency (CSE) characterizes
the overall efficiency of the cooling system (which includes
chillers, pumps, and cooling towers) in terms of energy input
per unit of cooling output [294], [312]. The CSE (ηcse) can be
expressed as,

ηcse = Average cooling system power usage
Average cooling load

. (163)

Data Center Workload Power Efficiency (DWPE) was pro-
posed as a complete data center energy efficiency metric by
Wilde et al. [313]. DWPE (or simply d) was proposed as the
first metric that is able to show how energy efficient a HPC
system is for a particular workload when it is run in a specific
data center. DWPE (ηd) is defined as,

ηd = ηp

ηu
, (164)

where ηp is a performance per Watt metric for a HPC system
while ηu is the system PUE which is a metric that defines the
effectiveness of the system in a specific data center.

F. Modeling Energy Consumption of a Data Center

As described in Section I, a data center is a container that
holds multiple items such as groups of servers, storage, net-
working devices, power distribution units, and cooling systems.
This section describes the energy consumption modeling work
conducted at the whole data center level which accounts for
energy consumed by all the aforementioned components. We
list the power models in this section in a two fold manner.
First, we investigate on the general power models for data
centers. Next, we investigate on a specific category of power
models which are developed based on the PUE of the data
center.

Perhaps the most simplest types of the energy consumption
models that can be created for an entire data center would
be such as the one described by Aebischer et al. [314]. They
mentioned that modeling the electricity demand of a set of
devices does not require a complex model, but needs much
input data while not all of the available data are statistically
significant. They modeled the energy consumption in the use
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phase of a collection of devices by following a bottom-up
approach,

E(t) =
∑

ijk

ni(t) × eij(t) × uijk(t), (165)

where n is the number of devices of type i, e is the power load in
functional state j and u is the intensity of use by user k. A similar
data center power model was created by LeLou: et al. [315]
where they expressed the power consumption of a data center
as the sum of the minimum (i.e., idle) power consumptions of
its hosts and the consumptions induced by the VMs. However,
both such works do not consider the non-IT power consumption
of a data center.

CPU utilization based power models can be observed even at
the higher levels of data center hierarchy. In one of this category
of works, Raghavendra et al. constructed power/performance
models for data centers based on CPU utilization [316]. For
each system in the data center they calibrated models on the
actual hardware by running workloads at different utilization
levels and measuring the corresponding power and performance
(in terms of the percentage of the work done).

Islam et al. described a utilization based power model [317]
for an entire data center power consumption as,

P (u(t), x(t)) =
M∑

i=1

pi (ui(t), xi(t)) , (166)

where x(t) = (x1(t), x2(t), . . . , xM(t)) and u(t) = (u1(t), u2(t),
. . . , uM(t)) are the vectors of speed selections and utilization of
data center servers respectively. In their model i corresponds to
a server. They have ignored the toggling costs such as turning a
server off, VM migration, etc. Similar work to this research can
be observed in [318] and [319].

PUE (described in Section VIII-E) is heavily utilized for
modeling the power consumption of data center systems since
PUE represents the total IT power consumption of a data center.
From here onwards we organize the PUE based data center
power models in chronological order. One such power models
for entire data center was created by Masanet et al. They
described an electric power consumption model for data centers
as follows [320],

Ed =
∑

j

[
∑

i

Es
ij + Es

j + En
j

]
ηpuej, (167)

where Ed represents the data center electricity demand
(kWh/y), ES

ij is the electricity used by servers of class i in
space type j (kWh/y), Es

j is the electricity used by external
storage devices in space type j (kWh/y), En

j is the electricity
used by network devices in space type j, and ηpuej is the power
utilization effectiveness of infrastructure equipment in space
type j. They mentioned that their model estimates data center
energy demand as a function of four variables that account for
the electricity use of servers, external storage devices, network
devices, and infrastructure equipment. This is another example
(similar to the previous power model by Mahmud et al. in
Equation (169)) for calculation of the total data center power

by multiplying total IT power by PUE. However, this power
model is an additive power model which differentiates it from
the power models described in Equations (169) and (171).

In the same way Yao et al. extended their server level power
model [121], [321] for modeling the power consumption of an
entire data center as,

P (Ni(t), bi(t)) =
(

Ni(t)
(

bi(t)α

A
+ Pidle

))
.U, (168)

where the A, Pidle, and α parameters have the same meaning as
in Equation (29). The use of U term accounts for additional
power usage due to cooling, power conversion loss, etc. for
having Ni(t) servers active.

Mahmud et al. [322] mathematically denoted the total power
consumption of a data center during time t by p(λ(t), m(t)), that
can be expressed as,

p (λ(t), m(t)) = ηpue

J∑

j=1

mj(t)
[

e0 + ec
λj(t)

mj(t)µj

]
, (169)

where ηpue > 1 is the PUE, e0 is the static server power
irrespective of the workloads. Here ec is the computing power
incurred only when a server is processing workloads. λj(t) is
the arrival rate of type-j jobs. mj(t) is the number of servers
for type-j jobs. The service rate of a server for processing
type-j jobs is µj. The λ(t) = (λ1(t), . . . ,λJ(t)), and m(t) =
(m1(t), . . . , mJ(t)). Their power model can be considered as an
extension of a power model for a group of servers (described in
Section VIII-A) to an entire data center via use of PUE metric.

In another similar line of research Zhou et al. described a data
center power model using the power usage efficiency metric
(PUE) [323]. Their model is a hybrid of the power model for
a single server (which is almost similar to the one in Equation
(30)) and data center PUE. Given the number of active servers
mj(t), parameters αj,βj, νj and power usage efficiency metric
PUEj in data center j, the power consumption of data center j in
time slot t can be quantified by Ej(t) as,

Ej(t) = PUEjmj(t)
[
αjµ

νj
j (t) + βj

]
, (170)

where α is a positive factor, β is the power consumption in idle
state, ν is an empirically determined exponent parameter (ν ≥
1) with a typical value of ν = 2.

In a similar line of research was presented by Liu et al.
[324] where they created the power model by combining the
workload traces and the PUE (ηpue) to create the total power
demand of a data center as,

ν(t) = ηpue(t) (a(t) + b(t)) , (171)

where a(t) is the power demand from the inflexible workload
and b(t) is the power demand from the flexible workload.

IX. SOFTWARE ENERGY MODELS

Up to now we have focused on energy consumption models
based on physical characteristics of the data center. But equally
important is to consider the type of applications and workloads
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Fig. 30. Power dissipation breakdown across OS routines [146]. Data-path and
pipeline structures that support multiple issue and out-of-order execution are
found to consume 50% of total power on the examined OS routines.

a data center handles. Data center software can be broadly cate-
gorized into five categories: compute-intensive, data-intensive,
communication-intensive applications, and OS and virtual-
ization software, and general software. In the computation-
intensive tasks the major resource consumer is the CPU core(s).
In a data-intensive task the storage resources in the cloud sys-
tem are the main energy consumer. In communication-intensive
tasks a large proportion of the energy is used by network
resources such as network cards, routers, switches, etc. In
the following subsections, we explore the energy consumption
modeling efforts in the context of OS and virtualization, data-
intensive, communication-intensive, and computation-intensive
tasks, as well as general data center applications.

A. Energy Consumption Modeling at the OS and
Virtualization Level

An operating system (OS) sits in between the two key layers
of the data center stack: the physical hardware and the applica-
tions. Much of earlier work on energy efficiency has focused on
modeling the energy usage of hardware components or software
applications. Applications create the demand for resources and
physical hardware are the components that actually consume
the IT power. The OS was largely considered an intermediary
between the two key layers. This section first lists the power
consumption models of OSs and then moves on to describing
the power models for VMs. Furthermore, we list the power
models in order from simpler to more complex.

It is important to understand which OS level events gives
rise to power consumption before starting to model OS power
usage. One such characterization was done by Li et al. [146],
which characterized the behavior of a commercial OS across a
large spectrum of applications to identify OS energy profiles.
The OS energy consumption profiling gave a breakdown of
power dissipation of OS routines as shown in Fig. 30. Accord-
ing to this chart, the data-path and pipeline structures which
support multiple issues and out-of-order execution are found
to consume 50% of total power on the examined OS routines.
The capacitive load to the clock network which switches on
every clock tick also causes significant power consumption
(about 34% in Fig. 30). The number of instructions that flow

through a data-path usually determines its energy consumption.
Furthermore the Instruction Level Parallelism (ILP) perfor-
mance measured by Instructions Per Cycle (IPC) impacts the
circuit switching activities in the microprocessor components
and can result in significant variations in power. Based on
these observations Li et al. created the following simple linear
regression model for OS routine power consumption as,

P = k0 + k1ψ. (172)

Here, k0 and k1 are regression model parameters. The ILP is
denoted by ψ . This power model was extended to the entire OS
energy consumption model as follows,

EOS =
∑

i

(Posr,iTosr,i). (173)

Here, Posr,i is the power of the i’th OS routine invocation and
Tosr,i is the execution time of that invocation. They mentioned
that Posr,i can be computed in many ways, for example by
averaging the power usage of all invocations of that routine
usage in a program.

Once the routines with high power consumption are identi-
fied, the related high level OS performance counters can be uti-
lized to construct OS level power models. Davis et al. presented
composable, highly accurate, OS-based (CHAOS) full-system
power models for servers and clusters [325]. These power
models were based on high-level OS performance counters.
They evaluated four different modeling techniques of different
conceptual and implementation complexities. In their method
the full system power is represented as a function f̂ () of high
level OS performance counters represented by (x1, . . . , xn).
In each model they varied the number of model features,
starting from CPU utilization to the full cluster specific and
general feature sets. Their baseline linear power model can be
shown as,

f̂ () = a0 +
∑

i

aixi, (174)

where the parameters (ai)
n
0 are fitted by minimizing the squared

error. This baseline model is used to compare all other proposed
power models for f̂ (x1, . . . , xn) and to evaluate the increase in
accuracy of more complex models. They create the following
piecewise linear power model as,

f̂ () = a0 +
∑

i

∑

j

ai,jBs
i,j(xi, ti,j). (175)

This model provides an extra degree of freedom where the
parameter s can be positive (+) or negative (−), and the basis
functions Bs

i,j are hinge functions such that,

B+
i,j(x, t) =

{
0, if x = t,
x − t, otherwise,

(176)

B−
i,j(x, t) =

{
0, if x > t,
t − x, otherwise,

(177)
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where t thresholds are called knots and the j indices permit
a feature to be responsible for multiple knots. The authors
mentioned that fitting these models requires finding the knots
ti,j and the parameters ai,j. They used an implementation of the
Multivariate Adaptive Regression Splines (MARS) algorithm
for this purpose. They mentioned that these models can express
a feature such as CPU utilization which may consume different
amounts of full-system power in different regions of opera-
tion. They also proposed a quadratic model which extends the
piecewise linear model and introduces nonlinearity within each
segment by making the basis functions interact. This quadratic
power model [326] can be represented as,

f̂ () = a0 +
∑

i

∑

j

ai,jBs
i (xi, ti)Bs

j (xj, tj), (178)

where the model restricts the interaction among the basis func-
tions to a degree of two. They used the same MARS algorithm
to select knots and fit parameters to select which bases would
interact. The most complicated power model they introduced
was a switching model which can be given as,

f̂ ()= I(f )

(
a0+

∑

i

aixi

)
+(1−I(f ))

(
a′

0+
∑

i

a′
ix

′
i

)
, (179)

where I(f ) = 1 ⇐⇒ xi < threshold; otherwise I(f ) = 0. This
switching power model uses CPU frequency in an indicator
function I(f ), allowing each p-state/frequency to have its own
linear model. This results in a set of (possibly) different lin-
ear models depending on the clock frequency. The switching
model’s indicator function partitions the space for all the fea-
tures, creating completely separate models for each frequency
state. They also mentioned that the switching model is more
rigid even though it may require more parameters and may have
discontinuities at the knots (i.e., frequency transitions) [325].

Application checkpoint-restart is an important technique
used by operating systems to save the state of a running
application to secondary storage so that it can later resume its
execution from the state at which it was checkpointed [327].
Power models built for OS processes (especially in the context
of data centers) need to consider the energy consumed by
such checkpoint-restart mechanisms. Coordinated checkpoint-
ing periodically pauses tasks and writes a checkpoint to stable
storage. The checkpoint is read into memory and used to restart
execution if a CPU attached to a socket fails. The power models
for an operating system process created by Mills et al. defined
the total energy consumption of a single process which uses
checkpoint and restart as,

Ecpr = Esoc (σmax, [0, Tω]) + Eio ([0, δ]) × Ts

τ

+ Eio ([0, R]) × Tω

Msys
, (180)

where the first term Esoc(σmax, [0, Tω]) correspond to the en-
ergy consumed by a socket (i.e., CPU) at speed σmax (the maxi-
mum execution speed of the CPU), during a check-point restart
period of length Tω. The model assumes at any given time all

Fig. 31. Joulemeter VM power metering [88]. Joulemeter is intended to
provide the same power metering functionality for VMs similar to hardware
meters for physical servers.

processes are either working, writing a checkpoint or restoring
from a checkpoint and all sockets are always executing at σmax.
The second portion of the equation adds the energy required to
write or restore from a checkpoint times the number of times
the process will be writing or recovering from a checkpoint.
Msys, τ , Ts, δ, and R stand for the system’s MTBF, checkpoint
interval, check point time, and recovery time respectively.

In the next half of this subsection we discuss works to model
the power usage of virtual machines. We list the power models
in the order of increasing complexity. The models have several
types, e.g., power models associated with software frameworks,
temporal power models, component based (additive) power
models, and models based on the state of operation of a VM
such as VM live migration.

Software frameworks have been developed to estimate the
power consumption of VMs. The work by Kansal et al. devel-
oped power models to infer power consumption from resource
usage at runtime and identified the challenges which arise when
using such models for VM power metering [88]. Once the
power models are developed they can be used for metering VM
power by tracking each hardware resource used by a VM and
converting the resource usage to power usage based on a power
model for the resource. They mentioned that their approach
does not assume the availability of detailed power models from
each hardware component as required by some previous works
on VM energy usage measurement [328]. They proposed a
mechanism for VM power metering named Joulemeter (See
Fig. 31 for details).

Some of the notable components of Joulemeter include the
resource tracing module which uses the hypervisor counters to
track the individual VM resource usage. Through experiments
Kansal et al. demonstrated that linearity assumptions made in
linear power models do lead to errors. They also stated that
the magnitude of the errors was small compared to full system
energy but was much larger compared to the energy used by an
individual VM. They also mentioned that errors reported were
averaged across multiple different workloads and can be higher
on specific workloads. Kansal et al. mitigated such errors by
using built-in server power sensors that were not available in
the older servers used in prior works.

Temporal aspects such as the number of events occurring
in a particular time window can be used to create VM power
models. In one such example work on VM power modeling,
Kim et al. created a power model for VMs assuming the power
consumption of the VMs in time period t is determined by the
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number of events that occur during t [329]. Energy consumption
of a VM in their model is represented as,

Evmi,t ∝ C1Ni + C2Mi − C3St, (181)

where the coefficients C1, C2, and C3 are obtained by con-
ducting multi-variable linear regression over data sets sampled
under diverse circumstances. Ni is the number of retired instruc-
tions during the time interval t, Mi is the number of memory
accesses, and St is the number of active cores at time t.

Componentwise power consumption breakdowns can be ob-
tained in the context of VMs as well. One way to do this is
to break down power consumption as either static or dynamic
[330]. Then the total power consumption of a VM can be
expressed as,

Ptotal
vmi

= Pidle
vmi

+ Pdynamic
vmi

, (182)

where Pidle
vmi

is the static/idle power consumption while Pdynamic
vmi

is the dynamic power consumption. In [330] the main focus was
on modeling the idle power consumption of a VM. The power
model is expressed as,

Pidle
vmi

=

⎧
⎨

⎩
Pidle

serverj
, ⇔ ∃k/Uresk

vmi = 100%,
∑

k αkU
resk
vmi∑

k αk
Pidle

serverj
, otherwise,

(183)

where the weight assigned to the resource k (possibly 1) is
denoted by αk and the utilization of resource k by vmi is
represented as Uresk

vmi . The model expresses the fact that the
idle power consumption of a given VM is equal to the idle
power consumption of the server on which it runs if and only if
the VM uses 100% of any of the server/hypervisor’s resources
(e.g., disk, RAM, or the number of the virtual CPUs (vCPUs))
because this prevents the server from hosting another VM. In
other situations, the VM’s idle power consumption is correlated
to its utilization of each resource. Weights are used to account
for the resource scarcity since resources such as RAM, vCPU,
etc. might limit the number of hosted VMs in the server.

Another approach for VM power modeling is to break down
power usage into components such as CPU, memory, IO, etc.

Pvm = αUcpu + βUmem + γ Uio + e, (184)

where Ucpu, Umem, and Uio represent CPU utilization, memory
usage, and disk IO throughput, respectively. e is an adjustment
value. The weights α, β, and γ need to be trained offline.
Note that this is almost similar to the power model described
in Equation (10), which also represented server power using a
componentwise breakdown.

VM live migration is a technology which has attracted con-
siderable interest from data center researchers in recent years
[22]. VM live migration is a very important tool for system
management in various scenarios such as VM load balancing,
fault tolerance, power management, etc. VM migration involves
source host, network switch, and destination hosts. Liu et al.
presented an energy consumption model for VM migration as
follows [22],

Emig = Esour + Edest = (αs + αd)Vmig + (βs + βd), (185)

where αs,αd,βs, and βd are model parameters to be trained.
Vmig is measured in megabytes and the energy Emig is measured
in joules. The authors mentioned that the model can be used
with heterogeneous physical hosts as well. In this case the
model parameters need to be retrained for each of two dif-
ferent platform. In a homogeneous environment the modeling
equation reduces to Emig = αVmig + β. They learned the energy
model parameters by using linear regression, and the model was
given as Emig = 0.512Vmig + 20.165.

B. Modeling Energy Consumption of
Data-Intensive Applications

Data-intensive tasks are usually I/O bound and they require
processing large volumes of data [331]. Data-intensive ap-
plications can be categorized as online data-intensive [332]
and offline data-intensive applications based on their type of
operation. It can be observed that most of the current data-
intensive application power models can be categorized under
the second type, a significant percentage of which are MapRe-
duce power models. Therefore, in this subsection, we first delve
into the details of power consumption modeling of general
data-intensive applications, before considering power models
of MapReduce applications that are heavily deployed in current
data centers.

A data warehouse is an example of an offline data-intensive
application that gets frequently deployed in data center clusters.
Poess et al. developed a power consumption model for enter-
prise data warehouses based on the TCP-H benchmark [333].
The simplified power consumption model they developed can
be applied to any published TPC-H result and is representative
data warehouse systems. However, this model is intended to
estimate peak power consumption of the system [333]. They
described the power consumption of the entire server as,

Ps = (CcPc + 9Cm + CdiPd)∗1.3 + 100, (186)

where Ps is the power consumption of the entire server, Cc is
the number of CPUs per server, Pc is the Thermal Design Power
(TDP) of a CPU in watts (Pc ∈ [55, 165] in the processors used
in their study), Cm is the number of memory DIMMs per server,
Cdi is the number of internal disks per server, and Pd is the disk
power consumption. They also added 30% of the power usage
of the above components plus 100 watts to the above model
to account for the power overhead of the chassis. Furthermore,
they described the power consumption of the I/O subsystem
(Pio) as,

Pio = Ce ∗ Cde ∗ Pde ∗ 1.2, (187)

where Ce is the number of enclosures, Cde is the external
disks per enclosure, Pde is the the power consumption of the
external disk (Pde ∈ [7.2, 19] in the external disks used in their
study). They added 20% of the power as the overhead of the
enclosure. Then they expressed the power consumption of the
entire system as P = Ps + Pio.

Many data-intensive applications such as text processing,
scientific data analysis, and machine learning can be described
as a set of tasks with dependencies between them [334]. These



DAYARATHNA et al.: DATA CENTER ENERGY CONSUMPTION MODELING: A SURVEY 777

applications are called workflow applications and are designed
to run on distributed computers and storage. Energy consump-
tion of a data-intensive workflow execution was described by
Gamell et al. as [335],

E = Pnode,idleNt + Ecomputation + Emotion, (188)

where t is the execution time. The term Pnode,idleNt represents
the total energy consumption by the idling nodes. They mod-
eled the energy consumption during the computation phase of
the workflow as,

Ecomputation = Pcpu,dynamic

C
IsV

(
tprod,v + tcons,v

Ia

)
, (189)

where V , Is, and Ia represent number of variables, number of
simulation steps, and number of simulation steps between two
analyses respectively. The two time related parameters tprod,v

and tcons,v represent the time taken to produce a variable (s)
and the time taken to consume a variable s, respectively. Since
the workflow involves the use of a deep memory hierarchy,
the power model needs to consider the power consumption
during the data loading and storage phases. Similarly energy
consumption for data motion was defined as,

Edatamotion = VIs

⎛

⎝
∑

β∈mem,stg,net

(
tst
v,β + tldv,β

)
Pβ,dyn

⎞

⎠ , (190)

where the model is constructed by multiplying VIs with the
summation of three sub terms corresponding to staging (stg),
network access (net), and memory access (mem). The two
terms tldv,β and tst

v,β represent data loading and storage times,
respectively.

MapReduce is one of the most frequently used data process-
ing models in today’s data centers. Furthermore, there has been
multiple recent works on the energy efficiency of MapReduce
and Hadoop applications [336], [337]. We now discuss some of
this work. MapReduce is a programming model for processing
and generating large data sets [338]. With the widespread adop-
tion of the MapReduce programming model through implemen-
tations such as Hadoop [339] and Dryad [340], MapReduce
systems has become one of the key contributors to modern data
center workloads.

Regression techniques have been utilized to create MapRe-
duce power models. One example for such work is done by
Zhu et al. [341], [342] where they developed a general power
consumption model for each node i in a Hadoop cluster as
follows,

pi(k) = Aip′
i(k − 1) + Bi/xi(k), (191)

where Ai and Bi are known system parameters which may
vary due to the varying workloads. p′

i is the measured power
consumption [343]. The change in the arrival rate threshold for
node i is given by /xi. The k’th control point represents the
time k. [342] used a recursive least square (RLS) estimator with
exponential forgetting to identify the system parameters Ai and
Bi for all nodes i. They used this power model in a power aware
scheduler which they implemented for Hadoop (see Fig. 32).

Fig. 32. Workflow of the admission controller. The model estimator compo-
nent dynamically models the power consumption of each server [343].

The model estimator dynamically models the power con-
sumption of each server to ensure the accuracy under the dy-
namic workloads. For managing the power peaks, the controller
module makes control decisions based on the model generated
by the model estimator. This is an example for an application
of the energy consumption modeling and prediction process
described in Section I of this paper.

Additive approaches have been used in MapReduce power
models as well. In one such work, Feng et al. [344] presented
an energy model for MapReduce workloads as,

E = PT = PiTi + PmTm + PsTs + PrTr, (192)

where energy consumed by the MapReduce cluster is rep-
resented by multiplying the power P with time T. This is
modeled in more detail by summing the energy consumed for
job initialization (PiTi), the map stage (PmTm), reduce stage
(PrTr), and the intermediate data shuffling (PsTs). Furthermore,
they mentioned that there are four factors that affect the total
energy consumption of a MapReduce job, namely the CPU
intensiveness of the workload, I/O intensiveness, replica factor,
and the block size.

Another additive power model for a MapReduce cluster was
presented by Lang et al. [345]. In their model the total energy
consumption E(ω,υ, η) is denoted as,

E(ω,υ, η) = (PtrTtr) +
(

Pn
ω + Pn̄

ω

)
Tω +

(
Pm

idle + Pm̄
idle

)
Tidle,

(193)

where Ptr is the average transitioning power, where transition-
ing refers to turning nodes on and off. Transitioning power
can have a significant impact on the energy consumption of
a MapReduce cluster. Ttr is the total transitioning time in υ,
P[n,n̄]

ω is the on/off-line workload power, P[n,n̄]
idle is the on/off-

line idle power. Variables n and m correspond to the number
of online nodes running the job, and the number of online
nodes in the idle period. Variables n̄ = N − n and m̄ = N − m
are the corresponding offline values. Furthermore, the time
components for E(ω,υ, η) must sum to υ, where,

υ = Ttr + Tω + Tidle. (194)

Since the workload characteristics may require the job be
run within some time limit τ , the cluster energy management
problem can be cast as,

min (E(ω,υ, η)) |Tω ≤ τ. (195)
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Through the Equation (193) it can be observed that energy
consumption reduction can be achieved by powering down
parts of the cluster. Furthermore, it was shown that reducing the
power drawn by online idle nodes Pm

idle can have a big impact
on energy management schemes.

C. Modeling Energy Consumption of
Communication-Intensive Applications

Communication-intensive applications are composed of
a group of tasks during the course of a computation ex-
change a large amount of messages among themselves [346].
Communication-intensive applications are generally network
bound and impose a significant burden on the data center
network infrastructure. Most such applications are developed
using the Message Passing Interface (MPI), a widely used
API for high performance computing applications [347]. This
subsection lists some of the notable efforts in communication-
intensive data center application power modeling.

Message broadcasting is a typical communication pattern
in which data belonging to a single process is sent to all the
processors by the communicator [347]. Diouri et al. presented
techniques for energy consumption estimation of MPI broad-
cast algorithms in large scale HPC systems. Their methods
can be used to estimate the power consumption of a particular
broadcast algorithm for a large variety of execution configu-
rations [348]. In the estimator component of their proposed
technique they used two models of energy consumption for
modeling the MPI Scatter And Gather (MPI/SAG) algorithms
and the Hybrid Scatter And Gather (Hybrid/SAG). Since both
models follow similar structure, we show the MPI/SAG model
below,

Esag =
N∑

i=1

ξnodei
sag +

M∑

j=1

ξ
switchj
sag

= tscatter(p, N)

⎛

⎝
N∑

i=1

ρ
nodei
scatter(p) +

M∑

j=1

ρ
switchj
scatter

⎞

⎠

+ tallgather(p, N)

⎛

⎝
N∑

i=1

ρ
nodei
allgather(p) +

M∑

j=1

ρ
switchj
allgather

⎞

⎠ ,

(196)

where the model represents the total energy consumption as
a sum of energy consumption by the nodes and switches.
Furthermore, the work expanded the first line of the Equation
(196) by incorporating the time factor and splitting the energy
consumption of the scatter and gather phases into two separate
subterms, which are symmetric to each other. It should be noted
that the variable p in the energy model corresponds to the
number of processes per node. N is the number of compute
nodes, and M is the number of switches.

In their work on exploring data-related energy/performance
tradeoffs at extreme scales, Gamell et al. used machine-
independent code characteristics (e.g., data access and ex-
change patterns, computational profiles, messaging profiles,
etc.) to develop a power model, which was then validated

empirically using an instrumented platform [349]. They fol-
lowed a similar approach for dividing the energy consumption
among different components of a computer system as described
in Equation (11). They approximated the dynamic proces-
sor memory and power dissipation using an activity factor/
switching activity (α),

Pdynamic
system = αcpuPactive

cpu + αmemPactive
mem , (197)

where Pactive
cpu corresponds to the dynamic power consumption

of a CPU, as described in Equation (7). The activity fac-
tors are computed from the number of operations per second
(MIPS), number of memory accesses per second (membw), and
a normalization factor that represents the maximum capacity as
follows,

αcpu = mips
max mips

; αmem = membw

max membw
. (198)

Unlike some of the previous works, they modeled the energy
consumption that occurs during communication (Ecomm) be-
tween MPI processes as follows,

Ecomm =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑M
i=1

datai
BWnet

Ptransfer,

if smp(srci) ̸= smp(desti),
∑M

i=1
datai

BWmem

(
Pactive

cpu + Pactive
mem

)
,

if smp(srci) = smp(desti),
(199)

where smp(i) = smp(j) is used to indicate that the MPI ranks
i and j are mapped to cores that share memory. BWnet and
BWnet are the bandwidth values of the network and memory
respectively. Ptransfer depends on the network characteristics,
e.g., whether the network is InfiniBand or Gemini.

D. Modeling Energy Consumption of General Applications

There has been a number of works on data center application
power modeling which cannot be specifically attributed to
one of the four types of applications described above. This
section lists such power models, starting from more gen-
eral power modeling approaches such as performance counter
based software power models, algorithmic power models, and
the application of software architecture concepts [350] for
power consumption modeling. Next, we describe more specific
power models such as web service power models and business
processes, which are frequently deployed in data centers.

Multiple software based techniques and APIs have been
developed in recent years for inferring individual component
level power consumption. Some of these software APIs uti-
lize external power meters for measuring the system power
consumption and conducts online analysis of the measured
data. For example, PowerPack is a collection of software
components that enables correlating system component level
power profiling to application functions [56], [70]. PowerPack
depends on power meters connected to the hardware system
to obtain measurements. PowerPack allows the user to obtain
direct measurements of the major system components’ power,
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TABLE X
SUMMARY OF SOFTWARE ENERGY MODELS

including CPU, memory, hard disk, and motherboard power
usage.

Another category of this type of software infers system
power consumption using the system specification. Instruction
level energy profiles can be utilized to create energy profiles for
specific target platforms. In one of such power modeling work,
Smith et al. described “Application Profiles,” which is a means
for presenting resource utilization of distributed application
deployment. The Application Profiles they developed captures
usage of the CPU, memory, hard-disk, and network accesses.
They described “CloudMonitor,” a tool that infers the power
consumption from software alone through the use of compu-
tationally generated power models [60]. They mentioned that
since servers in a data center are normally procured in batches
with the same configuration, training of the model is only
required on one server per batch. The resulting model is able
to predict power usage across the remaining servers without
the need for using dedicated power meters. They mentioned
that the power model is applicable to different workloads if the
hardware configuration is the same across multiple machines.
Their power model can be expressed as,

P = α + β1Pcpu + β2Pmem + β3Phdd + β4Pnet, (200)

where the model considers each hardware subcomponent that
they measured and their approach generates weights automat-
ically during the training phase. Here α is the baseline power
and the coefficients β1,β2,β3, and β4 represent the coefficients
for the power consumption of the CPU (Pcpu), memory (Pmem),
HDD (Phdd), and network (Pnet), respectively.

A similar additive power model for the energy consumption
of data center applications was described by Aroca et al. [351].
Another work on modeling software power consumption by
Wang et al. created an additive power model as [352],

P = a1cpuu + a2γ + a3δ + a4σ + a5cpuf + Pidle, (201)

where a1, . . . , a5 are a set of coefficients to be determined by a
set of training benchmarks. The parameters cpuu, γ , δ, σ , cpuf ,
and Pidle represent the CPU utilization, cache miss rate, context
switching rate, instructions per cycle, CPU frequency, and idle
power dissipation of the system, respectively.

Similarly CoolEmAll project [353] (which is aimed at de-
creasing energy consumption of data centers by allowing de-
signers, planners, and administrators to model and analyze
energy efficiency of various configurations and solutions) takes
in to account multiple factors when creating data center applica-
tion power models. They used application level estimator based
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on performance counters, model specific registers (MSR), and
system information for this purpose [354]. In total they used
17 different variables of the aforementioned three categories.

While individual application power models can be con-
structed as described above, higher level abstractions for soft-
ware systems can be created by considering their software
architecture. In one such example, Seo et al. described a frame-
work that supports early estimation of the energy consumption
induced by an architectural style in a distributed system. Their
framework defines a method to derive platform and application-
independent equations that characterize a style’s energy con-
sumption behavior. They derived energy cost models for five
architectural styles: peer-to-peer, C2, client-server, publish-
subscribe (pub-sub), and pipe-and-filter [355]. They also de-
scribed a framework for estimating energy consumption of
Java-based software systems [356]. Their energy cost model
consists of linear equations. Their energy consumption model
for a distributed system is an additive model where the total
system energy consumption (Etotal) is denoted by its constituent
n components and m connectors as,

Etotal =
n∑

i=1

Ei +
m∑

j=1

Cj, (202)

where Ei denotes the energy consumption of the component
i and Cj denotes the energy consumption of the connector j.
This power model was further expanded to a generic energy
consumption model, which we do not describe in this paper.
Interested readers can refer to [355] for more details.

Another power model which did not consider the application
specific details was described by Cumming et al. [357]. They
denoted the total energy consumed by the compute nodes of a
job as,

E = En + N/4 × 100W × τ

0.95
, (203)

where N/4 × 100 × τ accounts for 100 W-per-blade contribu-
tion from a network interconnect. τ is the wall clock time for
running the application. The denominator 0.95 is used to adjust
for AC/DC conversion.

In a different line of research, Koller et al. investigated
about an application-aware power model [358]. They observed
that the marginal (dynamic) power for any application Ai has
a linear relationship with application throughput (λi). They
proposed an application throughput based power model as,

P(Ai) = αi + βiλi, (204)

where α and β are constants for each application which need to
be measured in separate calibration runs for each application
and on each server type the application is placed on. These
two parameters can be inferred using two calibration runs. This
power model does not have any correspondence to the general
power model described in this paper. Although power model is
abstract, Koller et al. state that the actual slope for more than
90% of operational systems had less than 5% error, indicating
that throughput based power modeling is quite accurate.

Similar to the algorithmic power consumption models de-
scribed in Equations (54), (87), and (210), Demmel et al.
described a technique for modeling the total energy cost E
of executing an algorithm [359]. In their model they sum the
energy costs of computation (proportional to the number of
flops F), communication (proportional to the number of words
W and messages S sent), memory (proportional to the memory
used M times the run time T) and “leakage” (proportional to
runtime T) for each processor and multiplied by the number of
processors p. This power model can be expressed as,

E = p(γeF + βeW + αeS + δeMT + ϵeT), (205)

where δe is the energy cost per stored word per second. γe,βe
and αe are the energy costs (in joules) per flop, per word
transferred and per message, respectively. The term δeMT as-
sumes that energy is used only for memory that are used for
the duration of the algorithm (which is a strong architectural
assumption). ϵe is the energy leakage per second in the system
outside the memory. ϵe may encompass the static leakage
energy from circuits as well as the energy of other devices not
defined within the model (e.g., disk behavior or fan activity).

Web services power modeling is one of the more specific
types of application power modeling scenarios. Bartalos et al.
developed linear regression based models for the energy con-
sumption of a computer system considering multiple aspects
such as number of instructions executed, number of sent or
received packets, CPU cycles (CPU unhalted events), IPC,
percentage of non-idle CPU time, and last level cache misses
[360], [361]. They estimate the computer’s instantaneous power
consumption while executing web service workloads using an
aggregate linear instantaneous power model.

Business processes in the form of web services are frequently
deployed in data center systems. Nowak et al. modeled the
power consumption of such business processes [362], defining
the power consumption of a complete process instance as,

Pi =
m∑

j=1

(Ci(j)) + E, (206)

where Ci(j) is the power consumption of an activity a. The
power consumed by the process engine performing the activity
is given by E and j = (1, . . . , m) is the number of activities of a
business process model. Note that this power model is only for a
single process instance i of an entire business process consisting
of I total business processes. A summary of software of energy
consumption models is shown in Table X.

X. ENERGY CONSUMPTION MODELING

USING MACHINE LEARNING

Machine learning (ML) is a scientific discipline which is
concerned with developing learning capabilities in computer
systems [27]. In this section we provide a brief introduction to
machine learning. Next, we describe the use of machine learn-
ing techniques in the context of data center power modeling by
describing on use of supervised, unsupervised, reinforcement,
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TABLE XI
SUMMARY OF MACHINE LEARNING BASED ENERGY CONSUMPTION PREDICTION APPROACHES

and evolutionary learning algorithms in the context of data
center power modeling respectively (Table XI).

A. Machine Learning - An Overview

A computer system is said to learn if it improves its perfor-
mance or knowledge due to experience and adapts to a changing
environment. Results from machine learning are in the form
of information or models (i.e., functions) representing what
has been learned. The results of what has been learned are
most often used for making predictions, similar to the use of
manually created models described in the first half of this paper.

In recent years the use of machine learning techniques for
power consumption modeling and prediction has been a hot
topic among data center energy researchers. Different types of
algorithms that are prominent in machine learning and data
mining can be applied for prediction of power consumption
in a data center [363]. Machine learning algorithm should be
computationally lightweight and should be able to produce
good results when trained with various workloads.

Machine learning algorithms can generally be categorized
under four themes: supervised learning, unsupervised learning,
reinforcement learning, and evolutionary learning [364]. In this
section of the paper we follow a similar categorization to sum-
marize the energy consumption prediction research conducted
using machine learning. However, some power prediction re-
search constitutes the use of multiple different machine learning
techniques, and cannot be placed in a specific category.

B. Supervised Learning Techniques

The most common type of learning is supervised learning.
In supervised learning algorithms, a training set of examples
with correct responses (targets) is provided. Based on the
training set, the algorithm generalizes to respond correctly to
all possible inputs. Algorithms and techniques such as linear
regression, nonlinear regression, tree based techniques (such
as classification trees, regression trees, etc.), support vector
machines (SVM), etc. are all supervised learning techniques.
Most of the work on linear regression and non-linear regression
has been discussed in the previous sections. In this section we
discuss some of the other supervised learning techniques.

A decision tree is a supervised learning technique using a
tree of decision nodes [365]. Decision trees break classification
down into a set of choices about each feature, starting from

the root of the tree progressing down to the leaves, where the
classification decision is given. The M5 algorithm is the most
commonly used classifier in this family. Berral et al. presented
a methodology for using machine learning techniques to model
the main resources of a web-service based data center from
low-level information. They used the M5P algorithm [366] for
calculating the expected CPU and I/O usage [363], [367]. M5P
is the implementation of M5 algorithm in the Weka toolkit
[368]. It uses a decision tree that performs linear regressions
on its leaves. This is effective because CPU and I/O usage may
differ significantly in different workloads, but are reasonably
linear in each. They use normal linear regression to model
memory. The work first models virtual machine (VM) and
physical machine (PM) behaviors (CPU, memory, and I/O)
based on the amount of load received. The input data for the
analysis are,

• The estimated requests per time unit.
• The average computational time per request.
• The average number of bytes exchanged per request.

Then high-level information predictors are learned to drive
decision-making algorithms for virtualized service schedulers,
without much expert knowledge or real-time supervision [369],
[370]. The information collected from system behaviors was
used by the learning model to predict the power consumption
levels, CPU loads, and SLA timings to improve scheduling
decisions [371]. The M5P algorithm was used because simple
linear regression is incapable of describing the relationship
between resources and response time.

They learned the following function which can predict the
estimated effective resources required by a VM based only
on its received load without imposing stress on the VM or
occupation on the PM or network,

f (l) → E[µcpu, µmem, µio], (207)

where l, µcpu, µmem, and µio represent the load, CPU uti-
lization, memory utilization, and amount of I/O, performed
respectively. They also learned a function that calculates the
expected response time from placing a VM in a PM with a
given occupation such that the scheduler can consolidate VMs
without excessively increasing the response time,

f (s, r) → E[τ ], (208)
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Fig. 33. Flow of decision making with machine learning. The process involves learning models from online system performance information as well as from
empirical information.

where τ represents the run time (RT), s represents the status,
and r represents the resources. The overall decision making
system is shown in Fig. 33.

Rules based learning is another type of supervised learning,
and are a popular alternative to decision trees [366] which
are also categorized under supervised learning [365]. Decision
tress can be easily turned into a set of if-then rules which
are suitable for use in a rule induction system [364]. During
the conversion process one rule is generated for each leaf in
the decision tree. Fargo et al. applied reasoning to optimize
power consumption and workload performance by mapping the
current system behavior to the appropriate application template
(AppFlow type [372]), defined as,

Atype = f (u, v, n), (209)

where the three parameters CPU utilization (u), memory uti-
lization (v), and processor number (n) are used to determine
the AppFlow type (Atype).

C. Unsupervised Learning Techniques

Unlike supervised learning, a training set of examples with
correct responses are not provided in unsupervised learning
[364]. Clustering algorithms (such as hierarchical clustering,
k-means clustering) and Gaussian mixture models (GMM) are
examples for unsupervised learning techniques.

Power models can be created to correlate power consumption
to architectural metrics (such as memory access rates and
instruction throughput) of the workloads running in the VMs.
The metrics collection can be conducted per VM and can be fed
to the model to make the power prediction [101]. Such systems
are non-intrusive because they do not need to know the internal
states of the VMs and the applications running inside them. The
model uses a GMM based approach. The GMMs are trained by
running a small set of benchmark applications. Dhiman et al.
implemented this technique on a computer running Xen virtual-
ization technology [101]. They showed that their approach can
perform online power prediction with an average error of less
than 10% across different workloads and different utilization
levels.

D. Reinforcement Learning Techniques

Reinforcement learning (RL) algorithms have a behavior
which is in between supervised and unsupervised learning

[364]. There is a significant amount of uncertainty and vari-
ability associated with the energy consumption model using
information coming from the environment, application, and
hardware. An online power management technique based on
model-free constrained reinforcement learning was presented
in [373] as a solution. In this work, the power manager learns
a new power control policy dynamically at runtime from the
information it receives via RL.

Neural networks have been widely used for predictions about
resource overbooking strategies, with the goal of achieving
more efficient energy usage. In one of the earliest works apply-
ing this technique, Moreno et al. implemented a Multilayer Per-
ceptron (MLP) neural network to predict the optimum amount
of computing resources required by a customer’s applications
based on historical data [140]. The MLP neural network based
resource predictor processes the customer’s utilization data
to predict the resource consumption of the current submitted
workload.

One of the more recent works on resource overbooking is
iOverbook, an autonomous, online, and intelligent overbooking
strategy for heterogeneous and virtualized environments [374].
A similar neural network based technique for power modeling
was used by Guzek et al. [375].

When using neural networks based energy consumption
prediction it is important to evaluate multiple different neural
networks with different characteristics, e.g., different numbers
of inputs. Tesauro et al. followed a similar approach for de-
veloping control policies for real-time management of power
consumption in application servers [376]. They developed a
2-input and 15-input neural network model a state-action value
function defining the power manager’s control policy in an IBM
BladeCenter cluster. They observed that the 15-input neural net-
work with preprocessing exhibits the steadiest response time,
while the power cap [377] decisions of 15-input neural network
showed quite large short-term fluctuations.

Li et al. analyzed the relationship between software power
consumption and some software features on the algorithmic
level [378]. They measured time complexity, space complexity,
and input scale, and proposed an embedded software power
model based on algorithm complexity. They designed and
trained a back propagation artificial neural network (B-ANN) to
fit the power model accurately using a sample training function
set and more than 400 software power data points.

There have been works that integrate reinforcement learning
with other machine learning techniques for power consumption
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Fig. 34. Taxonomy of power consumption models. The numbers between the parentheses correspond to the reference in this paper. The number following the
title of each box indicates the total number of power consumption models described in this paper from this category. Note that the number of references do not
necessarily relate to the number of power models shown here.

prediction. Artificial neural network (ANN) and linear regres-
sion have been used to develop prediction-based resource mea-
surement and provisioning strategies to satisfy future resource
demands [379]. In this work Islam et al. used data generated
from the TPC-W benchmark in the Amazon EC2 cloud for
training and testing the prediction models. They validated the
effectiveness of the prediction framework and claimed that their
framework is able to make accurate projections of energy con-
sumption requirement and can also forecast resource demand
before the VM instance’s setup time.

XI. COMPARISON OF TECHNIQUES FOR ENERGY

CONSUMPTION MODELING

The first half of this paper focused on power consumption
modeling efforts made at various different levels of abstraction
in data centers. A summary of how different power model
equations map to different levels of a data center’s components
hierarchy is given in Fig. 34. Most of the power modeling
efforts have been conducted for lower level hardware systems.
In the literature surveyed, we observed that the majority of
power models are developed around processor power consump-
tion. There have been relatively few models for other important
components such as system fans or SSDs. This may be partly
due to the fact that most of the power modeling was carried out
as part of a energy consumption reduction mechanism, which
focus only on energy proportional systems. This may be another
reason for why there are very few works on network level power
modeling, since network devices are less power proportional
compared to the servers.

A. Power Model Complexity

Relatively few power models currently exists for higher
levels of the data center component hierarchy. Power modeling
research on the OS/virtualization layer of data centers still
lag behind the work on the physical hardware and application
layers. There are a number of reasons for the lack of research,
including the complexity of systems at higher levels of the

Fig. 35. Data center energy consumption modeling and prediction timeline.
The number on each icon represents the number of publications pertaining to
the power models of the icon’s category. The timeline highlights both power
consumption models and power consumption prediction techniques.

data center hierarchy. A chronological summary of data center
power modeling and prediction research is shown in Fig. 35. We
see that the amount of power modeling and prediction research
has increased significantly in the last two years time.
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We observed that certain power models are built on top of
the others. For example the power model described in Equation
(24) describing the CPU power consumption has been extended
to the entire system’s power consumption in the power model
described in the Equation (110). We observed that certain power
models such as the one described in Equations (22) and (7) has
been highly influential in power modeling at various levels of
data centers. While there are works that assume the applications
running in the cluster are bound to one type of resource such as
CPU [380], power usage of individual hardware devices may
not necessarily provide an overall view of the power consump-
tion by the entire system [381]. For example, recent work have
shown that memory intensive algorithm implementations may
consume more energy than CPU intensive algorithms in the
context of sorting and joining algorithms which are essential
for database query processing [382], [383]. Simple models that
work well in the context of hardware many not necessarily
work well in the context of software, since there are many
components handled by a software system running in a typical
data center and these components change quite frequently (e.g.,
certain old/malfunctioning hardware components in a server
many be replaced with new ones). Most of the hardware level
power models do not rely on machine learning techniques while
the work conducted at the OS/virtualization or application
levels rely more heavily on machine learning.

Various new hardware technologies such as FPGAs show
great potential in being deployed in future data centers
[384]–[386]. Since such technologies are relatively new in data
centers we do not describe power models for them in detail in
this paper.

Most of the current power consumption models are
component/application/system centric. Hence these models in-
troduce multiple challenges when employed to model energy
consumption of a data center. These challenges are listed
below,

• Portability: The power consumption models are not
portable across different systems.

• Accuracy: Since the workloads are diverse across differ-
ent data center deployments, the accuracy of the models
degrade rapidly. Furthermore, the level of support given
by most modern hardware systems for measuring energy
consumption is insufficient.

While some studies have solely attributed a server’s power con-
sumption to the CPU, recent studies have shown that processors
contribute only a minority of many server’s power demand.
Furthermore, it has been found that the chipset has become the
dominant source of power consumption in modern commodity
servers [387], [388]. Therefore, in recent works there has been
a tendency to use non-CPU-centric power models.

The granularity of power measurement and modeling is an
important consideration. The appropriate measurement gran-
ularity depends on the application [128]. However, most of
the available hardware infrastructures do not allow for power
consumption monitoring of the individual applications. There-
fore, the validity of the most power models with multiple
applications running in a data center still needs to be evaluated.

Furthermore, most of the power modeling research do not
attempt to characterize the level of accuracy of their proposed
power models, which makes it harder to do comparisons among
them.

While there has been previous efforts to model the energy
consumed by software [389], it is difficult to estimate the power
consumption of real world data center software applications
[127] due to their complexity. There have been a few notable
efforts conducted to alleviate this issue, such as PowerPack
[56], [70].

As stated earlier, it is possible to combine multiple power
models corresponding to different components of a system to
construct power models representing the entire system. This
can go beyond the simple additive models as used in for
example Equations (148) and (76). Certain works have used
more sophisticated combinations of base models. For example,
Roy et al. [85] combined the processor and memory power
models described in Equations (54) and (87) respectively into
the following power model as,

E(A) = W(A) + C(A)
PB
k

, (210)

where there are P parallel disks, each block has B items, and the
fast memory can hold P blocks. The number of Activation Cy-
cles used by algorithm A is denoted by C(A). Work complexity
is defined by W(A) and C is the ACT command.

B. Effectiveness of the Power Models

The effectiveness of the power models we have surveyed
is another big question. Certain power models created for
hardware systems have been demonstrated to be more effective
than power models constructed for software systems. Further-
more, most of the current power models assume static system
behavior. Although more than 200 power models have been
surveyed in this paper, most of them are applicable at different
levels of granularity of the data center system. Power models
which have been used in real world application deployments
are the most effective in this regard. Power model used in DVFS
described in Equation (7), Wattch CPU power modeling frame-
work [81], Joulemeter VM power metering [88] framework,
McPAT processor power modeling framework are examples for
such initiatives.

While some of the power models used in the lower level
hardware systems rely on physical and electrical principles, the
power consumption models at higher levels have a less tangi-
ble physical basis. For example, the popular power model in
Equation (7) represents the physics of operation of lower level
hardware and is more tangible than, for example, the neural
network based power model described in [373]. Additionally,
we observe that reinforcement learning has been used more
extensively for power prediction than other machine learning
techniques.

C. Applications of the Power Models

The power models described in this paper have a num-
ber of different applications. One of the key applications is
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power consumption prediction. If a model is calibrated to a

particular data center environment (i.e., system state (
→
S ) and

execution strategy (
→
E ) in Equation (2)), and the relevant input

parameters are known in advance (i.e., input to the application

(
→
A ) in Equation (2)), they can be used for predicting the target

system or subsystem’s energy consumption, as illustrated in the
energy consumption modeling and prediction process shown in
Fig. 2 in Section III.

Some of these applications can be found in the areas of
energy consumption efficiency such as smart grids, sensor net-
works, content delivery networks, etc. Theoretical foundations
of Smart Metering is similar to the power consumption model-
ing work described in this paper. Data center power models can
be used in conjunction with smart meter networks to optimize
the energy costs of data center systems [390].

Improving the impact of data center’s load on power systems
(due to the data center’s massive energy usage) and reduc-
ing the cost of energy for data centers are two of the most
important objectives in energy consumption optimization of
data centers. The energy consumption models surveyed in this
paper helps achieving the aforementioned objectives in multiple
different ways when considering their applications in different
power related studies such as electricity market participation,
renewable power integration [318], [319], demand response,
carbon market, etc. Based on the availability of power plants
and fuels, local fuel costs, and pricing regulations electricity
price exhibits location diversities as well as time diversities
[292]. For example, the power model (shown in Equation (168))
presented for entire data center by Yao et al. has been used for
reducing energy consumption by 18% through extensive sim-
ulation based experiments [121] on geographically distributed
data centers.

XII FUTURE DIRECTIONS

The aim of this survey paper was to create a comprehen-
sive taxonomy of data center power modeling and prediction
techniques. A number of different insights gained through this
survey were described in Section XI. It can be observed that
most of the existing power modeling techniques do not consider
the interactions occurring between different components of
systems. For example, the power consumption analysis con-
ducted by Zhao et al. indicates that DRAM access consumes
a significant portion of the total system power. These kinds
of intercomponent relationships should be considered when
developing power consumption models [179].

Multiple future directions for energy consumption modeling
and prediction exists in the areas of neural computing, bio-
inspired computing [391], [392], etc. There have been recent
work on application of bioinspired techniques for development
of novel data center architectures [393], [394].

Swarm Intelligence is an AI technique and a branch of
evolutionary computing that works on the collective behavior
of systems having many individuals interacting locally with
each other and with their environment [395]. In recent times,
Swarm-inspired techniques have been employed for reducing
power consumption in data centers in [396]–[398].

Support vector machines (SVMs) are one of the most popular
algorithms in machine learning. SVMs often provide signif-
icantly better classification performance than other machine
learning algorithms on reasonably sized data sets. Currently
SVM is popular among the researchers in electricity distri-
bution systems, and they have applications such as power-
quality classification, power transformer fault diagnosis, etc.
However, not much work have been conducted on using SVMs
for building power models.

Deep learning [399] is a novel field of research in AI that
deals with deep architectures which are composed of multiple
levels of non-linear operations. Examples for deep architectures
include neural networks with many hidden layers, complicated
propositional formulas re-using many sub-formulas [400], etc.
Deep neural networks have been proven to produce exceptional
results in classification tasks [401] which indicates its promise
in creating future high-resolution energy models for data
centers.

Data center operators are interested in using alternative
power sources [402] (such as wind power, solar power [403],
etc.) for data center operations, both for cost savings and as
an environmentally friendly measure [404]. For example, it has
been shown recently that UPS batteries used in data centers can
help reduce the peak power costs without any workload per-
formance degradation [405], [406]. Furthermore, direct current
(DC) power distribution, battery-backed servers/racks [407] to
improve on central UPS power backups, free cooling [408]
(practice of using outside air to cool the data center facility),
thermal energy storage [409], etc. are some trends in data center
energy related research [410]. Modeling power consumption
of such complex modes of data center operations is another
prospective future research direction.

XIII. SUMMARY

Data centers are the backbone of today’s Internet and cloud
computing systems. Due to the increasing demand for electrical
energy by data centers, it is necessary to account for the
vast amount of energy they consume. Energy modeling and
prediction of data centers plays a pivotal role in this context.

This survey paper conducted a systematic, in-depth study
about existing work in power consumption modeling for data
center systems. We performed a layer-wise decomposition of
a data center system’s power hierarchy. We first divided the
components into two types, hardware and software. Next, we
conducted an analysis of current power models at different lay-
ers of the data center system in a bottom-up fashion. Altogether,
more than 200 power models were examined in this survey.

We observed that while there has been a large number of
studies conducted on the energy consumption modeling at
lower levels of the data center hierarchy, much less work has
been done at the higher levels [263]. This is a critical limitation
of the current state-of-the-art in data center power modeling
research. Furthermore, the accuracy, generality, and practicality
of the majority of the power consumption models remain open.
Based on the trend observed through our study we envision
significant growth in energy modeling and prediction research
for higher layers of data center systems in the near future.
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