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Abstract

In this paper, we explore the problem of mapping fil-
tering query services on chains of heterogeneous pro-
cessors. Two important optimization criteria should be
considered in such a framework. The period, which
is the inverse of the throughput, measures the rate at
which data sets can enter the system. The latency mea-
sures the response time of the system in order to pro-
cess one single data set entirely. We provide a com-
prehensive set of complexity results for period and la-
tency optimization problems, with proportional or ar-
bitrary computation costs, and without or with com-
munication costs. We present polynomial algorithms
for problems whose dependence graph is a linear chain
(hence a fixed ordering of the filtering services). For in-
dependent services, the problems are all NP-complete
except latency minimization with proportional compu-
tation costs, which was shown polynomial in [6].

1 Introduction

We consider the problem of mapping a set of filter-
ing query services onto a heterogeneous array of proces-
sors. This work is based upon a recent paper by Srivas-
tava, Munagala and Widom [14]. We extend the results
of [14] along several important directions, including the
answer to an open question stated in their paper.

Filtering query services operate on a continuous
stream of data-sets. They resemble classical pipelined
workflow graphs [8, 18, 22]. A workflow graph con-
tains several nodes, and these nodes are connected to
each other using first-in-first-out channels. Data is in-
put into the graph using input channel(s) and the out-
puts are produced on the output channel(s). The goal
is to map each node onto some processor so as to opti-
mize some scheduling objective. Since data continually
flows through these applications, typical objectives of

the scheduler are throughput maximization (or equiva-
lently period minimization, where the period is defined
as the inverse of the throughput) and/or latency (also
called response time) minimization [19, 20, 4, 21].

Filtering services are workflow nodes with the ad-
ditional property that they can filter their input data by
a certain amount, according to their selectivity. Con-
sider a service Ci with selectivity σi: if the incoming
data is of size δ, then the outgoing data will be of size
δ × σi. The initial data is of size δ0. We see that the
data is shrunk (hence the term “filter”) when σi < 1
but it can also be expanded if σi > 1. The main ap-
plication of filtering services is query optimization over
web services [14, 15, 6], an increasingly important ap-
plication with the advent of Web Service Management
Systems [9, 12]. Note that the approach also applies to
general data streams [2] and to database predicate pro-
cessing [7, 11].

Srivastava, Munagala and Widow [14] consider the
following problem: given (i) a set of n independent fil-
tering services, or simply services C1 to Cn, and (ii) a
linear array of m heterogeneous processors S1 to Sm,
how to map the services onto the processors so as to
minimize the latency, i.e. the total time needed by each
data set to traverse all the services. In the framework
of [6], the ordering of the processors along the chain
is fixed. On the contrary, a service can be mapped on
any processor. Hence, we look for a permutation π of
the services and for an allocation function alloc which
maps these services onto the processors while respect-
ing the order induced by the permutation. The predeces-
sors of a service are all services that are mapped before
that service, be it on previous processors or on the same
processor. Analytically, the predecessors of Ci are Cj
where π(j) < π(i).

The cost of executing a service depends (i) upon the
processor it is assigned to and (ii) upon the combined
selectivity of its predecessors. As for (i), each service
has a different cost on each processor: the execution of
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service Ci on processor Su takes time Ci,u. These costs
may be arbitrary, or in some cases they take the form
Ci,u = wi

su
: they are proportional to an amount of work

wi required by the service, and inversely proportional
to the speed su of the processor. In the latter case, two
different services have the same execution time ratios
on two different processors; proportional costs are also
called uniform costs in the scheduling literature [5]. As
for (ii), the cost of executing a service is modified by
all its predecessors: if Pred(Ci) denotes the set of all
predecessors of Ci in the mapping, then its execution
cost on processor Su is

(∏
Cj∈Pred(Ci)

σj

)
× ci,u. Ba-

sically, we see there are two ways to decrease the final
cost of a service: (i) map it on a server that executes it
fast; and (ii) map it as a successor of services with small
selectivities.

S3

l(0) l(1) l(2) l(3)
C3 → C1 C5 C2 → C4

S1 S2

Figure 1. Example.

In the example of Figure 1, the permutation π is
equal to [3, 1, 5, 2, 4] and the allocation function given
by alloc(1) = alloc(3) = 1, alloc(5) = 2 and
alloc(2) = alloc(4) = 3. For instance, the execution
cost of C5 is σ3σ1C5,2.

We can finally state the problem addressed by Sri-
vastava, Munagala and Widow [14]: they aim at mini-
mizing the latency, defined as the sum of the latter exe-
cution costs for all services (to be precise, there are also
communication costs, see Section 2 for a detailed ana-
lytical formulation). They show that with proportional
costs the latency minimization problem can be solved
via a (polynomial) dynamic programming algorithm,
but with arbitrary costs they leave the complexity as an
open question. One major contribution of this paper is
to show the NP-completeness of the latency minimiza-
tion problem with arbitrary costs, thereby assessing the
additional difficulty induced by non-uniform machines.

We extend the results of [14] in another important
direction: we investigate the situation where services
are no longer independent but instead where they are
ordered along a linear chain of precedence. In this case,
both services and processors are arranged according to
a fixed prescribed order. This problem is the extension
of the well known chains-to-chains problem [13] to the
case where nodes have a selectivity, and it has a great
practical significance because linear dependence chains
are ubiquitous in workflow applications (see [16, 17]

and the references therein).
The last extension relates to the period minimization

problem, which is only alluded to in [14]. In fact it is
stated as a load-balancing problem which we reformu-
late as follows: the objective is to minimize the max-
imum cycle-time of a processor. Here, the cycle-time
of a processor is the sum of the costs of all services
assigned to it. In other words, the latency is the sum
of the cycle-times, while the period is their maximum.
The problem is easily shown NP-hard for proportional
costs (use two identical processors, and a straightfor-
ward reduction from the 2-Partition problem, see The-
orem 1). The problem becomes less straightforward
when services are ordered along a linear chain rather
than being independent, and we provide a comprehen-
sive complexity analysis with arbitrary or proportional
costs.

Altogether, the main objective in this paper is to as-
sess the complexity of the different variants of these
period and latency minimization problems, with inde-
pendent or linearly ordered services, with arbitrary or
proportional costs, and with or without communication
costs between processors. In particular, we show the
polynomial complexity of all problem instances with
ordered services. For independent services, the major
result is the NP-completeness of latency minimization
of latency with arbitrary costs and no communication
costs.

The rest of the paper is organized as follows. In
Section 2 we detail the framework. Section 3 is de-
voted to a survey of related work. Section 4 presents
the complexity results concerning period minimization,
and Section 5 is the counterpart for latency minimiza-
tion. We provide some final remarks and future research
directions in Section 6.

2 Framework

This section is devoted to a precise statement of the
optimization problems that we consider.

The application consists in a set of n services
C1, ..., Cn, where service Ci is characterized by its se-
lectivity σi. Consecutive data sets must be processed by
each service. For each data set, an initial set of tuples is
input to the first service; the final result is the (shrunk
or expanded) set of tuples output from the last service.

The basic network topology that we consider is a lin-
ear chain of m processors S1, ..., Sm. Processor Su can
only send data to Su+1, for 1 ≤ u ≤ m − 1. This
corresponds to a hierarchical network, where S1 is the
processor acquiring the data. Processor Sm is at the top
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of the hierarchy, and outputs the tuples of each data set
that were processed through all services.

We define below the different variants of the prob-
lem.

2.1 Service ordering

The more flexible problem is the case with no prece-
dence constraints as in [14]: services are independent,
and they can be applied on the data in any order. This
problem is called Free ordering.

We also consider the case in which services are to-
tally ordered along a linear dependence chain: there is
a precedence constraint from Ci to Ci+1 for 1 ≤ i ≤
n− 1. We note this problem as the Ordered instance.

2.2 Service costs

The execution of service Ci on processor Su takes a
time Ci,u. In the most general instance, these costs are
Arbitrary.

However, for uniform machines, costs Ci,u take the
form Ci,u = wi

su
, where wi is the amount of work re-

quired by the service, and su is the speed of processor
Su. We refer to such costs as Proportional costs.

2.3 Communication costs

We consider two models of platforms, with or
without communication costs. For the model with
communication costs, we use the same framework
as [14]. They consider a model without computa-
tion/communication overlap: a server cannot compute
some data and communicate with another server at the
same time, these actions are serialized.

Let ALLOCu denote the set of services that are
mapped on processor Su. Let PREDu be the set of ser-
vices mapped on processors Sv before Su:

PREDu = {Cj | ∃v < u, alloc(Cj) = Sv}

Equivalently, PREDu =
⋃u−1
v=1 ALLOCv . Finally, let

UPTOu denote the set of services that are mapped be-
fore Su, plus those mapped onto Su:

UPTOu = PREDu ∪ ALLOCu

The communication cost between servers Su and Su+1

is given by the value

Ccomm(u) = l(u)×
∏

Cj∈UPTOu

σj

where l(u) is the inverse of the bandwidth of the link
from Su to Su+1. Indeed, the output of Su is filtered
by all services mapped before Su, and by those mapped
on Su, it is thus the set UPTOu. We take into account
the cost Ccomm(0) of input for processor S1 and the
cost Ccomm(m) of output for processor Sm. The corre-
sponding bandwidths l(0) and l(m) corresponds to the
communication links between the platform and the ex-
ternal world (the user).

The model with communication costs is denoted by
Cost and the model without by NoCost.

2.4 Objective function

Different cost functions are considered. The period
of the mapping is limited by the slowest (bottleneck)
processor. The objective to minimize the period is de-
noted as PER. Another objective is minimize the la-
tency, that is the sum of the costs incurred by all ser-
vices in the mapping (objective denoted as LAT). This
corresponds to the time required for one data set to be
processed by all the services.

Formally, we define the period and the latency us-
ing ALLOCu, PREDu, and UPTOu, which correspond to
the sets of services mapped on, before, and up to Su re-
spectively. Note that PREDu ⊂ Pred(Cj) ⊂ UPTOu
for each service Cj ∈ ALLOCu: Pred(Cj), the pre-
decessors of Cj , are all services mapped onto preced-
ing processors, plus those mapped on Su before Cj . To
simplify notations, suppose that services in ALLOCu are
placed in order C1 → C2 → ... → Ck. We obtain the
following computation costCcomp(u) for processor Su:

Ccomp(u) =

 ∏
Cj∈PREDu

σj

 k∑
i=1

(
i−1∏
q=1

σq

)
× Ci,u

For a model without communication cost, Ccomp(u) is
the cycle-time of processor Su. The period is

Tperiod = max
1≤u≤m

{Ccomp(u)}

and the latency is

Tlatency =
m∑
u=1

Ccomp(u)

For a model with communication cost, we need to
take into account Ccomm(u). Since we consider a
model with no overlap, computations and communica-
tions are serialized and we obtain a period

Tperiod = max
1≤u≤m

{Ccomm(u−1)+Ccomp(u)+Ccomm(u)}
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and a latency

Tlatency = Ccomm(0) +
m∑
u=1

(Ccomp(u) + Ccomm(u))

2.5 Taxonomy of problems

We denote each problem by XY Z −Obj, where:
• X = O|F denotes the service ordering (Ordered

or Free);
• Y = P |A denotes the service costs (Proportional

or Arbitrary);
• Z = C|N denotes the communication costs (Cost

or NoCost);
• Obj = PER|LAT denotes the objective function.
For instance, FAC-LAT is the problem of minimizing

the latency with no precedence constraints between ser-
vices, arbitrary service costs, and with communication
costs.

In addition, * denotes any instance of the problem,
thus F**-LAT denotes the problem of minimizing the
latency with no precedence constraints between ser-
vices, for any kind of service and communication costs.

3 Related work

As stated in the introduction, the main reference
for this work is the paper by Srivastava, Munagala
and Widow [14]. In fact, we utilize the very same
application framework and execution model as those
of [14]. Therefore, we refer the reader to [14], and to
the many references therein, for further motivations of
this study. In a word, applications include all domains
where clients need to query multiple web services si-
multaneously, in a transparent and integrated fashion.
As stated in Section 1, we extend their study in several
directions.

Papers [15, 6, 3] deal with the same line of problems.
They also consider filtering services, but in a very dif-
ferent framework. They investigate the mapping of fil-
tering workflow applications with arbitrary dependence
graphs onto fully connected platforms (the interconnec-
tion graph is a clique, and there is no prescribed or-
dering of the processors). They restrict to one-to-one
mappings: a processor can only execute a single ser-
vice. Several complexity results are established for pe-
riod and latency optimization with these hypotheses.

In [1], the authors consider a set of jobs characterized
by a certain success probability and a reward. The re-
sulting problem is similar to a filtering workflow prob-
lem, but they maximize the reward while we minimize

the cost. They present a polynomial algorithm in the
case of a single server, and they prove that the problem
becomes NP-complete when considering 2 servers.

Several papers aim at mapping applications whose
dependence graph is a linear pipeline: see [16, 17]
for homogeneous platforms, and [4] for heterogeneous
platforms. These papers do not deal with filtering ser-
vices (in other words, each service has a selectivity
equal to 1). Finally, please refer to [3] for related work
on mapping workflows whose graphs can be arbitrary
DAGs (Directed Acyclic Graphs).

4 Period minimization

In this section we prove the NP-completeness of
problems F**-PER (all problems with free ordering),
and we present a polynomial algorithm for problems
O**-PER (all problems with fixed ordering).

4.1 Free ordering

Theorem 1. All problems F**-PER are NP-hard.

Proof. We show that FPN-PER is NP-hard. All other
problems are more difficult instances since Propor-
tional is a particular case of Arbitrary, and NoCost a
particular case of Cost.

The proof is straightforward. Consider the associ-
ated decision problem: given a period K, is there a
mapping whose period does not exceed K? The prob-
lem is obviously in NP: given a period and a mapping,
it is easy to check in polynomial time whether it is valid
or not. The NP-completeness is obtained by reduction
from 2-PARTITION [10]. Let I1 be an instance of 2-
PARTITION: given a set X = {x1, ..., xn}, does there
exist a subset I such that

∑
xi∈I xi = 1

2

∑
xj∈X xj?

We construct the instance I2 with n services and 2
servers such that:
• ∀1 ≤ i ≤ n, σi = 1
• ∀1 ≤ i ≤ n,wi = xi
• s1 = s2 = 1
• K = 1

2

∑
xj∈X xj

The size of I2 is polynomial in the size of I1. Suppose
that I1 has a solution I . We construct alloc such that:
∀i,alloc(i) = 1 ⇐⇒ xi ∈ I . Then, the period of
the mapping is P = max{

∑
xi∈I xi,

∑
xi /∈I xi}, that

means P = K. that means I2 has a solution. Suppose
now that I2 has a solution. Let I = {xi|alloc(Ci) =
S1}. By hypothesis, we have

∑
xi∈I xi ≤ K and∑

xi /∈I xi = 2K −
∑
xi∈I xi ≤ K. We can conclude

that
∑
xi∈I xi = 1

2

∑
xj∈X xj . Then, I1 has a solution.

This concludes the proof.
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4.2 Fixed ordering

Data: n services of selectivities σ1, ..., σn,
m servers with a matrix of costs C, and
a vector of communication costs l
Result: a mapping G optimizing the latency
P (0, 1) = l(m− 1) + l(m);
for j = 2 to m do

P (0, j) =
max{l(m− j) + l(m− j + 1), P (0, j − 1)};

end
for i = 1 to n do

P (i, 1) = l(m− 1) + Cn−i+1,m+
σn−i+1(P (i− 1, 1)− l(m− 1));

∀1 ≤ k ≤ i, alloc(i, 1, n− k + 1) = m;
end
for j = 2 to m do

for i = 1 to n do
∀ 0 ≤ r ≤ i, f(r) = max{l(m− j)+∑r

q=1

∏q−1
p=1 σn−i+pCn−i+q,m−j+1+∏r

p=1 σn−i+pl(m− j + 1),∏r
p=1 σn−i+pP (i− r, j − 1)};

k = argmin1≤r≤i{f(r)};
P (i, j) = f(k);
∀1 ≤ q ≤ k,

alloc(i, j, n− i+ q) = m− j + 1;
∀n− i < q < n− i+ k,

alloc(i, j, q) = alloc(i− k, j − 1, q)
end

end
Algorithm 1: Optimal algorithm for OAC-PER.

Theorem 2. Algorithm 1 computes the optimal map-
ping for problem OAC-PER in time O(m× n3).

Proof. Let I be an instance of OAC-PER. We prove
by induction that for any pair (i, j), the value P (i, j)
returned by Algorithm 1 is the optimal period on the
instance Ii,j restricted to the last i services and the last
j servers. Moreover, alloc(i, j, .) is the corresponding
allocation function.

First, we compute the values P (0, j) and P (i, 1) for
1 ≤ j ≤ m and 1 ≤ i ≤ n. In these cases, there is only
one possible mapping: for P (0, j), there are no services
to map; for P (i, 1), all services must be mapped onto
the last server. Thus the computed period is optimal.

Now we consider the placement of the remaining ser-
vices. Suppose that for all j′ < j and for all i, P (i, j′)
is optimal. Then we show that P (i, j) also is optimal.

We define, for all 0 ≤ r ≤ i, f(r) as the period obtained
by placing the r first services on server m − j + 1 and
the other services optimally onto the next servers. We
prove that the minimum of the values f(r) is the opti-
mal value for P (i, j). Let alloc∗ be an allocation of the
last i services on the last j servers and P ∗ be the period
of this mapping. Let S = {i | alloc∗(i) = m− j + 1},
and k = |S|. Let P ′ be the period on alloc∗ for the last
i− k services on the last j − 1 servers. By the hypoth-
esis, P ′ ≥ P (i− k, j − 1) and

P (i, j)≤max{l(j) +
∑
i′∈S

∏
q∈S,q<i′ σq × Ci′,m−j+1

+
∏
q∈S σql(j + 1),

∏
q∈S σqP (i− k, j − 1)}

≤max{l(j) +
∑
i′∈S

∏
q∈S,q<i′ σq × Ci′,m−j+1

+
∏
q∈S σql(j + 1),

∏
q∈S σqP

′}
≤P ∗

Since this is true for any mapping leading to a period
P ∗, P (i, j) is the optimal period. We can conclude that
P (n,m) is the optimal period for instance I.

Corollary 1. Problems O**-PER have polynomial
complexity.

Proof. The most difficult problem of O**-PER is OAC-
PER, which is polynomial due to Theorem 2.

5 Latency minimization

In this section, we present a polynomial algorithm
for problems O**-LAT (fixed ordering) and we prove
the NP-completeness of problems FA*-LAT. Recall
that problems FP*-LAT are showed to be polynomial
in [14]. With arbitrary costs instead of proportional
costs, the problem becomes NP-hard, even in the ab-
sence of communications.

5.1 Fixed ordering

We derive an optimal algorithm for problems OAN-
LAT and OAC-LAT. The algorithm for OAN-LAT
(without communications) is presented only because it
is simpler to understand than the algorithm for OAC-
LAT (with communications). The complexity is the
same for both cases.

Theorem 3. Algorithm 2 computes the optimal map-
ping for problem OAN-LAT in time O(n3m).

Proof. Let I be an instance of OAN-LAT. We prove
by induction that for any pair (i, j), the value L(i, j)
returned by Algorithm 2 is the optimal latency on the
instance Ii,j restricted to the last i services and the last
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Data: n services of selectivities σ1, ..., σn ≤ 1 and
m servers with a matrix of costs C

Result: a mapping G optimizing the latency
for j = 1 to m do

L(0, j) = 0;
end
for i = 1 to n do

L(i, 1) = Cn−i+1,m + σn−i+1L(i− 1, 1);
∀1 ≤ k ≤ i, alloc(i, 1, n− k + 1) = m;

end
for j = 2 to m do

for i = 1 to n do
∀ 0 ≤ l ≤ i, f(l) =∑l

i′=1

(∏i′−1
q=1 σn−i+q

)
Cn−i+i′,m−j+1+(∏l

q=1 σn−i+q

)
L(i− l, j − 1);

k = argmin0≤l≤i{f(l)};
L(i, j) = f(k);
∀1 ≤ q ≤ k,

alloc(i, j, n− i+ q) = m− j + 1;
∀k < q ≤ i, alloc(i, j, n− i+ q) =
alloc(i− k, j − 1, n− i+ q);

end
end
Algorithm 2: Optimal algorithm for OAN-LAT.

j servers. Moreover, alloc(i, j, .) is the corresponding
allocation function.

First, we compute the values P (0, j) and P (i, 1) for
1 ≤ j ≤ m and 1 ≤ i ≤ n. In these cases, there is
only one possible mapping: either there are no services
to map, or all services must be mapped onto the last
server. Thus the computed latency is optimal.

Suppose that for all j′ < j and for all 1 ≤ i ≤ n,
L(i, j′) is optimal. Then we prove that for all i, L(i, j)
also is the optimal latency. Let alloc∗ be an allocation
of the last i services on the last j servers and L∗ be
the latency of this mapping. Let S = {i | alloc∗(i) =
m−j+1}, and k = |S|. Let L′ be the latency on alloc∗

for the last i − k services on the last j − 1 servers. By
hypothesis, L′ ≥ L(i− k, j − 1), and
L(i, j) ≤ f(k)
≤
∑
i′∈S

∏
q∈S,q<i′ σq × Ci′,m−j+1

+(
∏
q∈S σq)L(i− k, j − 1)

≤
∑
i′∈S

∏
q∈S,q<i′ σq×Ci′,m−j+1+(

∏
q∈S σq)L

′

≤ L∗
Since this is true for any mapping leading to a latency

L∗, L(i, j) is the optimal latency. We can conclude that
L(n,m) is the optimal latency for instance I.

Data: n services of selectivities σ1, ..., σn, m
servers with a matrix of costs C and a
vector of communication cost l

Result: a mapping G optimizing the latency
for j = 1 to m do

L(0, j) =
∑m
j′=m−j+1 l(j′);

end
for i = 1 to n do

L(i, 1) = l(m− 1) + Cn−i+1,m +
σn−j+1(L(i− 1, 1)− l(m− 1));
∀1 ≤ k ≤ i, alloc(i, 1, n− k + 1) = m;

end
for j = 2 to m do

for i = 1 to n do
∀ 0 ≤ l ≤ i, f(l) = l(m− j + 1) +∑l
i′=1

(∏i′−1
q=1 σn−i+q

)
Cn−i+i′,m−j+1 +(∏l

q=1 σn−i+q

)
L(i− l, j − 1);

k = argmin0≤l≤i{f(l)};
L(i, j) = f(k);
∀1 ≤ q ≤ k,

alloc(i, j, n− i+ q) = m− j + 1;
∀k < q ≤ i, alloc(i, j, n− i+ q) =
alloc(i− k, j − 1, n− i+ q);

end
end
Algorithm 3: Optimal algorithm for OAC-LAT.

Theorem 4. Algorithm 3 compute the optimal mapping
for problem OAC-LAT in time O(n3m).

Proof. The proof is similar to that for Theorem 3. We
merely add communication costs in the equations.

5.2 Free ordering

This section is devoted to assessing the most difficult
complexity result of this paper: the NP-completeness of
latency minimization with arbitrary costs, even without
taking communications into account. This important re-
sult closes the open question raised in [14].

Theorem 5. Problem FAN-LAT is NP-complete.

Proof. We consider the associated decision problem:
given a latency K, is there a mapping of latency less
than K? The problem is obviously in NP: given a la-
tency and a mapping, it is easy to check in polynomial
time whether it is valid or not.

The NP-completeness is obtained by reduction from
2-PARTITION [10], as in Theorem 1, but the reduc-
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tion is quite involved. Let I1 be an instance from 2-
PARTITION: given a set X = {x1, ..., xn}, does it ex-
ist a subset I such that

∑
xi∈I xi = 1

2

∑
xj∈X xj? Let

xM = maxxi∈X{xi}, S =
∑
xj∈X xj , β = A−S

2A+S and
A > 4

3n3n × x3
M . We construct the instance I2 with

n+ 1 services and 3 servers such that:

• ∀i ≤ n,Ci,1 = xi

A

• ∀i ≤ n,Ci,2 = 3
(

3A
A−xM

)n
• ∀i ≤ n,Ci,3 = 0

• ∀i ≤ n, σi = 1− xi

A + β
x2

i

A2

• Cn+1,1 = Cn+1,3 = 3
(

3A
A−xM

)n
• Cn+1,2 = 2A+S

2A−2S

• σn+1 = 1

• K = Cn+1,2 − 3S2

8A(A−S) + n3nβnx3
M

A3

The size of I2 is polynomial in the size of I1: the great-
est value in I2 is A and log(A) is linear in n.

Suppose that I1 has a solution I . We place the ser-
vices Ci with i ∈ I in any order as a linear chain on
server S1. Then, Cn+1 is placed on S2, and finally the
remaining services are placed on S3. The cost of the
services on S3 is null; that means that the latency L of
the system is the latency of Cn+1. Let k = |I|, and for
1 ≤ i ≤ k, let c′i be the cost of the i-th service of I on
the chain on server S1, and let σ′i be its selectivity.

L=
∑
i≤k
∏
j<i σ

′
jc
′
i +
∏
j≤k σ

′
jCn+1,2

≤
∑
i≤k

x′
i

A (1−
∑
j<i

x′
j

A + 3nβn(xM

A )2)

+Cn+1,2(1−
∑
i≤k

x′
i

A + β
∑
i≤k(

x′
i

A )2 +
∑
i≤k(

x′
i

A )2

+2
∑
i<j≤k

x′
ix

′
j

A2 + 3nβn x
3
M

A3 )

≤Cn+1,2 +
∑
i≤k

x′
i

A (1− Cn+1,2)
+
∑
i≤k(

x′
i

A )2Cn+1,2(β + 1)

+
∑
i<j≤k

x′
ix

′
j

A2 (2Cn+1,2 − 1) + n3nβn x
3
M

A3

≤Cn+1,2 +
∑
i≤k x

′
i(

−3S
2A(A−S) ) +

∑
i≤k x

′
i
2( 3

2A(A−S) )

+
∑
i<j≤k x

′
ix
′
j(

1
A(A−S) ) + n3nβn x

3
M

A3

≤Cn+1,2 + ( 3
2A(A−S) )(−S

∑
i≤k x

′
i

+
∑
i≤k x

′
i
2 + 2

∑
i<j≤k x

′
ix
′
j)

+n3nβn x
3
M

A3

≤Cn+1,2 + ( 3
2A(A−S) )(

S
2 −

∑
i≤k x

′
i)

2 − ( 3
2A(A−S) )

S2

4

+n3nβn x
3
M

A3

≤K

Then, the instance I2 has a solution.
Suppose now that I2 has a solution. By construction

ofCn+1,1 andCn+1,3, we can see that the serviceCn+1

has to be mapped onto S2 in the solution of I2. Simi-
lary, there can be no service Ci (i ≤ n) on S2. Let L
be the latency of Cn+1 and I be its set of predecessor.
Suppose that there is a service Ci with i ∈ I on S2, we
have the latency Li of Ci such that

Li ≥ 3
(

A
A−xM

)n
×
∏
i≤n σi

> 3
> K

This proves that all the services of I are mapped on S1.
We prove as in the previous computation that

L ≥ K+
(

3
2A(A− S)

)(
S

2
−
∑
i∈I

x′i

)2

−2n3nβn
x3
M

A3

By construction of A, we have

4n3nβn
x3
M (A− S)

3A2
≤ 4n3nβn

x3
M

3A
< 1.

This proves that (S2 −
∑
i∈I x

′
i)

2 = 0. Then I is a
valid solution for the instance I1. This concludes the
proof.

Corollary 2. Problem FAC-LAT is NP-complete.

6 Conclusion

In this paper, we have studied the problem of map-
ping filtering services onto a linear array of heteroge-
neous processors. We have assessed the complexity of
this problem for the optimization of two different cri-
teria, the period and the latency. The following table
summarizes the complexity of all problem instances:

model PER LAT

O** Polynomial Polynomial
FP* NP-complete Polynomial
FA* NP-complete NP-complete

We point out that the introduction of communication
costs never changes the complexity of a given prob-
lem. We have presented new polynomial algorithms for
all polynomial problem instances, except for problems
FP*-LAT which were solved in [14].

As future work, it would be very interesting to de-
rive approximation algorithms and lower bounds for all
NP-hard instances. Also, allowing some services to be
replicated would allow to decrease the period of the

7



mappings, while data-parallelizing some other services
would allow to decrease both period and latency. To
the best of our knowledge, such extensions, which are
well-known and widely used in the context of classi-
cal pipelined workflows have never been addressed for
filtering services. This is an interesting but algorithmi-
cally challenging direction to explore.
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