Divisible load theory

Frédéric Vivien

e-mail: Frederic.Vivien@inria.fr

September 18, 2014

<□> <@> < E> < E> < E</p>

Overview

1 The context

- 2 Bus-like network: classical resolution
- Bus-like network: resolution under the divisible load model

- 4 Star-like network
- 5 Multi-round algorithms

6 Conclusion

Overview

The context

- 2 Bus-like network: classical resolution
- Bus-like network: resolution under the divisible load model

- 4 Star-like network
- 5 Multi-round algorithms
- 6 Conclusion

Context of the study

- Scientific computing: large needs in computation or storage resources.
- Need to use systems with "several processors":
 - Parallel computers with shared memory.
 - Parallel computers with distributed memory.
 - Clusters.
 - Heterogeneous clusters.
 - Clusters of clusters.
 - Network of workstations.
 - The Grid.
- Problematic: to take into account the heterogeneity at the algorithmic level.

Execution platforms: Distributed heterogeneous platforms (network of workstations, clusters, clusters of clusters, grids, etc.)

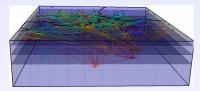
New sources of problems

- Heterogeneity of processors (computational power, memory, etc.)
- Heterogeneity of communications links.
- Irregularity of interconnection network.
- Non dedicated platforms.

We need to adapt our algorithmic approaches and our scheduling strategies: new objectives, new models, etc.

An example of application: seismic tomography of the Earth

 Model of the inner structure of the Earth



- The model is validated by comparing the propagation time of a seismic wave in the model to the actual propagation time.
- ▶ Set of all seismic events of the year 1999: 817,101
- Original program written for a parallel computer:

```
if (rank = ROOT)
raydata \leftarrow read n lines from data file;
MPI_Scatter(raydata, n/P, ..., rbuff, ...,
ROOT, MPI_COMM_WORLD);
compute_work(rbuff);
```

Applications made of a very (very) large number of fine grain computations.

Computation time proportional to the size of the data to be processed.

Independent computations: neither synchronizations nor communications.

Overview

The context

2 Bus-like network: classical resolution

3 Bus-like network: resolution under the divisible load model

4 Star-like network

5 Multi-round algorithms

6 Conclusion

Bus-like network

The links between the master and the slaves all have the same characteristics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

► The slave have different computation power.

• A set P_1 , ..., P_p of processors

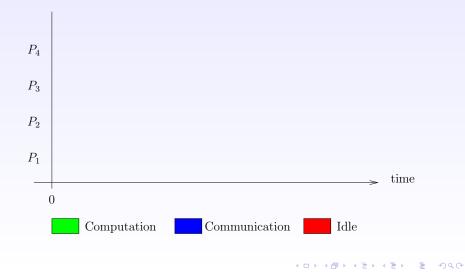
- A set P_1 , ..., P_p of processors
- \blacktriangleright P_1 is the master processor: initially, it holds all the data.

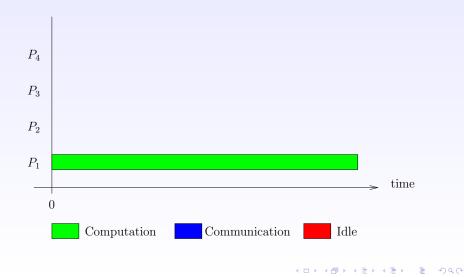
- A set P_1 , ..., P_p of processors
- P_1 is the master processor: initially, it holds all the data.

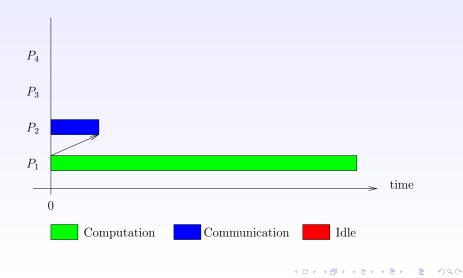
• The overall amount of work: W_{total} .

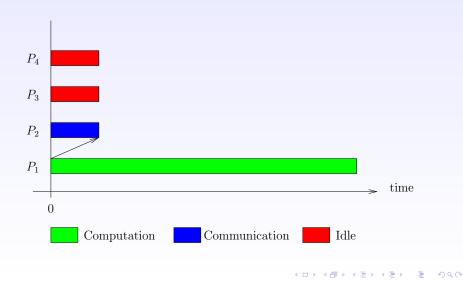
- ► A set P₁, ..., P_p of processors
- P_1 is the master processor: initially, it holds all the data.
- The overall amount of work: W_{total} .
- Processor P_i receives an amount of work: $n_i \in \mathbb{N}$ with $\sum_i n_i = W_{\text{total}}$. Length of a unit-size work on processor P_i : w_i . Computation time on P_i : $n_i w_i$.

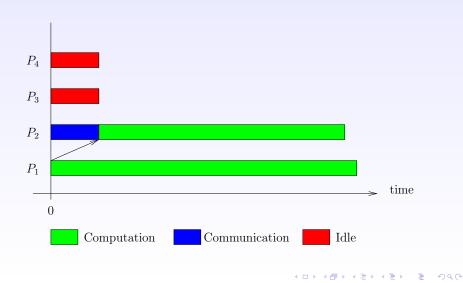
- A set P_1 , ..., P_p of processors
- P_1 is the master processor: initially, it holds all the data.
- The overall amount of work: W_{total} .
- Processor P_i receives an amount of work: $n_i \in \mathbb{N}$ with $\sum_i n_i = W_{\text{total}}$. Length of a unit-size work on processor P_i : w_i . Computation time on P_i : $n_i w_i$.
- Time needed to send a unit-message from P₁ to P_i: c. One-port bus: P₁ sends a *single* message at a time over the bus, all processors communicate at the same speed with the master.

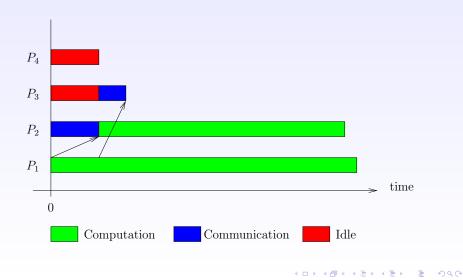


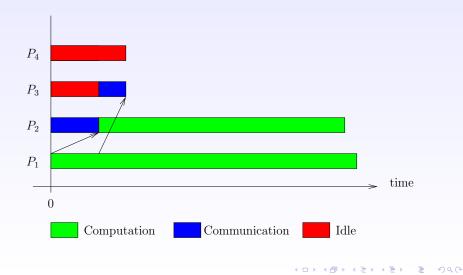


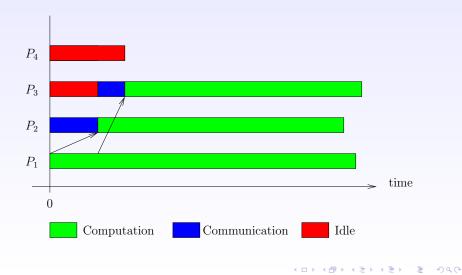


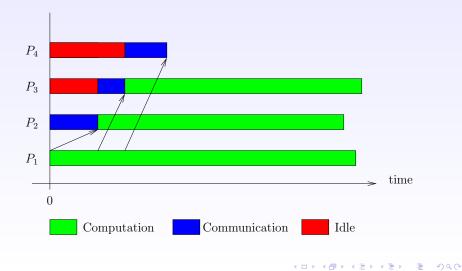


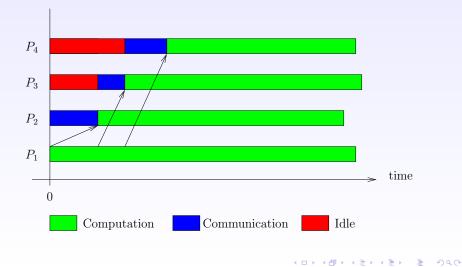


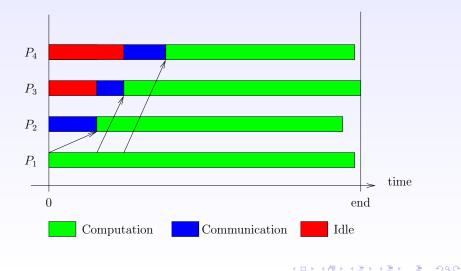












► The master sends its chunk of n_i data to processor P_i in a single sending.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- The master sends its chunk of n_i data to processor P_i in a single sending.
- The master sends their data to the processors, serving one processor at a time, in the order P₂, ..., P_p.

- The master sends its chunk of n_i data to processor P_i in a single sending.
- The master sends their data to the processors, serving one processor at a time, in the order P₂, ..., P_p.

• During this time the master processes its n_1 data.

- The master sends its chunk of n_i data to processor P_i in a single sending.
- The master sends their data to the processors, serving one processor at a time, in the order P₂, ..., P_p.
- During this time the master processes its n_1 data.
- A slave does not start the processing of its data before it has received all of them.

▶
$$P_1$$
: $T_1 = n_1.w_1$

ъ

æ

• • • • • • • •

ъ

3

æ

- ▶ P_1 : $T_1 = n_1.w_1$
- ► P_2 : $T_2 = n_2.c + n_2.w_2$

►
$$P_3$$
: $T_3 = (n_2.c + n_3.c) + n_3.w_3$

・ロト ・ 理 ト ・ ヨ ト ・

3.0

ж

▶ P_1 : $T_1 = n_1.w_1$

►
$$P_2$$
: $T_2 = n_2.c + n_2.w_2$

►
$$P_3$$
: $T_3 = (n_2.c + n_3.c) + n_3.w_3$

•
$$P_i: T_i = \sum_{j=2}^i n_j.c + n_i.w_i$$
 for $i \ge 2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

▶ P_1 : $T_1 = n_1.w_1$

►
$$P_2$$
: $T_2 = n_2.c + n_2.w_2$

►
$$P_3$$
: $T_3 = (n_2.c + n_3.c) + n_3.w_3$

•
$$P_i: T_i = \sum_{j=2}^{i} n_j . c + n_i . w_i \text{ for } i \ge 2$$

▶ P_i : $T_i = \sum_{j=1}^{i} n_j . c_j + n_i . w_i$ for $i \ge 1$ with $c_1 = 0$ and $c_j = c$ otherwise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Execution time

$$T = \max_{1 \le i \le p} \left(\sum_{j=1}^{i} n_j . c_j + n_i . w_i \right)$$

We look for a data distribution $n_1, ..., n_p$ which minimizes T.

Execution time: rewriting

$$T = \max\left(n_{1}.c_{1} + n_{1}.w_{1}, \max_{2 \le i \le p}\left(\sum_{j=1}^{i} n_{j}.c_{j} + n_{i}.w_{i}\right)\right)$$
$$T = n_{1}.c_{1} + \max\left(n_{1}.w_{1}, \max_{2 \le i \le p}\left(\sum_{j=2}^{i} n_{j}.c_{j} + n_{i}.w_{i}\right)\right)$$

An optimal solution for the distribution of W_{total} data over p processors is obtained by distributing n_1 data to processor P_1 and then optimally distributing $W_{\text{total}} - n_1$ data over processors P_2 to P_p .

Algorithm

```
1: solution[0, p] \leftarrow \cos(0, NIL); cost[0, p] \leftarrow 0
 2: for d \leftarrow 1 to W_{\text{total}} do
 3: solution[d, p] \leftarrow \cos(d, NIL)
 4:
        cost[d, p] \leftarrow d \cdot c_p + d \cdot w_p
 5: for i \leftarrow p-1 downto 1 do
        solution[0, i] \leftarrow cons(0, solution[0, i + 1])
 6:
 7:
       cost[0,i] \leftarrow 0
 8:
        for d \leftarrow 1 to W_{\text{total}} do
 9:
            (sol, min) \leftarrow (0, cost[d, i+1])
10:
           for e \leftarrow 1 to d do
               m \leftarrow e \cdot c_i + \max(e \cdot w_i, cost[d - e, i + 1])
11:
12:
               if m < min then
13:
                   (sol, min) \leftarrow (e, m)
14:
            solution[d, i] \leftarrow cons(sol, solution[d - sol, i + 1])
15:
            cost[d, i] \leftarrow min
16: return (solution[W_{total}, 1], cost[W_{total}, 1])
```

Complexity

Theorical complexity

$$O(W_{\mathsf{total}}^2 \cdot p)$$

Complexity in practice

If $W_{\text{total}} = 817,101$ and p = 16, on a Pentium III running at 933 MHz: more than two days... (in 2002) (Optimized version ran in 6 minutes.)

Disadvantages

Cost

Solution is not reusable

Solution is only partial

We do not need the solution to be so precise

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Overview

The context

- 2 Bus-like network: classical resolution
- 3 Bus-like network: resolution under the divisible load model

- 4 Star-like network
- 5 Multi-round algorithms
- 6 Conclusion

Notation

- A set P_1 , ..., P_p of processors
- ▶ P₁ is the master processor: initially, it holds all the data.
- The overall amount of work: W_{total} .
- Processor P_i receives an amount of work $\alpha_i W_{\text{total}}$ with $\alpha_i W_{\text{total}} \in \mathbb{Q}$ and $\sum_i \alpha_i = 1$. Length of a unit-size work on processor P_i : w_i . Computation time on P_i : $\alpha_i W_{\text{total}} w_i$.
- Time needed to send a unit-message from P₁ to P_i: c. One-port model: P₁ sends a single message at a time, all processors communicate at the same speed with the master.

Equations

For processor P_i (with $c_1 = 0$ and $c_j = c$ otherwise):

$$T_i = \sum_{j=1}^i \alpha_j W_{\text{total}}.c_j + \alpha_i W_{\text{total}}.w_i$$

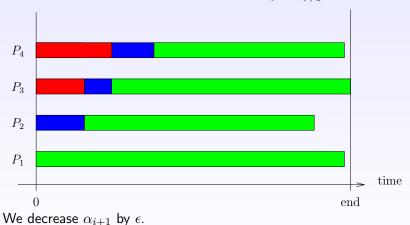
$$T = \max_{1 \le i \le p} \left(\sum_{j=1}^{i} \alpha_j W_{\mathsf{total}}.c_j + \alpha_i W_{\mathsf{total}}.w_i \right)$$

We look for a data distribution $\alpha_1, ..., \alpha_p$ which minimizes T.

Properties of load-balancing

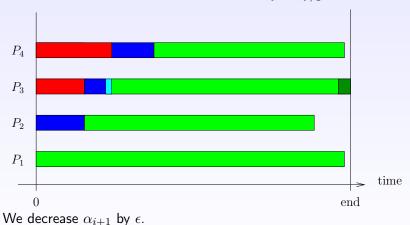
Lemma

In an optimal solution, all processors end their processing at the same time.



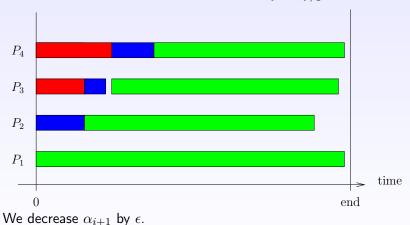
Two slaves i and i + 1 with $T_i < T_{i+1}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



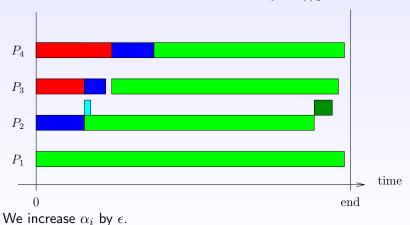
Two slaves i and i + 1 with $T_i < T_{i+1}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



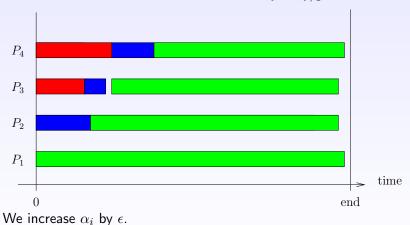
Two slaves i and i + 1 with $T_i < T_{i+1}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○



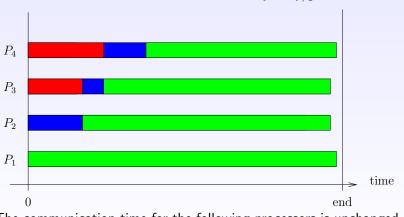
Two slaves i and i + 1 with $T_i < T_{i+1}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



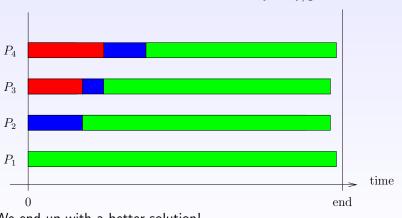
Two slaves i and i + 1 with $T_i < T_{i+1}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



Two slaves i and i + 1 with $T_i < T_{i+1}$.

The communication time for the following processors is unchanged.



Two slaves i and i + 1 with $T_i < T_{i+1}$.

We end up with a better solution!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Demonstration of lemma 1 (continuation and conclusion)

$$\begin{aligned} (\alpha_i + \epsilon) W_{\mathsf{total}}(c + w_i) &= \\ (\alpha_i + \epsilon) W_{\mathsf{total}}(c + (\alpha_{i+1} - \epsilon) W_{\mathsf{total}}(c + w_{i+1}) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- The master stops before the slaves: absurd.
- The master stops after the slaves: we decrease P_1 by ϵ .

Property for the selection of ressources

Lemma

In an optimal solution all processors work.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Property for the selection of ressources

Lemma

In an optimal solution all processors work.

Demonstration: this is just a corollary of lemma 1...

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

$$T = \alpha_1 W_{\mathsf{total}} w_1.$$

・ロト ・回ト ・ヨト

ъ

æ

 $T = \alpha_1 W_{\mathsf{total}} w_1.$

$$T = \alpha_2(c+w_2)W_{\text{total}}$$
. Therefore $\alpha_2 = \frac{w_1}{c+w_2}\alpha_1$.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

æ

 $T = \alpha_1 W_{\mathsf{total}} w_1.$

$$T = \alpha_2(c+w_2)W_{\text{total}}$$
. Therefore $\alpha_2 = \frac{w_1}{c+w_2}\alpha_1$.

$$T = (\alpha_2 c + \alpha_3 (c + w_3)) W_{\text{total}}$$
. Therefore $\alpha_3 = \frac{w_2}{c + w_3} \alpha_2$.

• • • • • • • • • • • •

æ

ъ

 $T = \alpha_1 W_{\mathsf{total}} w_1.$

$$T = \alpha_2(c+w_2)W_{\text{total}}$$
. Therefore $\alpha_2 = \frac{w_1}{c+w_2}\alpha_1$.

$$T = (\alpha_2 c + \alpha_3 (c + w_3)) W_{\text{total}}$$
. Therefore $\alpha_3 = \frac{w_2}{c + w_3} \alpha_2$.

• • • • • • • • • • • •

ъ

500

э

$$\alpha_i = \frac{w_{i-1}}{c+w_i} \alpha_{i-1}$$
 for $i \ge 2$.

 $T = \alpha_1 W_{\mathsf{total}} w_1.$

$$T = \alpha_2(c+w_2)W_{\mathsf{total}}.$$
 Therefore $\alpha_2 = \frac{w_1}{c+w_2}\alpha_1.$

$$T = (\alpha_2 c + \alpha_3 (c + w_3)) W_{\text{total}}$$
. Therefore $\alpha_3 = \frac{w_2}{c + w_3} \alpha_2$.

A D F A P F A B F A B F

æ

590

$$\alpha_i = \frac{w_{i-1}}{c+w_i} \alpha_{i-1}$$
 for $i \ge 2$.

 $\sum_{i=1}^{n} \alpha_i = 1.$

 $T = \alpha_1 W_{\mathsf{total}} w_1.$

$$T = \alpha_2(c+w_2)W_{\text{total}}$$
. Therefore $\alpha_2 = \frac{w_1}{c+w_2}\alpha_1$.

 $T = (\alpha_2 c + \alpha_3 (c + w_3)) W_{\text{total}}.$ Therefore $\alpha_3 = \frac{w_2}{c + w_3} \alpha_2.$

$$\alpha_i = \frac{w_{i-1}}{c+w_i} \alpha_{i-1}$$
 for $i \ge 2$.

 $\sum_{i=1}^{n} \alpha_i = 1.$

$$\alpha_1 \left(1 + \frac{w_1}{c + w_2} + \dots + \prod_{k=2}^j \frac{w_{k-1}}{c + w_k} + \dots \right) = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Impact of the order of communications

How important is the influence of the ordering of the processor on the solution $? \end{tabular}$

- 日本 - 1 日本 - 日本 - 日本 - 日本

Processor P_i : $\alpha_i(c+w_i)W_{\text{total}} = T$. Therefore $\alpha_i = \frac{1}{c+w_i}\frac{T}{W_{\text{total}}}$.

Processor P_i : $\alpha_i(c+w_i)W_{\text{total}} = T$. Therefore $\alpha_i = \frac{1}{c+w_i}\frac{T}{W_{\text{total}}}$.

Processor P_{i+1} : $\alpha_i c W_{\text{total}} + \alpha_{i+1} (c + w_{i+1}) W_{\text{total}} = T$.

Processor P_i : $\alpha_i(c+w_i)W_{\text{total}} = T$. Therefore $\alpha_i = \frac{1}{c+w_i}\frac{T}{W_{\text{total}}}$.

Processor
$$P_{i+1}$$
: $\alpha_i c W_{\text{total}} + \alpha_{i+1} (c + w_{i+1}) W_{\text{total}} = T$.
Thus $\alpha_{i+1} = \frac{1}{c+w_{i+1}} (\frac{T}{W_{\text{total}}} - \alpha_i c) = \frac{w_i}{(c+w_i)(c+w_{i+1})} \frac{T}{W_{\text{total}}}$.

Processor P_i : $\alpha_i(c+w_i)W_{\text{total}} = T$. Therefore $\alpha_i = \frac{1}{c+w_i}\frac{T}{W_{\text{total}}}$.

Processor
$$P_{i+1}$$
: $\alpha_i c W_{\text{total}} + \alpha_{i+1} (c + w_{i+1}) W_{\text{total}} = T$.
Thus $\alpha_{i+1} = \frac{1}{c+w_{i+1}} (\frac{T}{W_{\text{total}}} - \alpha_i c) = \frac{w_i}{(c+w_i)(c+w_{i+1})} \frac{T}{W_{\text{total}}}$.

Processors P_i and P_{i+1} :

$$\alpha_i + \alpha_{i+1} = \frac{c + w_i + w_{i+1}}{(c + w_i)(c + w_{i+1})} \frac{T}{W_{\text{total}}}$$

・ロト ・ 理 ト ・ ヨ ト ・

3.5 3

Processor
$$P_1$$
: $\alpha_1 w_1 W_{\text{total}} = T$. Then, $\alpha_1 = \frac{1}{w_1} \frac{T}{W_{\text{total}}}$.

э

Processor P_1 : $\alpha_1 w_1 W_{\text{total}} = T$. Then, $\alpha_1 = \frac{1}{w_1} \frac{T}{W_{\text{total}}}$.

Processor P_2 : $\alpha_2(c+w_2)W_{\text{total}} = T$. Thus, $\alpha_2 = \frac{1}{c+w_2}\frac{T}{W_{\text{total}}}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Processor P_1 : $\alpha_1 w_1 W_{\text{total}} = T$. Then, $\alpha_1 = \frac{1}{w_1} \frac{T}{W_{\text{total}}}$.

Processor P_2 : $\alpha_2(c+w_2)W_{\text{total}} = T$. Thus, $\alpha_2 = \frac{1}{c+w_2}\frac{T}{W_{\text{total}}}$.

Total volume processed:

$$\alpha_1 + \alpha_2 = \frac{c + w_1 + w_2}{w_1(c + w_2)} = \frac{c + w_1 + w_2}{cw_1 + w_1w_2}$$

Processor
$$P_1$$
: $\alpha_1 w_1 W_{\mathsf{total}} = T$. Then, $\alpha_1 = \frac{1}{w_1} \frac{T}{W_{\mathsf{total}}}$.

Processor P_2 : $\alpha_2(c+w_2)W_{\text{total}} = T$. Thus, $\alpha_2 = \frac{1}{c+w_2}\frac{T}{W_{\text{total}}}$.

Total volume processed:

$$\alpha_1 + \alpha_2 = \frac{c + w_1 + w_2}{w_1(c + w_2)} = \frac{c + w_1 + w_2}{cw_1 + w_1w_2}$$

Minimal when $w_1 < w_2$. Master = the most powerfull processor (for computations).

Conclusion

Closed-form expressions for the execution time and the distribution of data.

Choice of the master.

The ordering of the processors has no impact.

All processors take part in the work.

Overview

The context

2 Bus-like network: classical resolution

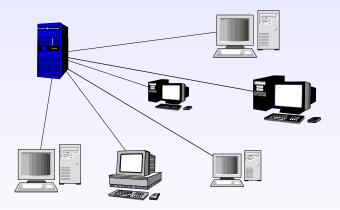
3 Bus-like network: resolution under the divisible load model

4 Star-like network

5 Multi-round algorithms

6 Conclusion

Star-like network



The links between the master and the slaves have different characteristics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

► The slaves have different computational power.

Notation

- ▶ A set P₁, ..., P_p of processors
- ▶ P₁ is the master processor: initially, it holds all the data.
- The overall amount of work: W_{total}.
- Processor P_i receives an amount of work $\alpha_i W_{\text{total}}$ with $\sum_i n_i = W_{\text{total}}$ with $\alpha_i W_{\text{total}} \in \mathbb{Q}$ and $\sum_i \alpha_i = 1$. Length of a unit-size work on processor P_i : w_i . Computation time on P_i : $n_i w_i$.
- ► Time needed to send a unit-message from P₁ to P_i: c_i. One-port model: P₁ sends a single message at a time.

Impact of the order of communications

Processor P_i : $\alpha_i(c_i + w_i)W_{\text{total}} = T$. Thus, $\alpha_i = \frac{1}{c_i + w_i} \frac{T}{W_{\text{total}}}$.

Processor P_i : $\alpha_i(c_i + w_i)W_{\text{total}} = T$. Thus, $\alpha_i = \frac{1}{c_i + w_i} \frac{T}{W_{\text{total}}}$.

Processor P_{i+1} : $\alpha_i c_i W_{\text{total}} + \alpha_{i+1} (c_{i+1} + w_{i+1}) W_{\text{total}} = T$.

Processor
$$P_i$$
: $\alpha_i(c_i + w_i)W_{\mathsf{total}} = T$. Thus, $\alpha_i = \frac{1}{c_i + w_i} \frac{T}{W_{\mathsf{total}}}$.

Processor
$$P_{i+1}$$
: $\alpha_i c_i W_{\text{total}} + \alpha_{i+1} (c_{i+1} + w_{i+1}) W_{\text{total}} = T$.
Thus, $\alpha_{i+1} = \frac{1}{c_{i+1} + w_{i+1}} (1 - \frac{c_i}{c_i + w_i}) \frac{T}{W_{\text{total}}} = \frac{w_i}{(c_i + w_i)(c_{i+1} + w_{i+1})} \frac{T}{W_{\text{total}}}$.

Processor
$$P_i$$
: $\alpha_i(c_i + w_i)W_{\mathsf{total}} = T$. Thus, $\alpha_i = \frac{1}{c_i + w_i} \frac{T}{W_{\mathsf{total}}}$.

Processor
$$P_{i+1}$$
: $\alpha_i c_i W_{\text{total}} + \alpha_{i+1} (c_{i+1} + w_{i+1}) W_{\text{total}} = T.$
Thus, $\alpha_{i+1} = \frac{1}{c_{i+1} + w_{i+1}} (1 - \frac{c_i}{c_i + w_i}) \frac{T}{W_{\text{total}}} = \frac{w_i}{(c_i + w_i)(c_{i+1} + w_{i+1})} \frac{T}{W_{\text{total}}}.$

Volume processed: $\alpha_i + \alpha_{i+1} = \frac{c_{i+1} + w_i + w_{i+1}}{(c_i + w_i)(c_{i+1} + w_{i+1})}$

Processor
$$P_i$$
: $\alpha_i(c_i + w_i)W_{\mathsf{total}} = T$. Thus, $\alpha_i = \frac{1}{c_i + w_i} \frac{T}{W_{\mathsf{total}}}$.

Processor
$$P_{i+1}$$
: $\alpha_i c_i W_{\text{total}} + \alpha_{i+1} (c_{i+1} + w_{i+1}) W_{\text{total}} = T.$
Thus, $\alpha_{i+1} = \frac{1}{c_{i+1} + w_{i+1}} (1 - \frac{c_i}{c_i + w_i}) \frac{T}{W_{\text{total}}} = \frac{w_i}{(c_i + w_i)(c_{i+1} + w_{i+1})} \frac{T}{W_{\text{total}}}.$

Volume processed: $\alpha_i + \alpha_{i+1} = \frac{c_{i+1} + w_i + w_{i+1}}{(c_i + w_i)(c_{i+1} + w_{i+1})}$

Communication time: $\alpha_i c_i + \alpha_{i+1} c_{i+1} = \frac{c_i c_{i+1} + c_{i+1} w_i + c_i w_{i+1}}{(c_i + w_i)(c_{i+1} + w_{i+1})}$

Processor
$$P_i$$
: $\alpha_i(c_i + w_i)W_{\mathsf{total}} = T$. Thus, $\alpha_i = \frac{1}{c_i + w_i} \frac{T}{W_{\mathsf{total}}}$.

Processor
$$P_{i+1}$$
: $\alpha_i c_i W_{\text{total}} + \alpha_{i+1} (c_{i+1} + w_{i+1}) W_{\text{total}} = T.$
Thus, $\alpha_{i+1} = \frac{1}{c_{i+1} + w_{i+1}} (1 - \frac{c_i}{c_i + w_i}) \frac{T}{W_{\text{total}}} = \frac{w_i}{(c_i + w_i)(c_{i+1} + w_{i+1})} \frac{T}{W_{\text{total}}}.$

Volume processed: $\alpha_i + \alpha_{i+1} = \frac{c_{i+1} + w_i + w_{i+1}}{(c_i + w_i)(c_{i+1} + w_{i+1})}$

Communication time: $\alpha_i c_i + \alpha_{i+1} c_{i+1} = \frac{c_i c_{i+1} + c_{i+1} w_i + c_i w_{i+1}}{(c_i + w_i)(c_{i+1} + w_{i+1})}$

Processors must be served by decreasing bandwidths.

Ressource selection

Lemma

In an optimal solution, all processors work.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

We take an optimal solution. Let P_k be a processor which does not receive any work: we put it last in the processor ordering and we give it a fraction α_k such that $\alpha_k(c_k + w_k)W_{\text{total}}$ is equal to the processing time of the last processor which received some work. We take an optimal solution. Let P_k be a processor which does not receive any work: we put it last in the processor ordering and we give it a fraction α_k such that $\alpha_k(c_k + w_k)W_{\text{total}}$ is equal to the processing time of the last processor which received some work.

Why should we put this processor last ?

Load-balancing property

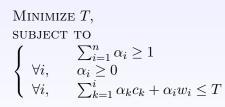
Lemma

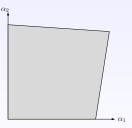
In an optimal solution, all processors end at the same time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

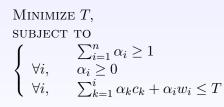
► Most existing proofs are false. MINIMIZE *T*, SUBJECT TO $\begin{cases} \sum_{i=1}^{n} \alpha_i \ge 1 \\ \forall i, \quad \alpha_i \ge 0 \\ \forall i, \quad \sum_{k=1}^{i} \alpha_k c_k + \alpha_i w_i \le T \end{cases}$

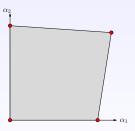
Most existing proofs are false.



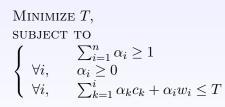


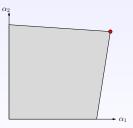
Most existing proofs are false.



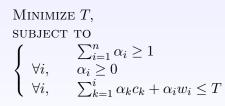


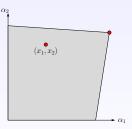
Most existing proofs are false.



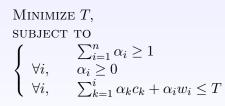


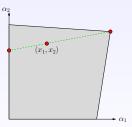
Most existing proofs are false.





Most existing proofs are false.





Conclusion

- The processors must be ordered by decreasing bandwidths
- All processors are working
- All processors end their work at the same time
- Formulas for the execution time and the distribution of data

Overview

The context

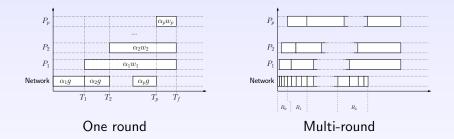
- 2 Bus-like network: classical resolution
- Bus-like network: resolution under the divisible load model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- 4 Star-like network
- 5 Multi-round algorithms

6 Conclusion

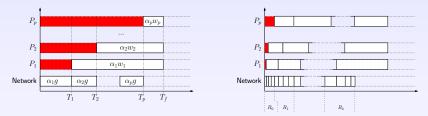
One round vs. multi-round



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

₹ 9Q@

One round vs. multi-round



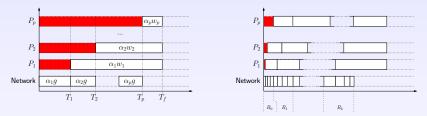
One round

 \sim long idle-times

Multi-round Efficient when W_{total} large

Intuition: start with small rounds, then increase chunks. Problems:

One round vs. multi-round



One round

 \sim long idle-times

Multi-round Efficient when W_{total} large

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Intuition: start with small rounds, then increase chunks. Problems:

- linear communication model leads to absurd solution
- resource selection
- number of rounds
- size of each round

Notations

- ► A set P₁, ..., P_p of processors
- ▶ P₁ is the master processor: initially, it holds all the data.
- ► The overall amount of work: W_{total}.
- Processor P_i receives an amount of work $\alpha_i W_{\text{total}}$ with $\sum_i n_i = W_{\text{total}}$ with $\alpha_i W_{\text{total}} \in \mathbb{Q}$ and $\sum_i \alpha_i = 1$. Length of a unit-size work on processor P_i : w_i . Computation time on P_i : $n_i w_i$.
- ► Time needed to send a message of size $\alpha_i P_1$ to P_i : $L_i + c_i \times \alpha_i$.

One-port model: P_1 sends and receives a *single* message at a time.

Complexity

Definition (One round, $\forall i, c_i = 0$)

Given W_{total} , p workers, $(P_i)_{1 \le i \le p}$, $(L_i)_{1 \le i \le p}$, and a rational number $T \ge 0$, and assuming that bandwidths are infinite, is it possible to compute all W_{total} load units within T time units?

Theorem

The problem with one-round and infinite bandwidths is NP-complete.

Complexity

Definition (One round, $\forall i, c_i = 0$)

Given W_{total} , p workers, $(P_i)_{1 \le i \le p}$, $(L_i)_{1 \le i \le p}$, and a rational number $T \ge 0$, and assuming that bandwidths are infinite, is it possible to compute all W_{total} load units within T time units?

Theorem

The problem with one-round and infinite bandwidths is NP-complete.

What is the complexity of the general problem with finite bandwidths and several rounds?

The general problem is NP-hard, but does not appear to be in NP (no polynomial bound on the number of activations).

Fixed activation sequence

Hypotheses

- Number of activations: N_{act};
- **2** Whether P_i is **the** processor used during activation $j: \chi_i^{(j)}$

MINIMIZE T, UNDER THE CONSTRAINTS

$$\begin{cases} \sum_{j=1}^{N_{\mathsf{act}}} \sum_{i=1}^{p} \chi_{i}^{(j)} \alpha_{i}^{(j)} = W_{\mathsf{total}} \\\\ \forall k \leq N_{\mathsf{act}}, \forall l : \left(\sum_{j=1}^{k} \sum_{i=1}^{p} \chi_{i}^{(j)} (L_{i} + \alpha_{i}^{(j)} c_{i}) \right) + \sum_{j=k}^{N_{\mathsf{act}}} \chi_{l}^{(j)} \alpha_{l}^{(j)} w_{l} \leq T \\\\ \forall i, j : \alpha_{i}^{(j)} \geq 0 \end{cases}$$

Can be solved in polynomial time.

Fixed number of activations

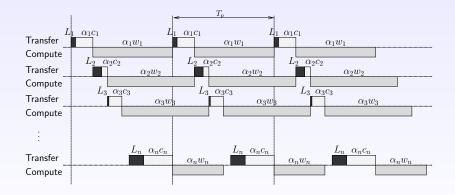
MINIMIZE T, UNDER THE CONSTRAINTS

$$\begin{cases} \sum_{j=1}^{N_{\mathsf{act}}} \sum_{i=1}^{p} \chi_{i}^{(j)} \alpha_{i}^{(j)} = W_{\mathsf{total}} \\ \forall k \leq N_{\mathsf{act}}, \forall l : \left(\sum_{j=1}^{k} \sum_{i=1}^{p} \chi_{i}^{(j)} (L_{i} + \alpha_{i}^{(j)} c_{i}) \right) + \sum_{j=k}^{N_{\mathsf{act}}} \chi_{l}^{(j)} \alpha_{l}^{(j)} w_{l} \leq T \\ \forall k \leq N_{\mathsf{act}} : \sum_{i=1}^{p} \chi_{i}^{(k)} \leq 1 \\ \forall i, j : \chi_{i}^{(j)} \in \{0, 1\} \\ \forall i, j : \alpha_{i}^{(j)} \geq 0 \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exact but exponential Can lead to branch-and-bound algorithms

Periodic schedule



How to choose T_p ? Which resources to select?

・ロト・日本・モート・モー うへで

Equations

• Divide total execution time T into k periods of duration T_p .

Equations

• Divide total execution time T into k periods of duration T_p .

• $\mathcal{I} \subset \{1, \dots, p\}$ participating processors.

Equations

- Divide total execution time T into k periods of duration T_p .
- $\mathcal{I} \subset \{1, \dots, p\}$ participating processors.
- Bandwidth limitation:

$$\sum_{i \in \mathcal{I}} \left(L_i + \alpha_i c_i \right) \le T_p$$

Equations

- Divide total execution time T into k periods of duration T_p .
- $\mathcal{I} \subset \{1, \dots, p\}$ participating processors.
- Bandwidth limitation:

$$\sum_{i \in \mathcal{I}} \left(L_i + \alpha_i c_i \right) \le T_p.$$

No overlap:

$$\forall i \in \mathcal{I}, \quad L_i + \alpha_i (c_i + w_i) \le T_p.$$

Normalization

 \blacktriangleright β_i average number of tasks processed by P_i during one time unit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Normalization

• β_i average number of tasks processed by P_i during one time unit.

Linear program:

$$\begin{cases} \text{MAXIMIZE} \sum_{i=1}^{p} \beta_i \\ \forall i \in \mathcal{I}, \quad \beta_i (c_i + w_i) \le 1 - \frac{L_i}{T_p} \\ \sum_{i \in \mathcal{I}} \beta_i c_i \le 1 - \frac{\sum_{i \in \mathcal{I}} L_i}{T_p} \end{cases}$$

.

Normalization

 β_i average number of tasks processed by P_i during one time unit.

► Linear program:

$$\begin{cases} \text{MAXIMIZE} \sum_{i=1}^{p} \beta_i \\ \forall i \in \mathcal{I}, \quad \beta_i (c_i + w_i) \leq 1 - \frac{L_i}{T_p} \\ \sum_{i \in \mathcal{I}} \beta_i c_i \leq 1 - \frac{\sum_{i \in \mathcal{I}} L_i}{T_p} \end{cases}$$

Relaxed version

$$\begin{cases} \text{MAXIMIZE} \sum_{i=1}^{p} x_i \\ \forall 1 \le i \le p, \quad x_i(c_i + w_i) \le 1 - \frac{L_i}{T_p} \\ \sum_{i=1}^{p} x_i c_i \le 1 - \frac{\sum_{i=1}^{p} L_i}{T_p} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Normalization

 β_i average number of tasks processed by P_i during one time unit.

Linear program:

$$\begin{cases} \text{MAXIMIZE} \sum_{i=1}^{P} \beta_i \\ \forall i \in \mathcal{I}, \quad \beta_i (c_i + w_i) \le 1 - \frac{L_i}{T_p} \\ \sum_{i \in \mathcal{I}} \beta_i c_i \le 1 - \frac{\sum_{i \in \mathcal{I}} L_i}{T_p} \end{cases}$$

Relaxed version

$$\begin{aligned} \text{MAXIMIZE} & \sum_{i=1}^{p} x_i \\ \begin{cases} \forall 1 \le i \le p, \quad x_i(c_i + w_i) \le 1 - \frac{\sum_{i=1}^{p} L}{T_p} \\ \sum_{i=1}^{p} x_i c_i \le 1 - \frac{\sum_{i=1}^{p} L_i}{T_p} \end{cases} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Bandwidth-centric solution

- Sort: $c_1 \leq c_2 \leq \ldots \leq c_p$.
- Let q be the largest index so that $\sum_{i=1}^{q} \frac{c_i}{c_i+w_i} \leq 1$.

• If
$$q < p$$
, $\epsilon = 1 - \sum_{i=1}^{q} \frac{c_i}{c_i + w_i}$.

Optimal solution to relaxed program:

$$\forall 1 \leq i \leq q, \quad x_i = \frac{1 - \frac{\sum_{i=1}^p L_i}{T_p}}{c_i + w_i}$$

and (if q < p):

$$x_{q+1} = \left(1 - \frac{\sum_{i=1}^{p} L_i}{T_p}\right) \left(\frac{\epsilon}{c_{q+1}}\right),$$

and $x_{q+2} = x_{q+3} = \ldots = x_p = 0.$

・ロト・西ト・ヨト・ヨト つへぐ

Asymptotic optimality

• Let
$$T_p = \sqrt{T^*_{\max}}$$
 and $\alpha_i = x_i T_p$ for all i .

・ロト ・聞ト ・ヨト ・ヨト

æ

Asymptotic optimality

• Let $T_p = \sqrt{T^*_{\max}}$ and $\alpha_i = x_i T_p$ for all i.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

• Then
$$T \leq T^*_{\max} + O(\sqrt{T^*_{\max}})$$
.

Asymptotic optimality

• Let $T_p = \sqrt{T_{\max}^*}$ and $\alpha_i = x_i T_p$ for all i.

• Then
$$T \leq T^*_{\max} + O(\sqrt{T^*_{\max}})$$
.

Closed-form expressions for resource selection and task assignment provided by the algorithm.

Overview

The context

- 2 Bus-like network: classical resolution
- Bus-like network: resolution under the divisible load model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- 4 Star-like network
- 5 Multi-round algorithms

What should be remembered?

 Underlying principle: we may not need the optimal solution; approximated solutions may be as good and far easier to achieve

 Communications costs may play a far bigger role in designing solutions than computation costs