
Divisible load theory

Frédéric Vivien

e-mail: Frederic.Vivien@inria.fr

September 18, 2014

Overview

1 The context

2 Bus-like network: classical resolution

3 Bus-like network: resolution under the divisible load model

4 Star-like network

5 Multi-round algorithms

6 Conclusion

Overview

1 The context

2 Bus-like network: classical resolution

3 Bus-like network: resolution under the divisible load model

4 Star-like network

5 Multi-round algorithms

6 Conclusion

Context of the study

I Scientific computing: large needs in computation or storage
resources.

I Need to use systems with “several processors”:
I Parallel computers with shared memory.
I Parallel computers with distributed memory.
I Clusters.
I Heterogeneous clusters.
I Clusters of clusters.
I Network of workstations.
I The Grid.

I Problematic: to take into account the heterogeneity at the
algorithmic level.

New platforms, new problems

Execution platforms: Distributed heterogeneous platforms
(network of workstations, clusters, clusters of clusters, grids, etc.)

New sources of problems

I Heterogeneity of processors (computational power, memory,
etc.)

I Heterogeneity of communications links.

I Irregularity of interconnection network.

I Non dedicated platforms.

We need to adapt our algorithmic approaches and our scheduling
strategies: new objectives, new models, etc.

An example of application: seismic tomography of the
Earth

I Model of the inner structure
of the Earth

I The model is validated by comparing the propagation time of
a seismic wave in the model to the actual propagation time.

I Set of all seismic events of the year 1999: 817, 101

I Original program written for a parallel computer:

if (rank = ROOT)
raydata ← read n lines from data file;

MPI Scatter(raydata, n/P, ..., rbuff, ...,
ROOT, MPI COMM WORLD);

compute work(rbuff);

Applications covered by the divisible load model

Applications made of a very (very) large number of fine grain com-
putations.

Computation time proportional to the size of the data to be pro-
cessed.

Independent computations: neither synchronizations nor communi-
cations.

Overview

1 The context

2 Bus-like network: classical resolution

3 Bus-like network: resolution under the divisible load model

4 Star-like network

5 Multi-round algorithms

6 Conclusion

Bus-like network

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �

� � �� � �� � �� � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �
	 	 	 	 		 	 	 	 	

� �� �� �� �� �� �� �

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������

�����������
�����������
�����������

���������
���������
���������

I The links between the master and the slaves all have the same
characteristics.

I The slave have different computation power.

Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work: ni ∈ N with∑
i ni =Wtotal.

Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a unit-message from P1 to Pi: c.
One-port bus: P1 sends a single message at a time over the
bus, all processors communicate at the same speed with the
master.

Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work: ni ∈ N with∑
i ni =Wtotal.

Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a unit-message from P1 to Pi: c.
One-port bus: P1 sends a single message at a time over the
bus, all processors communicate at the same speed with the
master.

Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work: ni ∈ N with∑
i ni =Wtotal.

Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a unit-message from P1 to Pi: c.
One-port bus: P1 sends a single message at a time over the
bus, all processors communicate at the same speed with the
master.

Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work: ni ∈ N with∑
i ni =Wtotal.

Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a unit-message from P1 to Pi: c.
One-port bus: P1 sends a single message at a time over the
bus, all processors communicate at the same speed with the
master.

Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work: ni ∈ N with∑
i ni =Wtotal.

Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a unit-message from P1 to Pi: c.
One-port bus: P1 sends a single message at a time over the
bus, all processors communicate at the same speed with the
master.

Behavior of the master and of the slaves (illustration)

Communication

0

P2

P3

P4

P1

time

Computation Idle

Behavior of the master and of the slaves (illustration)

Communication

0

P2

P3

P4

P1

time

Computation Idle

Behavior of the master and of the slaves (illustration)

CommunicationComputation Idle

0

P2

P3

P4

P1

time

Behavior of the master and of the slaves (illustration)

CommunicationComputation Idle

0

P2

P3

P4

P1

time

Behavior of the master and of the slaves (illustration)

Communication

time

Computation Idle

0

P2

P3

P4

P1

Behavior of the master and of the slaves (illustration)

Communication

P4

P1

time

Computation Idle

0

P2

P3

Behavior of the master and of the slaves (illustration)

Communication

P3

P4

P1

time

Computation Idle

0

P2

Behavior of the master and of the slaves (illustration)

Communication

P2

P3

P4

P1

time

Computation Idle

0

Behavior of the master and of the slaves (illustration)

0

P2

P3

P4

P1

time

Computation IdleCommunication

Behavior of the master and of the slaves (illustration)

0

P2

P3

P4

P1

time

Computation IdleCommunication

Behavior of the master and of the slaves (illustration)

0

P2

P3

P4

P1

time

Computation IdleCommunication

end

Behavior of the master and of the slaves (hypotheses)

I The master sends its chunk of ni data to processor Pi in a
single sending.

I The master sends their data to the processors, serving one pro-
cessor at a time, in the order P2, ..., Pp.

I During this time the master processes its n1 data.

I A slave does not start the processing of its data before it has
received all of them.

Behavior of the master and of the slaves (hypotheses)

I The master sends its chunk of ni data to processor Pi in a
single sending.

I The master sends their data to the processors, serving one pro-
cessor at a time, in the order P2, ..., Pp.

I During this time the master processes its n1 data.

I A slave does not start the processing of its data before it has
received all of them.

Behavior of the master and of the slaves (hypotheses)

I The master sends its chunk of ni data to processor Pi in a
single sending.

I The master sends their data to the processors, serving one pro-
cessor at a time, in the order P2, ..., Pp.

I During this time the master processes its n1 data.

I A slave does not start the processing of its data before it has
received all of them.

Behavior of the master and of the slaves (hypotheses)

I The master sends its chunk of ni data to processor Pi in a
single sending.

I The master sends their data to the processors, serving one pro-
cessor at a time, in the order P2, ..., Pp.

I During this time the master processes its n1 data.

I A slave does not start the processing of its data before it has
received all of them.

Equations

I P1: T1 = n1.w1

I P2: T2 = n2.c+ n2.w2

I P3: T3 = (n2.c+ n3.c) + n3.w3

I Pi: Ti =
∑i

j=2 nj .c+ ni.wi for i ≥ 2

I Pi: Ti =
∑i

j=1 nj .cj + ni.wi for i ≥ 1 with c1 = 0 and cj = c
otherwise.

Equations

I P1: T1 = n1.w1

I P2: T2 = n2.c+ n2.w2

I P3: T3 = (n2.c+ n3.c) + n3.w3

I Pi: Ti =
∑i

j=2 nj .c+ ni.wi for i ≥ 2

I Pi: Ti =
∑i

j=1 nj .cj + ni.wi for i ≥ 1 with c1 = 0 and cj = c
otherwise.

Equations

I P1: T1 = n1.w1

I P2: T2 = n2.c+ n2.w2

I P3: T3 = (n2.c+ n3.c) + n3.w3

I Pi: Ti =
∑i

j=2 nj .c+ ni.wi for i ≥ 2

I Pi: Ti =
∑i

j=1 nj .cj + ni.wi for i ≥ 1 with c1 = 0 and cj = c
otherwise.

Equations

I P1: T1 = n1.w1

I P2: T2 = n2.c+ n2.w2

I P3: T3 = (n2.c+ n3.c) + n3.w3

I Pi: Ti =
∑i

j=2 nj .c+ ni.wi for i ≥ 2

I Pi: Ti =
∑i

j=1 nj .cj + ni.wi for i ≥ 1 with c1 = 0 and cj = c
otherwise.

Equations

I P1: T1 = n1.w1

I P2: T2 = n2.c+ n2.w2

I P3: T3 = (n2.c+ n3.c) + n3.w3

I Pi: Ti =
∑i

j=2 nj .c+ ni.wi for i ≥ 2

I Pi: Ti =
∑i

j=1 nj .cj + ni.wi for i ≥ 1 with c1 = 0 and cj = c
otherwise.

Execution time

T = max
1≤i≤p

 i∑
j=1

nj .cj + ni.wi

We look for a data distribution n1, ..., np which minimizes T .

Execution time: rewriting

T = max

n1.c1 + n1.w1, max
2≤i≤p

 i∑
j=1

nj .cj + ni.wi

T = n1.c1 +max

n1.w1, max
2≤i≤p

 i∑
j=2

nj .cj + ni.wi

An optimal solution for the distribution of Wtotal data over p pro-
cessors is obtained by distributing n1 data to processor P1 and then
optimally distributing Wtotal − n1 data over processors P2 to Pp.

Algorithm

1: solution[0, p]← cons(0,NIL); cost[0, p]← 0
2: for d← 1 to Wtotal do
3: solution[d, p]← cons(d,NIL)
4: cost[d, p]← d · cp + d · wp

5: for i← p− 1 downto 1 do
6: solution[0, i]← cons(0, solution[0, i+ 1])
7: cost[0, i]← 0
8: for d← 1 to Wtotal do
9: (sol ,min)← (0, cost[d, i+ 1])
10: for e← 1 to d do
11: m← e · ci +max(e · wi, cost[d− e, i+ 1])
12: if m < min then
13: (sol ,min)← (e,m)

14: solution[d, i]← cons(sol , solution[d− sol , i+ 1])
15: cost[d, i]← min
16: return (solution[Wtotal, 1], cost[Wtotal, 1])

Complexity

I Theorical complexity

O(W 2
total · p)

I Complexity in practice
If Wtotal = 817, 101 and p = 16, on a Pentium III running at
933 MHz: more than two days... (in 2002)
(Optimized version ran in 6 minutes.)

Disadvantages

I Cost

I Solution is not reusable

I Solution is only partial

We do not need the solution to be so precise

Overview

1 The context

2 Bus-like network: classical resolution

3 Bus-like network: resolution under the divisible load model

4 Star-like network

5 Multi-round algorithms

6 Conclusion

Notation

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work αiWtotal

with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi: wi.
Computation time on Pi: αiWtotalwi.

I Time needed to send a unit-message from P1 to Pi: c.
One-port model: P1 sends a single message at a time, all pro-
cessors communicate at the same speed with the master.

Equations

For processor Pi (with c1 = 0 and cj = c otherwise):

Ti =

i∑
j=1

αjWtotal.cj + αiWtotal.wi

T = max
1≤i≤p

 i∑
j=1

αjWtotal.cj + αiWtotal.wi

We look for a data distribution α1, ..., αp which minimizes T .

Properties of load-balancing

Lemma

In an optimal solution, all processors end their processing at the
same time.

Demonstration of lemma 1

Two slaves i and i+ 1 with Ti < Ti+1.

time

P1

P4

P3

P2

0 end

We decrease αi+1 by ε.

Demonstration of lemma 1

Two slaves i and i+ 1 with Ti < Ti+1.

P3

P4

time

P1

0

P2

end

We decrease αi+1 by ε.

Demonstration of lemma 1

Two slaves i and i+ 1 with Ti < Ti+1.

P3

P4

time

P1

0

P2

end

We decrease αi+1 by ε.

Demonstration of lemma 1

Two slaves i and i+ 1 with Ti < Ti+1.

0

P2

time

P1

P4

P3

end

We increase αi by ε.

Demonstration of lemma 1

Two slaves i and i+ 1 with Ti < Ti+1.

0

P2

time

P1

P4

P3

end

We increase αi by ε.

Demonstration of lemma 1

Two slaves i and i+ 1 with Ti < Ti+1.

0

time

P1

P4

P3

P2

end

The communication time for the following processors is unchanged.

Demonstration of lemma 1

Two slaves i and i+ 1 with Ti < Ti+1.

0

time

P1

P4

P3

P2

end

We end up with a better solution!

Demonstration of lemma 1 (continuation and conclusion)

I Ideal: T ′i = T ′i+1.
We choose ε such that:

(αi + ε)Wtotal(c+ wi) =

(αi + ε)Wtotalc+ (αi+1 − ε)Wtotal(c+ wi+1)

I The master stops before the slaves: absurd.

I The master stops after the slaves: we decrease P1 by ε.

Property for the selection of ressources

Lemma

In an optimal solution all processors work.

Demonstration: this is just a corollary of lemma 1...

Property for the selection of ressources

Lemma

In an optimal solution all processors work.

Demonstration: this is just a corollary of lemma 1...

Resolution

T = α1Wtotalw1.

T = α2(c+ w2)Wtotal. Therefore α2 =
w1

c+w2
α1.

T = (α2c+ α3(c+ w3))Wtotal. Therefore α3 =
w2

c+w3
α2.

αi =
wi−1

c+wi
αi−1 for i ≥ 2.∑n

i=1 αi = 1.

α1

(
1 +

w1

c+ w2
+ ...+

j∏
k=2

wk−1
c+ wk

+ ...

)
= 1

Resolution

T = α1Wtotalw1.

T = α2(c+ w2)Wtotal. Therefore α2 =
w1

c+w2
α1.

T = (α2c+ α3(c+ w3))Wtotal. Therefore α3 =
w2

c+w3
α2.

αi =
wi−1

c+wi
αi−1 for i ≥ 2.∑n

i=1 αi = 1.

α1

(
1 +

w1

c+ w2
+ ...+

j∏
k=2

wk−1
c+ wk

+ ...

)
= 1

Resolution

T = α1Wtotalw1.

T = α2(c+ w2)Wtotal. Therefore α2 =
w1

c+w2
α1.

T = (α2c+ α3(c+ w3))Wtotal. Therefore α3 =
w2

c+w3
α2.

αi =
wi−1

c+wi
αi−1 for i ≥ 2.∑n

i=1 αi = 1.

α1

(
1 +

w1

c+ w2
+ ...+

j∏
k=2

wk−1
c+ wk

+ ...

)
= 1

Resolution

T = α1Wtotalw1.

T = α2(c+ w2)Wtotal. Therefore α2 =
w1

c+w2
α1.

T = (α2c+ α3(c+ w3))Wtotal. Therefore α3 =
w2

c+w3
α2.

αi =
wi−1

c+wi
αi−1 for i ≥ 2.

∑n
i=1 αi = 1.

α1

(
1 +

w1

c+ w2
+ ...+

j∏
k=2

wk−1
c+ wk

+ ...

)
= 1

Resolution

T = α1Wtotalw1.

T = α2(c+ w2)Wtotal. Therefore α2 =
w1

c+w2
α1.

T = (α2c+ α3(c+ w3))Wtotal. Therefore α3 =
w2

c+w3
α2.

αi =
wi−1

c+wi
αi−1 for i ≥ 2.∑n

i=1 αi = 1.

α1

(
1 +

w1

c+ w2
+ ...+

j∏
k=2

wk−1
c+ wk

+ ...

)
= 1

Resolution

T = α1Wtotalw1.

T = α2(c+ w2)Wtotal. Therefore α2 =
w1

c+w2
α1.

T = (α2c+ α3(c+ w3))Wtotal. Therefore α3 =
w2

c+w3
α2.

αi =
wi−1

c+wi
αi−1 for i ≥ 2.∑n

i=1 αi = 1.

α1

(
1 +

w1

c+ w2
+ ...+

j∏
k=2

wk−1
c+ wk

+ ...

)
= 1

Impact of the order of communications

How important is the influence of the ordering of the processor on
the solution ?

?

No impact of the order of the communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(c+ wi)Wtotal = T . Therefore αi =
1

c+wi

T
Wtotal

.

Processor Pi+1: αicWtotal + αi+1(c+ wi+1)Wtotal = T .
Thus αi+1 =

1
c+wi+1

(T
Wtotal

− αic) =
wi

(c+wi)(c+wi+1)
T

Wtotal
.

Processors Pi and Pi+1:

αi + αi+1 =
c+ wi + wi+1

(c+ wi)(c+ wi+1)

T

Wtotal

No impact of the order of the communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(c+ wi)Wtotal = T . Therefore αi =
1

c+wi

T
Wtotal

.

Processor Pi+1: αicWtotal + αi+1(c+ wi+1)Wtotal = T .
Thus αi+1 =

1
c+wi+1

(T
Wtotal

− αic) =
wi

(c+wi)(c+wi+1)
T

Wtotal
.

Processors Pi and Pi+1:

αi + αi+1 =
c+ wi + wi+1

(c+ wi)(c+ wi+1)

T

Wtotal

No impact of the order of the communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(c+ wi)Wtotal = T . Therefore αi =
1

c+wi

T
Wtotal

.

Processor Pi+1: αicWtotal + αi+1(c+ wi+1)Wtotal = T .

Thus αi+1 =
1

c+wi+1
(T
Wtotal

− αic) =
wi

(c+wi)(c+wi+1)
T

Wtotal
.

Processors Pi and Pi+1:

αi + αi+1 =
c+ wi + wi+1

(c+ wi)(c+ wi+1)

T

Wtotal

No impact of the order of the communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(c+ wi)Wtotal = T . Therefore αi =
1

c+wi

T
Wtotal

.

Processor Pi+1: αicWtotal + αi+1(c+ wi+1)Wtotal = T .
Thus αi+1 =

1
c+wi+1

(T
Wtotal

− αic) =
wi

(c+wi)(c+wi+1)
T

Wtotal
.

Processors Pi and Pi+1:

αi + αi+1 =
c+ wi + wi+1

(c+ wi)(c+ wi+1)

T

Wtotal

No impact of the order of the communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(c+ wi)Wtotal = T . Therefore αi =
1

c+wi

T
Wtotal

.

Processor Pi+1: αicWtotal + αi+1(c+ wi+1)Wtotal = T .
Thus αi+1 =

1
c+wi+1

(T
Wtotal

− αic) =
wi

(c+wi)(c+wi+1)
T

Wtotal
.

Processors Pi and Pi+1:

αi + αi+1 =
c+ wi + wi+1

(c+ wi)(c+ wi+1)

T

Wtotal

Choice of the master processor

We compare processors P1 and P2.

Processor P1: α1w1Wtotal = T . Then, α1 =
1
w1

T
Wtotal

.

Processor P2: α2(c+ w2)Wtotal = T . Thus, α2 =
1

c+w2

T
Wtotal

.

Total volume processed:

α1 + α2 =
c+ w1 + w2

w1(c+ w2)
=
c+ w1 + w2

cw1 + w1w2

Minimal when w1 < w2.
Master = the most powerfull processor (for computations).

Choice of the master processor

We compare processors P1 and P2.

Processor P1: α1w1Wtotal = T . Then, α1 =
1
w1

T
Wtotal

.

Processor P2: α2(c+ w2)Wtotal = T . Thus, α2 =
1

c+w2

T
Wtotal

.

Total volume processed:

α1 + α2 =
c+ w1 + w2

w1(c+ w2)
=
c+ w1 + w2

cw1 + w1w2

Minimal when w1 < w2.
Master = the most powerfull processor (for computations).

Choice of the master processor

We compare processors P1 and P2.

Processor P1: α1w1Wtotal = T . Then, α1 =
1
w1

T
Wtotal

.

Processor P2: α2(c+ w2)Wtotal = T . Thus, α2 =
1

c+w2

T
Wtotal

.

Total volume processed:

α1 + α2 =
c+ w1 + w2

w1(c+ w2)
=
c+ w1 + w2

cw1 + w1w2

Minimal when w1 < w2.
Master = the most powerfull processor (for computations).

Choice of the master processor

We compare processors P1 and P2.

Processor P1: α1w1Wtotal = T . Then, α1 =
1
w1

T
Wtotal

.

Processor P2: α2(c+ w2)Wtotal = T . Thus, α2 =
1

c+w2

T
Wtotal

.

Total volume processed:

α1 + α2 =
c+ w1 + w2

w1(c+ w2)
=
c+ w1 + w2

cw1 + w1w2

Minimal when w1 < w2.
Master = the most powerfull processor (for computations).

Choice of the master processor

We compare processors P1 and P2.

Processor P1: α1w1Wtotal = T . Then, α1 =
1
w1

T
Wtotal

.

Processor P2: α2(c+ w2)Wtotal = T . Thus, α2 =
1

c+w2

T
Wtotal

.

Total volume processed:

α1 + α2 =
c+ w1 + w2

w1(c+ w2)
=
c+ w1 + w2

cw1 + w1w2

Minimal when w1 < w2.
Master = the most powerfull processor (for computations).

Conclusion

I Closed-form expressions for the execution time and the distri-
bution of data.

I Choice of the master.

I The ordering of the processors has no impact.

I All processors take part in the work.

Overview

1 The context

2 Bus-like network: classical resolution

3 Bus-like network: resolution under the divisible load model

4 Star-like network

5 Multi-round algorithms

6 Conclusion

Star-like network

� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �
� �� �� �� �

� �� �� �� �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �
	 	 	 	 		 	 	 	 	

��
��
��
��
��
��
��
��
��
��

� �� �� �� �� �� �� �

�������������������������������
�������������������������������
�������������������������������

�����������������������������
�����������������������������
�����������������������������

�������������
�������������
�������������

���������
���������
���������

I The links between the master and the slaves have different
characteristics.

I The slaves have different computational power.

Notation

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work αiWtotal

with
∑

i ni =Wtotal with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a unit-message from P1 to Pi: ci.
One-port model: P1 sends a single message at a time.

Impact of the order of communications

?

Impact of the order of communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(ci + wi)Wtotal = T . Thus, αi =
1

ci+wi

T
Wtotal

.

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T .
Thus, αi+1 =

1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

.

Volume processed: αi + αi+1 =
ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 =
cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

Processors must be served by decreasing bandwidths.

Impact of the order of communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(ci + wi)Wtotal = T . Thus, αi =
1

ci+wi

T
Wtotal

.

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T .
Thus, αi+1 =

1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

.

Volume processed: αi + αi+1 =
ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 =
cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

Processors must be served by decreasing bandwidths.

Impact of the order of communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(ci + wi)Wtotal = T . Thus, αi =
1

ci+wi

T
Wtotal

.

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T .

Thus, αi+1 =
1

ci+1+wi+1
(1− ci

ci+wi
) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

.

Volume processed: αi + αi+1 =
ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 =
cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

Processors must be served by decreasing bandwidths.

Impact of the order of communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(ci + wi)Wtotal = T . Thus, αi =
1

ci+wi

T
Wtotal

.

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T .
Thus, αi+1 =

1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

.

Volume processed: αi + αi+1 =
ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 =
cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

Processors must be served by decreasing bandwidths.

Impact of the order of communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(ci + wi)Wtotal = T . Thus, αi =
1

ci+wi

T
Wtotal

.

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T .
Thus, αi+1 =

1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

.

Volume processed: αi + αi+1 =
ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 =
cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

Processors must be served by decreasing bandwidths.

Impact of the order of communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(ci + wi)Wtotal = T . Thus, αi =
1

ci+wi

T
Wtotal

.

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T .
Thus, αi+1 =

1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

.

Volume processed: αi + αi+1 =
ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 =
cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

Processors must be served by decreasing bandwidths.

Impact of the order of communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(ci + wi)Wtotal = T . Thus, αi =
1

ci+wi

T
Wtotal

.

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T .
Thus, αi+1 =

1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

.

Volume processed: αi + αi+1 =
ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 =
cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

Processors must be served by decreasing bandwidths.

Ressource selection

Lemma

In an optimal solution, all processors work.

Demonstration of lemma 3

We take an optimal solution. Let Pk be a processor which does not
receive any work: we put it last in the processor ordering and we
give it a fraction αk such that αk(ck + wk)Wtotal is equal to the
processing time of the last processor which received some work.

Why should we put this processor last ?

Demonstration of lemma 3

We take an optimal solution. Let Pk be a processor which does not
receive any work: we put it last in the processor ordering and we
give it a fraction αk such that αk(ck + wk)Wtotal is equal to the
processing time of the last processor which received some work.

Why should we put this processor last ?

Load-balancing property

Lemma

In an optimal solution, all processors end at the same time.

Demonstration of lemma 4

I Most existing proofs are false.

Minimize T,
subject to

∑n
i=1 αi ≥ 1

∀i, αi ≥ 0

∀i,
∑i

k=1 αkck + αiwi ≤ T

Demonstration of lemma 4

I Most existing proofs are false.

Minimize T,
subject to

∑n
i=1 αi ≥ 1

∀i, αi ≥ 0

∀i,
∑i

k=1 αkck + αiwi ≤ T

α2

α1

Demonstration of lemma 4

I Most existing proofs are false.

Minimize T,
subject to

∑n
i=1 αi ≥ 1

∀i, αi ≥ 0

∀i,
∑i

k=1 αkck + αiwi ≤ T
α1

α2

Demonstration of lemma 4

I Most existing proofs are false.

Minimize T,
subject to

∑n
i=1 αi ≥ 1

∀i, αi ≥ 0

∀i,
∑i

k=1 αkck + αiwi ≤ T
α1

α2

Demonstration of lemma 4

I Most existing proofs are false.

Minimize T,
subject to

∑n
i=1 αi ≥ 1

∀i, αi ≥ 0

∀i,
∑i

k=1 αkck + αiwi ≤ T
α1

α2

(x1, x2)

Demonstration of lemma 4

I Most existing proofs are false.

Minimize T,
subject to

∑n
i=1 αi ≥ 1

∀i, αi ≥ 0

∀i,
∑i

k=1 αkck + αiwi ≤ T
α1

α2

(x1, x2)

Conclusion

I The processors must be ordered by decreasing bandwidths

I All processors are working

I All processors end their work at the same time

I Formulas for the execution time and the distribution of data

Overview

1 The context

2 Bus-like network: classical resolution

3 Bus-like network: resolution under the divisible load model

4 Star-like network

5 Multi-round algorithms

6 Conclusion

One round vs. multi-round

αpg

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α1g α2g

Pp

P2

P1

Network

One round

; long idle-times

R0 R1 Rk

Pp

P2

P1

Network

Multi-round

Efficient when Wtotal large

Intuition: start with small rounds, then increase chunks.
Problems:

I linear communication model leads to absurd solution

I resource selection

I number of rounds

I size of each round

One round vs. multi-round

αpg

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α1g α2g

Pp

P2

P1

Network

One round
; long idle-times

R0 R1 Rk

Pp

P2

P1

Network

Multi-round
Efficient when Wtotal large

Intuition: start with small rounds, then increase chunks.
Problems:

I linear communication model leads to absurd solution

I resource selection

I number of rounds

I size of each round

One round vs. multi-round

αpg

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α1g α2g

Pp

P2

P1

Network

One round
; long idle-times

R0 R1 Rk

Pp

P2

P1

Network

Multi-round
Efficient when Wtotal large

Intuition: start with small rounds, then increase chunks.
Problems:

I linear communication model leads to absurd solution

I resource selection

I number of rounds

I size of each round

Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work αiWtotal

with
∑

i ni =Wtotal with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a message of size αi P1 to Pi: Li +
ci × αi.
One-port model: P1 sends and receives a single message at a
time.

Complexity

Definition (One round, ∀i, ci = 0)

Given Wtotal, p workers, (Pi)1≤i≤p, (Li)1≤i≤p, and a rational number
T ≥ 0, and assuming that bandwidths are infinite, is it possible to
compute all Wtotal load units within T time units?

Theorem

The problem with one-round and infinite bandwidths is NP-
complete.

What is the complexity of the general problem with finite bandwidths
and several rounds?

The general problem is NP-hard, but does not appear to be in NP
(no polynomial bound on the number of activations).

Complexity

Definition (One round, ∀i, ci = 0)

Given Wtotal, p workers, (Pi)1≤i≤p, (Li)1≤i≤p, and a rational number
T ≥ 0, and assuming that bandwidths are infinite, is it possible to
compute all Wtotal load units within T time units?

Theorem

The problem with one-round and infinite bandwidths is NP-
complete.

What is the complexity of the general problem with finite bandwidths
and several rounds?

The general problem is NP-hard, but does not appear to be in NP
(no polynomial bound on the number of activations).

Fixed activation sequence

Hypotheses

1 Number of activations: Nact;

2 Whether Pi is the processor used during activation j: χ
(j)
i

Minimize T,under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i =Wtotal

∀k ≤ Nact,∀l :

 k∑
j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

+

Nact∑
j=k

χ
(j)
l α

(j)
l wl ≤ T

∀i, j : α(j)
i ≥ 0

Can be solved in polynomial time.

Fixed number of activations

Minimize T,under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i =Wtotal

∀k ≤ Nact,∀l :

 k∑
j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

+

Nact∑
j=k

χ
(j)
l α

(j)
l wl ≤ T

∀k ≤ Nact :

p∑
i=1

χ
(k)
i ≤ 1

∀i, j : χ(j)
i ∈ {0, 1}

∀i, j : α(j)
i ≥ 0

Exact but exponential

Can lead to branch-and-bound algorithms

Periodic schedule

Tp

Ln αncn Ln αncn Ln αncn

..
.

α1w1

α2w2

α3w3

αnwn

α1c1
α1w1

α2w2

α3w3

αnwn

α1w1

α2w2

α3w3

αnwn

α1c1 α1c1

L2 L2 L2α2c2 α2c2 α2c2

L3 L3 L3α3c3 α3c3 α3c3

L1 L1 L1

Compute

Transfer

Compute

Transfer

Compute

Transfer

Compute

Transfer

How to choose Tp? Which resources to select?

With no overlap (1/4)

Equations

I Divide total execution time T into k periods of duration Tp.

I I ⊂ {1, . . . , p} participating processors.

I Bandwidth limitation:∑
i∈I

(Li + αici) ≤ Tp.

I No overlap:

∀i ∈ I, Li + αi(ci + wi) ≤ Tp.

With no overlap (1/4)

Equations

I Divide total execution time T into k periods of duration Tp.

I I ⊂ {1, . . . , p} participating processors.

I Bandwidth limitation:∑
i∈I

(Li + αici) ≤ Tp.

I No overlap:

∀i ∈ I, Li + αi(ci + wi) ≤ Tp.

With no overlap (1/4)

Equations

I Divide total execution time T into k periods of duration Tp.

I I ⊂ {1, . . . , p} participating processors.

I Bandwidth limitation:∑
i∈I

(Li + αici) ≤ Tp.

I No overlap:

∀i ∈ I, Li + αi(ci + wi) ≤ Tp.

With no overlap (1/4)

Equations

I Divide total execution time T into k periods of duration Tp.

I I ⊂ {1, . . . , p} participating processors.

I Bandwidth limitation:∑
i∈I

(Li + αici) ≤ Tp.

I No overlap:

∀i ∈ I, Li + αi(ci + wi) ≤ Tp.

With no overlap (2/4)

Normalization

I βi average number of tasks processed by Pi during one time
unit.

I Linear program:

Maximize
∑p

i=1 βi{
∀i ∈ I, βi(ci + wi) ≤ 1− Li

Tp∑
i∈I βici ≤ 1−

∑
i∈I Li

Tp

.

Relaxed version

Maximize
∑p

i=1 xi ∀1 ≤ i ≤ p, xi(ci + wi) ≤ 1−∑p
i=1 xici ≤ 1−

∑p
i=1 Li

Tp

.

With no overlap (2/4)

Normalization

I βi average number of tasks processed by Pi during one time
unit.

I Linear program:

Maximize
∑p

i=1 βi{
∀i ∈ I, βi(ci + wi) ≤ 1− Li

Tp∑
i∈I βici ≤ 1−

∑
i∈I Li

Tp

.

Relaxed version

Maximize
∑p

i=1 xi ∀1 ≤ i ≤ p, xi(ci + wi) ≤ 1−∑p
i=1 xici ≤ 1−

∑p
i=1 Li

Tp

.

With no overlap (2/4)

Normalization

I βi average number of tasks processed by Pi during one time
unit.

I Linear program:

Maximize
∑p

i=1 βi{
∀i ∈ I, βi(ci + wi) ≤ 1− Li

Tp∑
i∈I βici ≤ 1−

∑
i∈I Li

Tp

.

Relaxed version

Maximize
∑p

i=1 xi ∀1 ≤ i ≤ p, xi(ci + wi) ≤ 1− Li
Tp∑p

i=1 xici ≤ 1−
∑p

i=1 Li

Tp

.

With no overlap (2/4)

Normalization

I βi average number of tasks processed by Pi during one time
unit.

I Linear program:

Maximize
∑p

i=1 βi{
∀i ∈ I, βi(ci + wi) ≤ 1− Li

Tp∑
i∈I βici ≤ 1−

∑
i∈I Li

Tp

.

Relaxed version

Maximize
∑p

i=1 xi ∀1 ≤ i ≤ p, xi(ci + wi) ≤ 1−
∑p

i=1 Li

Tp∑p
i=1 xici ≤ 1−

∑p
i=1 Li

Tp

.

With no overlap (3/4)

Bandwidth-centric solution

I Sort: c1 ≤ c2 ≤ . . . ≤ cp.

I Let q be the largest index so that
∑q

i=1
ci

ci+wi
≤ 1.

I If q < p, ε = 1−
∑q

i=1
ci

ci+wi
.

I Optimal solution to relaxed program:

∀1 ≤ i ≤ q, xi =
1−

∑p
i=1 Li

Tp

ci + wi

and (if q < p):

xq+1 =

(
1−

∑p
i=1 Li

Tp

)(
ε

cq+1

)
,

and xq+2 = xq+3 = . . . = xp = 0.

With no overlap (4/4)

Asymptotic optimality

I Let Tp =
√
T ∗max and αi = xiTp for all i.

I Then T ≤ T ∗max +O(
√
T ∗max).

I Closed-form expressions for resource selection and task assign-
ment provided by the algorithm.

With no overlap (4/4)

Asymptotic optimality

I Let Tp =
√
T ∗max and αi = xiTp for all i.

I Then T ≤ T ∗max +O(
√
T ∗max).

I Closed-form expressions for resource selection and task assign-
ment provided by the algorithm.

With no overlap (4/4)

Asymptotic optimality

I Let Tp =
√
T ∗max and αi = xiTp for all i.

I Then T ≤ T ∗max +O(
√
T ∗max).

I Closed-form expressions for resource selection and task assign-
ment provided by the algorithm.

Overview

1 The context

2 Bus-like network: classical resolution

3 Bus-like network: resolution under the divisible load model

4 Star-like network

5 Multi-round algorithms

6 Conclusion

What should be remembered?

I Underlying principle: we may not need the optimal solution;
approximated solutions may be as good and far easier to achieve

I Communications costs may play a far bigger role in designing
solutions than computation costs

	The context
	Bus-like network: classical resolution
	Bus-like network: resolution under the divisible load model
	Star-like network
	Multi-round algorithms
	Conclusion

