Steady-State Scheduling

Frédéric Vivien

September 23, 2014

Overview

(1) The context
(2) Routing packets with fixed communication routes
(3) Resolution of the "fluidified" problem
(4) Building a schedule
(5) Packet routing without fixed path
(6) Bags of sequential applications

Overview

(1) The context
(2) Routing packets with fixed communication routes
(3) Resolution of the "fluidified" problem

4 Building a schedule
(5) Packet routing without fixed path
(6) Bags of sequential applications

Platform

Platform: heterogeneous and distributed:

- processors with different capabilities;
- communication links of different characteristics.

Applications

Application made of a very (very) large number of tasks, the tasks can be clustered into a finite number of types, all tasks of a same type having the same characteristics.

Bag-of-tasks applications, parameter sweep applications, etc.

Principle

When we have a very large number of identical tasks to execute, we can imagine that, after some initiation phase, we will reach a (long) steady-state, before a termination phase.

If the steady-state is long enough, the initiation and termination phases will be negligible.

Overview

(1) The context

(2) Routing packets with fixed communication routes
(3) Resolution of the "fluidified" problem
(4) Building a schedule
(5) Packet routing without fixed path
(6) Bags of sequential applications

The problem

Problem: sending a set of message flows.

In a communication network, several flow of packets must be dispatched, each packet flow must be sent from a source to a destination, while following a given path linking the source to the destination.

Notations

- (V, A) a directed graph, representing the communication network.
- A set of n_{c} flows which must be dispatched.
- The k-th flow is denoted $\left(s_{k}, t_{k}, P_{k}, n_{k}\right)$, where
- s_{k} is the source of packets;
- t_{k} is the destination;
- P_{k} is the path to be followed;

We denote by $a_{k, i}$ the i-th edge in the path P_{k}.

- n_{k} is the number of packets in the flow.

Hypotheses

- A packet goes through an edge A in a unit of time.
- At a given time, a single packet traverses a given edge.

Objective

We must decide which packet must go through a given edge at a given time, in order to minimize the overall execution time.

Lower bound on the duration of schedules

We call congestion of edge $a \in A$, and we denote by C_{a}, the total number of packets which go through edge a :

$$
C_{a}=\sum_{k \mid a \in P_{k}} n_{k} \quad C_{\max }=\max _{a} C_{a}
$$

Lower bound on the duration of schedules

We call congestion of edge $a \in A$, and we denote by C_{a}, the total number of packets which go through edge a :

$$
C_{a}=\sum_{k \mid a \in P_{k}} n_{k} \quad C_{\max }=\max _{a} C_{a}
$$

$C_{\max }$ is a lower bound on the execution time of any schedule.

$$
C^{*} \geq C_{\max }
$$

Lower bound on the duration of schedules

We call congestion of edge $a \in A$, and we denote by C_{a}, the total number of packets which go through edge a :

$$
C_{a}=\sum_{k \mid a \in P_{k}} n_{k} \quad C_{\max }=\max _{a} C_{a}
$$

$C_{\max }$ is a lower bound on the execution time of any schedule.

$$
C^{*} \geq C_{\max }
$$

A "fluid" (fractional) resolution of our problem will give us a solution which executes in a time $C_{\max }$.

Overview

(1) The context
(2) Routing packets with fixed communication routes
(3) Resolution of the "fluidified" problem

4 Building a schedule
(5) Packet routing without fixed path

6 Bags of sequential applications

Fluidified (fractional) version: notations

Principle:

- we do not look for an integral solution but for a rational one.
- $n_{k, i}(t)$ (fractional) number of packets waiting at the entrance of the i-th edge of the k-th path, at time t.
- $T_{k, i}(t)$ is the overall time used by the edge $a_{k, i}$ for packets of the k-th flow, during the interval of time $[0 ; t]$.

Fluidified (fractional) version: writing the equations

(1) Initiating the communications

$$
n_{k, 1}(t)=n_{k}-T_{k, 1}(t), \quad \text { for each } k
$$

Fluidified (fractional) version: writing the equations

(1) Initiating the communications

$$
n_{k, 1}(t)=n_{k}-T_{k, 1}(t), \quad \text { for each } k
$$

(2) Conservation law

$$
n_{k, i+1}(t)=T_{k, i}(t)-T_{k, i+1}(t), \quad \text { for each } k
$$

Fluidified (fractional) version: writing the equations

(1) Initiating the communications

$$
n_{k, 1}(t)=n_{k}-T_{k, 1}(t), \quad \text { for each } k
$$

(2) Conservation law

$$
n_{k, i+1}(t)=T_{k, i}(t)-T_{k, i+1}(t), \quad \text { for each } k
$$

(3) Resource constraints

$$
\sum_{(k, i) \mid a_{k, i}=a} T_{k, i}\left(t_{2}\right)-T_{k, i}\left(t_{1}\right) \leq t_{2}-t_{1}, \forall a \in A, \forall t_{2} \geq t_{1} \geq 0
$$

Fluidified (fractional) version: writing the equations

(1) Initiating the communications

$$
n_{k, 1}(t)=n_{k}-T_{k, 1}(t), \quad \text { for each } k
$$

(2) Conservation law

$$
n_{k, i+1}(t)=T_{k, i}(t)-T_{k, i+1}(t), \quad \text { for each } k
$$

(3) Resource constraints

$$
\sum_{(k, i) \mid a_{k, i}=a} T_{k, i}\left(t_{2}\right)-T_{k, i}\left(t_{1}\right) \leq t_{2}-t_{1}, \forall a \in A, \forall t_{2} \geq t_{1} \geq 0
$$

(c) Objective

$$
\text { Minimize } C_{\text {frac }}=\int_{0}^{\infty} \mathbb{1}\left(\sum_{k, i} n_{k, i}(t)\right) d t
$$

Lower bound

- $n_{k, 1}(t)=n_{k}-T_{k, 1}(t), \quad$ for each k
- $n_{k, i+1}(t)=T_{k, i}(t)-T_{k, i+1}(t), \quad$ for each k

Lower bound

- $n_{k, 1}(t)=n_{k}-T_{k, 1}(t), \quad$ for each k
- $n_{k, i+1}(t)=T_{k, i}(t)-T_{k, i+1}(t), \quad$ for each k
- At any time $t, \sum_{j=1}^{i} n_{k, j}(t)=n_{k}-T_{k, i}(t)$

Lower bound

- $n_{k, 1}(t)=n_{k}-T_{k, 1}(t), \quad$ for each k
- $n_{k, i+1}(t)=T_{k, i}(t)-T_{k, i+1}(t), \quad$ for each k
- At any time $t, \sum_{j=1}^{i} n_{k, j}(t)=n_{k}-T_{k, i}(t)$
- For each edge a :

$$
\sum_{(k, i) \mid a_{k, i}=a} \sum_{j=1}^{i} n_{k, j}(t)=\sum_{(k, i) \mid a_{k, i}=a} n_{k}-\sum_{(k, i) \mid a_{k, i}=a} T_{k, i}(t)
$$

Lower bound

- $n_{k, 1}(t)=n_{k}-T_{k, 1}(t), \quad$ for each k
- $n_{k, i+1}(t)=T_{k, i}(t)-T_{k, i+1}(t), \quad$ for each k
- At any time $t, \sum_{j=1}^{i} n_{k, j}(t)=n_{k}-T_{k, i}(t)$
- For each edge a :
$\sum_{(k, i) \mid a_{k, i}=a} \sum_{j=1}^{i} n_{k, j}(t)=\sum_{(k, i) \mid a_{k, i}=a} n_{k}-\sum_{(k, i) \mid a_{k, i}=a} T_{k, i}(t) \geq C_{a}-t$
As long as $t<C_{a}$, there are packets in the system.
Therefore, $C_{\text {frac }} \geq \max _{a} C_{a}=C_{\text {max }}$

A candidate solution

For $t \leq C_{\text {max }}$

A candidate solution

For $t \leq C_{\text {max }}$

- $T_{k, i}(t)=\frac{n_{k}}{C_{\max }} t$, for each k and i.

A candidate solution

For $t \leq C_{\text {max }}$

- $T_{k, i}(t)=\frac{n_{k}}{C_{\max }} t$, for each k and i.
- $n_{k, 1}(t)=n_{k}-T_{k, 1}(t)=n_{k}-\frac{n_{k}}{C_{\max }} t=n_{k}\left(1-\frac{t}{C_{\max }}\right), \quad \forall k$

A candidate solution

For $t \leq C_{\text {max }}$

- $T_{k, i}(t)=\frac{n_{k}}{C_{\max }} t$, for each k and i.
- $n_{k, 1}(t)=n_{k}-T_{k, 1}(t)=n_{k}-\frac{n_{k}}{C_{\max }} t=n_{k}\left(1-\frac{t}{C_{\max }}\right), \quad \forall k$
- $n_{k, i}(t)=0$, for each k and $i \geq 2$.

A candidate solution

For $t \leq C_{\text {max }}$

- $T_{k, i}(t)=\frac{n_{k}}{C_{\max }} t$, for each k and i.
- $n_{k, 1}(t)=n_{k}-T_{k, 1}(t)=n_{k}-\frac{n_{k}}{C_{\max }} t=n_{k}\left(1-\frac{t}{C_{\max }}\right), \quad \forall k$
- $n_{k, i}(t)=0$, for each k and $i \geq 2$.

For $t \geq C_{\text {max }}$

A candidate solution

For $t \leq C_{\text {max }}$

- $T_{k, i}(t)=\frac{n_{k}}{C_{\max }} t$, for each k and i.
- $n_{k, 1}(t)=n_{k}-T_{k, 1}(t)=n_{k}-\frac{n_{k}}{C_{\max }} t=n_{k}\left(1-\frac{t}{C_{\max }}\right), \quad \forall k$
- $n_{k, i}(t)=0$, for each k and $i \geq 2$.

For $t \geq C_{\max }$

- $T_{k, i}(t)=n_{k}$

A candidate solution

For $t \leq C_{\text {max }}$

- $T_{k, i}(t)=\frac{n_{k}}{C_{\max }} t$, for each k and i.
- $n_{k, 1}(t)=n_{k}-T_{k, 1}(t)=n_{k}-\frac{n_{k}}{C_{\max }} t=n_{k}\left(1-\frac{t}{C_{\max }}\right), \quad \forall k$
- $n_{k, i}(t)=0$, for each k and $i \geq 2$.

For $t \geq C_{\text {max }}$

- $T_{k, i}(t)=n_{k}$
- $n_{k, i}(t)=0$

A candidate solution

For $t \leq C_{\text {max }}$

- $T_{k, i}(t)=\frac{n_{k}}{C_{\max }} t$, for each k and i.
- $n_{k, 1}(t)=n_{k}-T_{k, 1}(t)=n_{k}-\frac{n_{k}}{C_{\max }} t=n_{k}\left(1-\frac{t}{C_{\max }}\right), \quad \forall k$
- $n_{k, i}(t)=0$, for each k and $i \geq 2$.

For $t \geq C_{\text {max }}$

- $T_{k, i}(t)=n_{k}$
- $n_{k, i}(t)=0$

This solution is a schedule of makespan $C_{\max }$. We still have to show that it is feasible.

Checking the solution (for $t \leq C_{\max }$)

(1) $n_{k, 1}(t)=n_{k}-T_{k, 1}(t), \quad$ for each k Satisfied by definition.

Checking the solution (for $t \leq C_{\max }$)

(1) $n_{k, 1}(t)=n_{k}-T_{k, 1}(t), \quad$ for each k Satisfied by definition.
(2) $n_{k, i+1}(t)=T_{k, i}(t)-T_{k, i+1}(t)$, for each k $T_{k, i}(t)-T_{k, i+1}(t)=\frac{n_{k}}{C_{\text {max }}} t-\frac{n_{k}}{C_{\text {max }}} t=0=n_{k, i+1}(t)$

Checking the solution (for $t \leq C_{\max }$)

(1) $n_{k, 1}(t)=n_{k}-T_{k, 1}(t), \quad$ for each k

Satisfied by definition.
(2) $n_{k, i+1}(t)=T_{k, i}(t)-T_{k, i+1}(t)$, for each k $T_{k, i}(t)-T_{k, i+1}(t)=\frac{n_{k}}{C_{\text {max }}} t-\frac{n_{k}}{C_{\text {max }}} t=0=n_{k, i+1}(t)$
(3) $\sum_{(k, i) \mid a_{k, i}=a} T_{k, i}\left(t_{2}\right)-T_{k, i}\left(t_{1}\right) \leq t_{2}-t_{1}, \forall a \in A, \forall t_{2} \geq t_{1} \geq 0$

$$
\begin{aligned}
& \sum_{(k, i) \mid a_{k, i}=a}^{\left(C_{a}\right.} T_{k, i}\left(t_{2}\right)-T_{k, i}\left(t_{1}\right)=\sum_{(k, i) \mid a_{k, i}=a} \frac{n_{k}}{C_{\max }}\left(t_{2}-t_{1}\right)= \\
& \frac{C_{\max }}{C_{2}}\left(t_{2}-t_{1}\right) \leq t_{2}-t_{1}
\end{aligned}
$$

Overview

(1) The context
(2) Routing packets with fixed communication routes
(3) Resolution of the "fluidified" problem

4 Building a schedule
(5) Packet routing without fixed path
(6) Bags of sequential applications

Definition of a round

- $\Omega \approx$ duration of a round (will be defined later).

Definition of a round

- $\Omega \approx$ duration of a round (will be defined later).
- m_{k} : number of packets of k-th flow distributed in a single round.

$$
m_{k}=\left\lceil\frac{n_{k} \Omega}{C_{\max }}\right\rceil .
$$

Definition of a round

- $\Omega \approx$ duration of a round (will be defined later).
- m_{k} : number of packets of k-th flow distributed in a single round.

$$
m_{k}=\left\lceil\frac{n_{k} \Omega}{C_{\max }}\right\rceil .
$$

- $D_{a}=\sum_{(k, i) \mid a_{k, i}=a} 1=\left|\left\{k \mid a \in P_{k}\right\}\right|$

$$
D_{\max }=\max _{a} D_{a} \leq n_{c}
$$

Definition of a round

- $\Omega \approx$ duration of a round (will be defined later).
- m_{k} : number of packets of k-th flow distributed in a single round.

$$
m_{k}=\left\lceil\frac{n_{k} \Omega}{C_{\max }}\right\rceil .
$$

- $D_{a}=\sum_{(k, i) \mid a_{k, i}=a} 1=\left|\left\{k \mid a \in P_{k}\right\}\right|$

$$
D_{\max }=\max _{a} D_{a} \leq n_{c}
$$

- Period of the schedule: $\Omega+D_{\text {max }}$.

Schedule

During the time interval $\left[j\left(\Omega+D_{\max }\right) ;(j+1)\left(\Omega+D_{\max }\right)\right]$:

Schedule

During the time interval $\left[j\left(\Omega+D_{\max }\right) ;(j+1)\left(\Omega+D_{\max }\right)\right]$:
The link a forwards m_{k} packets of the k-th flow if there exists i such that $a_{k, i}=a$.

Schedule

During the time interval $\left[j\left(\Omega+D_{\max }\right) ;(j+1)\left(\Omega+D_{\max }\right)\right]$:
The link a forwards m_{k} packets of the k-th flow if there exists i such that $a_{k, i}=a$.

The link a remains idle for a duration of:

$$
\Omega+D_{\max }-\sum_{(k, i) \mid a_{k, i}=a} m_{k}
$$

Schedule

During the time interval $\left[j\left(\Omega+D_{\max }\right) ;(j+1)\left(\Omega+D_{\max }\right)\right]$:
The link a forwards m_{k} packets of the k-th flow if there exists i such that $a_{k, i}=a$.

The link a remains idle for a duration of:

$$
\Omega+D_{\max }-\sum_{(k, i) \mid a_{k, i}=a} m_{k}
$$

(If less than m_{k} packets are waiting in the entrance of a at time $j\left(\Omega+D_{\max }\right)$, a forwards what is available and remains idle longer.)

Feasibility of the schedule

$$
\begin{aligned}
\sum_{(k, i) \mid a_{k, i}=a} m_{k} & =\sum_{(k, i) \mid a_{k, i}=a}\left[\frac{n_{k} \Omega}{C_{\max }}\right] \\
& \leq \sum_{(k, i) \mid a_{k, i}=a}\left(\frac{n_{k} \Omega}{C_{\max }}+1\right) \\
& \leq \frac{C_{a}}{C_{\max }} \Omega+D_{a} \\
& \leq \Omega+D_{\max }
\end{aligned}
$$

Behavior of the sources

- $N_{k, i}(t)$: number of packets of the k-th flow waiting at the entrance of the i-th edge, at time t.
- $a_{k, 1}$ sends m_{k} packets during $\left[0, \Omega+D_{\max }\right]$.

$$
N_{k, 1}\left(\Omega+D_{\max }\right)=n_{k}-m_{k}
$$

- $a_{k, 1}$ sends m_{k} packets during $\left[\Omega+D_{\max }, 2\left(\Omega+D_{\max }\right)\right]$.

$$
N_{k, 1}\left(2\left(\Omega+D_{\max }\right)\right)=n_{k}-2 m_{k}
$$

- We let $T=\left\lceil\frac{C_{\max }}{\Omega}\right\rceil\left(\Omega+D_{\max }\right)$

$$
N_{k, 1}(T) \leq n_{k}-\frac{T}{\Omega+D_{\max }} m_{k} \leq n_{k}-\frac{n_{k} \Omega}{C_{\max }} \frac{C_{\max }}{\Omega}=0
$$

Propagation delay

- $a_{k, 1}$ sends m_{k} packets during $\left[0, \Omega+D_{\max }\right]$.

$$
N_{k, 1}\left(\Omega+D_{\max }\right)=n_{k}-m_{k} \quad N_{k, 2}\left(\Omega+D_{\max }\right)=m_{k}
$$

$$
N_{k, i \geq 3}\left(\Omega+D_{\max }\right)=0
$$

- $a_{k, 1}$ sends m_{k} packets during $\left[\Omega+D_{\max }, 2\left(\Omega+D_{\max }\right)\right]$.

$$
\begin{array}{ll}
N_{k, 1}\left(2\left(\Omega+D_{\max }\right)\right)=n_{k}-2 m_{k} & N_{k, 2}\left(2\left(\Omega+D_{\max }\right)\right)=m_{k} \\
N_{k, 3}\left(2\left(\Omega+D_{\max }\right)\right)=m_{k} & N_{k, i \geq 4}\left(2\left(\Omega+D_{\max }\right)\right)=0
\end{array}
$$

- The delay between the time a packet traverses the first edge of the path P_{k} and the time it traverses its last edge is, at worst:

$$
\left(\left|P_{k}\right|-1\right)\left(\Omega+D_{\max }\right)
$$

We let $L=\max _{k}\left|P_{k}\right|$.

Makespan of the schedule

$$
\begin{aligned}
C_{\text {total }} & \leq T+(L-1)\left(\Omega+D_{\max }\right) \\
& =\left\lceil\frac{C_{\max }}{\Omega}\right\rceil\left(\Omega+D_{\max }\right)+(L-1)\left(\Omega+D_{\max }\right) \\
& \leq\left(\frac{C_{\max }}{\Omega}+1\right)\left(\Omega+D_{\max }\right)+(L-1)\left(\Omega+D_{\max }\right) \\
& =C_{\max }+L D_{\max }+\frac{D_{\max } C_{\max }}{\Omega}+L \Omega
\end{aligned}
$$

The upper bound is minimized by $\Omega=\sqrt{\frac{D_{\max } C_{\max }}{L}}$

$$
C_{\text {total }} \leq C_{\max }+2 \sqrt{C_{\max } D_{\max } L}+D_{\max } L
$$

Asymptotic optimality

$$
C_{\max } \leq C^{*} \leq C_{\text {total }} \leq C_{\max }+2 \sqrt{C_{\max } D_{\max } L}+D_{\max } L
$$

$$
1 \leq \frac{C_{\mathrm{total}}}{C_{\max }} \leq 1+2 \sqrt{\frac{D_{\max } L}{C_{\max }}}+\frac{D_{\max } L}{C_{\max }}
$$

$$
\text { With } \Omega=\sqrt{\frac{D_{\max } C_{\max }}{L}}
$$

Resources needed

$$
\begin{array}{r}
\sum_{(k, i) \mid a_{k, i}=a} m_{k} \leq \sum_{(k, i) \mid a_{k, i}=a}\left(\frac{n_{k}}{C_{\max }} \sqrt{\frac{D_{\max } C_{\max }}{L}}+1\right) \\
\leq \sqrt{\frac{D_{\max } C_{\max }}{L}}+D_{\max }
\end{array}
$$

Conclusion

- We forget the initiation and termination phases
- Rational resolution of the steady-state
- Rounds whose size is the square-root of the solution:
- Each round "loses" a constant amount of time
- The sum of the waisted times increases less quickly than the schedule
- Buffers of size the square-root of the solution

Overview

(1) The context
(2) Routing packets with fixed communication routes
(3) Resolution of the "fluidified" problem

4 Building a schedule
(5) Packet routing without fixed path
(6) Bags of sequential applications

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to
 be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to
 be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to
 be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to
 be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to
 be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to
 be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to
 be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time
- $n_{i, j}^{k, l}$: total number of packets routed from k to l and crossing edge (i, j)

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time
- $n_{i, j}^{k, l}$: total number of packets routed from k to l and crossing edge (i, j)
- Congestion: $\quad C_{i, j}=\quad \sum n_{i, j}^{k, l} ; \quad C_{\max }=\max _{i, j} C_{i, j}$ $(k, l) \mid n^{k, l}>0$

Equations (1/2)

(1) Initialization

$$
\sum_{j \mid(k, j) \in A} n_{k, j}^{k, l}=n^{k, l}
$$

(2) Reception

$$
\sum_{i \mid(i, l) \in A} n_{i, l}^{k, l}=n^{k, l}
$$

(3) Conservation law

$$
\sum_{i \mid(i, j) \in A} n_{i, j}^{k, l}=\sum_{i \mid(j, i) \in A} n_{j, i}^{k, l} \quad \forall(k, l), j \neq k, j \neq l
$$

Equations (2/2)

(1) Congestion

$$
C_{i, j}=\sum_{(k, l) \mid n^{k, l}>0} n_{i, j}^{k, l}
$$

(6) Objective function

$$
C_{\max } \geq C_{i, j}, \quad \forall i, j
$$

$$
\text { Minimize } C_{\max }
$$

Linear program in rational numbers: polynomial-time solution.
Solution:
number of messages $n_{i, j}^{k, l}$ on each edge to minimize congestion

Routing algorithm

(1) Computing optimal solution $C_{\text {max }}$ of previous linear program
(2) Consider periods of length Ω (to be defined later)
(3) During each time-interval $[p \Omega,(p+1) \Omega]$, follow the optimal solution: edge (i, j) forwards:

$$
m_{i, j}^{k, l}=\left\lfloor\frac{n_{i, j}^{k, l} \Omega}{C_{\max }}\right\rfloor \quad \begin{gathered}
\text { packets that go from } k \text { to } l . \\
\text { (if available) }
\end{gathered}
$$

(9) number of such periods: $\left\lceil\frac{C_{\max }}{\Omega}\right\rceil$
(3) After time-step

$$
T \equiv\left\lceil\frac{C_{\max }}{\Omega}\right\rceil \Omega \leq C_{\max }+\Omega
$$

sequentially process M residual packets; this takes no longer than $M L$ time-steps, where L is the maximum length of a simple path in the network

Feasibility

$$
\sum_{(k, l)} m_{i, j}^{k, l} \leq \sum_{(k, l)} \frac{n_{i, j}^{k, l} \Omega}{C_{\max }}=\frac{C_{i, j} \Omega}{C_{\max }} \leq \Omega
$$

Makespan

- Define Ω as $\Omega=\sqrt{C_{\max } n_{c}}$.

Makespan

- Define Ω as $\Omega=\sqrt{C_{\max } n_{c}}$.
- Total number of packets still inside network at time-step T is at most

$$
2|A| \sqrt{C_{\max } n_{c}}+|A| n_{c}
$$

Makespan

- Define Ω as $\Omega=\sqrt{C_{\max } n_{c}}$.
- Total number of packets still inside network at time-step T is at most

$$
2|A| \sqrt{C_{\max } n_{c}}+|A| n_{c}
$$

- Makespan:

$$
\begin{gathered}
C_{\max } \leq C^{*} \leq C_{\max }+\sqrt{C_{\max } n_{c}}+2|A| \sqrt{C_{\max } n_{c}}|V|+|A| n_{c}|V| \\
C^{*}=C_{\max }+O\left(\sqrt{C_{\max }}\right)
\end{gathered}
$$

Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik
Rationale Maximize throughput (total load executed per period)
Simplicity Relaxation of makespan minimization problem

- Ignore initialization and clean-up phases
- Precise ordering/allocation of tasks/messages not needed
- Characterize resource activity during each time-unit:
- which (rational) fraction of time is spent computing for which application?
- which (rational) fraction of time is spent receiving or sending to which neighbor?
Efficiency Periodic schedule, described in compact form

Overview

(1) The context
(2) Routing packets with fixed communication routes
(3) Resolution of the "fluidified" problem

4 Building a schedule
(5) Packet routing without fixed path
(6) Bags of sequential applications

Application graph

n problem instances $\mathcal{P}^{(1)}, \mathcal{P}^{(2)}, \ldots, \mathcal{P}^{(n)}$, where n is large

Application graph

n problem instances $\mathcal{P}^{(1)}, \mathcal{P}^{(2)}, \ldots, \mathcal{P}^{(n)}$, where n is large
Each problem corresponds to a copy of the same task graph $G_{A}=\left(V_{A}, E_{A}\right)$, the application graph

$T_{\text {begin }}$ et $T_{\text {end }}$ are fictitious tasks, used to model the scattering of input files and the gathering of output files

Platform graph

Target platform represented by platform graph $G_{P}=\left(V_{P}, E_{P}\right)$

Edge $P_{i} \rightarrow P_{j}$ is labeled with $c_{i, j}$: time needed to send a unit-length message from P_{i} to P_{j}
Communication model: full overlap, one-port for incoming and outgoing messages

Computations and communications

P_{i} requires $w_{i, k}$ time-units to process task T_{k}
($k \in\{$ begin, 1, end $\}$).

Edge $e_{k, l}: T_{k} \rightarrow T_{l}$ in G_{A} is labeled with $d a t a_{k, l}$: data volume generated by T_{k} and used by T_{l}
Transfer time of a file $e_{k, l}$ from P_{i} to $P_{j}: d a t a_{k, l} \times c_{i, j}$

Definitions

Allocation An allocation is a pair of mappings: $\pi: V_{A} \mapsto V_{P}$ and $\sigma: E_{A} \mapsto\left\{\right.$ paths in $\left.G_{P}\right\}$
Schedule A schedule associated to an allocation (π, σ) is a pair of mappings: $t_{\pi}: V_{A} \mapsto \mathbb{R}$ and application $t_{\sigma}: E_{A} \times E_{P} \mapsto \mathbb{R}$, satisfying to:

- precedence constraints
- resource constraints on processors
- resource constraints on network links
- one-port constraints

Activity variables

$\operatorname{cons}\left(P_{i}, T_{k}\right)$: average number of tasks of type T_{k} processed by P_{i} every time-unit

$$
\forall P_{i}, \forall T_{k} \in V_{A}, 0 \leq \operatorname{cons}\left(P_{i}, T_{k}\right) \times w_{i, k} \leq 1
$$

$\operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right)$: average number of files of type $e_{k, l}$ sent from P_{i} to P_{j} every time-unit

$$
\forall P_{i}, P_{j}, 0 \leq \operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right) \times\left(\operatorname{data}_{k, l} \times c_{i, j}\right) \leq 1
$$

Steady-state equations

(1) One-port for outgoing communications. P_{i} sends messages to its neighbors sequentially

$$
\forall P_{i}, \sum_{P_{i} \rightarrow P_{j}} \sum_{e_{k, l} \in E_{A}}\left(\operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right) \times \operatorname{dat} a_{k, l} \times c_{i, j}\right) \leq 1
$$

(2) One-port for ingoing communications. P_{i} receives messages sequentially

$$
\forall P_{i}, \sum_{P_{j} \rightarrow P_{i}} \sum_{e_{k, l} \in E_{A}}\left(\operatorname{sent}\left(P_{j} \rightarrow P_{i}, e_{k, l}\right) \times d a t a_{k, l} \times c_{j, i}\right) \leq 1
$$

(3) Overlap. Computations and communications take place simultaneously

$$
\forall P_{i}, \sum_{T_{k} \in V_{A}} \operatorname{cons}\left(P_{i}, T_{k}\right) \times w_{i, k} \leq 1
$$

Conservation law

Consider a processor P_{i} and an edge $e_{k, l}$ of the application graph:
Files of type $e_{k, l}$ received: $\sum_{P_{j} \rightarrow P_{i}} \operatorname{sent}\left(P_{j} \rightarrow P_{i}, e_{k, l}\right)$
Files of type $e_{k, l}$ generated: $\operatorname{cons}\left(P_{i}, T_{k}\right)$
Files of type $e_{k, l}$ consumed: $\operatorname{cons}\left(P_{i}, T_{l}\right)$
Files of type $e_{k, l}$ sent: $\sum_{P_{i} \rightarrow P_{j}} \operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right)$
In steady state:

$$
\begin{aligned}
\forall P_{i}, \forall e_{k, l} & : T_{k} \rightarrow T_{l} \in E_{A}, \\
& \sum_{P_{j} \rightarrow P_{i}} \operatorname{sent}\left(P_{j} \rightarrow P_{i}, e_{k, l}\right)+\operatorname{cons}\left(P_{i}, T_{k}\right)=
\end{aligned}
$$

$$
\sum_{P_{i} \rightarrow P_{j}} \operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right)+\operatorname{cons}\left(P_{i}, T_{l}\right)
$$

Upper bound for the throughput

Maximize $\rho=\sum_{i=1}^{p} \operatorname{cons}\left(P_{i}, T_{\text {end }}\right)$,
UNDER THE CONSTRAINTS

$$
\left\{\begin{array}{l}
\text { (1a) } \forall P_{i}, \forall T_{k} \in V_{A}, 0 \leq \operatorname{cons}\left(P_{i}, T_{k}\right) \times w_{i, k} \leq 1 \\
\text { (1b) } \forall P_{i}, P_{j}, 0 \leq \operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right) \times\left(\operatorname{data}_{k, l} \times c_{i, j}\right) \leq 1 \\
\text { (1c) } \forall P_{i}, \sum_{P_{i} \rightarrow P_{j}} \sum_{e_{k, l} \in E_{A}}\left(\operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right) \times \operatorname{data}_{k, l} \times c_{i, j}\right) \leq 1 \\
\text { (1d) } \forall P_{i}, \sum_{P_{j} \rightarrow P_{i}} \sum_{e_{k, l} \in E_{A}}\left(\operatorname{sent}\left(P_{j} \rightarrow P_{i}, e_{k, l}\right) \times \operatorname{data}_{k, l} \times c_{j, i}\right) \leq 1 \\
(1 \mathrm{e}) \quad \forall P_{i}, \sum_{T_{k} \in V_{A}} \operatorname{cons}\left(P_{i}, T_{k}\right) \times w_{i, k} \leq 1 \\
(1 \mathrm{f}) \quad \forall P_{i}, \forall e_{k, l} \in E_{A}: T_{k} \rightarrow T_{l}, \\
\sum_{P_{j} \rightarrow P_{i}} \operatorname{sent}\left(P_{j} \rightarrow P_{i}, e_{k, l}\right)+\operatorname{cons}\left(P_{i}, T_{k}\right)= \\
\sum_{P_{i} \rightarrow P_{j}} \operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right)+\operatorname{cons}\left(P_{i}, T_{l}\right)
\end{array}\right.
$$

How to design a schedule achieving this throughput?

Back to the example

Computations

	$\operatorname{cons}\left(P_{i}, T_{1}\right)$
P_{1}	0.025
P_{2}	0.125
P_{3}	0.125
P_{4}	0.250
Total	21 tasks $/ 40$ seconds

Communications

$$
\operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right)
$$

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (2/2)

| $T_{\text {begin }} P_{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| | ${ } P_{1} \rightarrow P_{2}$ | ${ }_{\underline{V}} P_{1} \rightarrow P_{3}$ | $P_{1} \rightarrow P_{3} \rightarrow P_{4}$ | ${ }^{\text {P }} P_{1} \rightarrow P_{3} \rightarrow P_{4}$ |
| $T_{1} P_{1}$ | $T_{1} P_{2}$ | $T_{1}{ }^{P_{3}}$ | $T_{1} P_{4}$ | $T_{1} P_{4}$ |
| | $P_{2} \rightarrow P_{1}$ | $P_{3} \rightarrow P_{1}$ | $P_{4} \rightarrow P_{2} \rightarrow P_{1}$ | $P_{4} \rightarrow P_{3} \rightarrow P_{1}$ |
| $T_{\text {end }} P_{P_{1}}$ | $\left(T_{\text {end }}\right)_{P_{1}}$ | $\left(T_{\text {end }}\right)_{P_{1}}$ | $\left(T_{\text {end }}\right)$ | $\left(T_{\text {end }}\right)_{P_{1}}$ |
| \mathcal{A}_{1} | \mathcal{A}_{2} | \mathcal{A}_{3} | \mathcal{A}_{4} | \mathcal{A}_{5} |
| 0.025 | 0.125 | 0.125 | 0.125 | 0.125 |

This decomposition is always possible How to orchestrate these allocations?

Communication graph

Fraction of time spent transferring some $e_{k, l}$ file from P_{i} to P_{j} for a given allocation

One-port constraints $=$ matching

Edge coloring (decomposition into matchings)

This decomposition is always possible

Cyclic scheduling achieving optimal throughput

Asymptotically optimal schedule

- The technique used in the example is
- general
- polynomial
- The resulting schedule is asymptotically optimal: within T time-steps, it differs from the optimal schedule by a constant number of tasks (independent of T)

Extensions to collections of general task graphs

- More difficult but possible
- Maximizing throughput NP-hard $)^{-}$
- Most application DAGs have polynomial number of joins \Rightarrow polynomial solution ©

