
Online scheduling

Frédéric Vivien

Frederic.Vivien@inria.fr

October 2, 2014

Outline

1 Introduction and first results

2 Lower bound on the competitive ratio of any algorithm:
the clairvoyant max-stretch case

3 The non-clairvoyant case

4 How to derive a lower bound:
the max-flow case with communications

Outline

1 Introduction and first results

2 Lower bound on the competitive ratio of any algorithm:
the clairvoyant max-stretch case

3 The non-clairvoyant case

4 How to derive a lower bound:
the max-flow case with communications

Offline vs. online algorithmics

Nature of the problem
Known

Objective function
Known

Characteristics of the instance
Known

Discovered during execution

beforehand

Characteristics of a job discovered
When the job is released When the job completes

Offline

(Clairvoyant) Online Non-clairvoyant online

Offline vs. online algorithmics

Nature of the problem
Known

Objective function
Known

Characteristics of the instance
Known Discovered during execution

beforehand

Characteristics of a job discovered
When the job is released When the job completes

Offline

(Clairvoyant) Online Non-clairvoyant online

Offline vs. online algorithmics

Nature of the problem
Known

Objective function
Known

Characteristics of the instance
Known Discovered during execution

beforehand Characteristics of a job discovered
When the job is released

When the job completes

Offline (Clairvoyant) Online

Non-clairvoyant online

Offline vs. online algorithmics

Nature of the problem
Known

Objective function
Known

Characteristics of the instance
Known Discovered during execution

beforehand Characteristics of a job discovered
When the job is released When the job completes

Offline (Clairvoyant) Online Non-clairvoyant online

Notation and hypotheses

Notation

I Jobs J1, ..., Jn
Job Jj arrives in the system at the release date rj
Job Jj has a weight (or a priority) wj
Job Jj has an execution time pj
∆ is the ratio of the largest to the shortest execution time

I Completion time of job Jj : Cj
Flow of job Jj : Fj = Cj − rj (time spent in the system)

Hypotheses

I Jobs may be preempted

I One machine (1 | pmtn | ???)

What should we optimize?

I Makespan: maxj Cj

Time

I Average flow or response time:
∑

j(Cj − rj)

Inconvenient: starvation

I Maximum flow or maximum response time: maxj(Cj − rj)
No starvation. Favor long jobs. Worst-case optimization.

I Maximum weighted flow: maxj wj(Cj − rj)
Gives back some importance to short jobs.

Particular case of the stretch or slowdown:
wj=1/running time of the job on empty platform.

What should we optimize?

I Makespan: maxj Cj

Schedule 2

Schedule 1

Time

I Average flow or response time:
∑

j(Cj − rj)

Inconvenient: starvation

I Maximum flow or maximum response time: maxj(Cj − rj)
No starvation. Favor long jobs. Worst-case optimization.

I Maximum weighted flow: maxj wj(Cj − rj)
Gives back some importance to short jobs.

Particular case of the stretch or slowdown:
wj=1/running time of the job on empty platform.

What should we optimize?

I Makespan: maxj Cj
Release dates are not taken into account

I Average flow or response time:
∑

j(Cj − rj)
Inconvenient: starvation

I Maximum flow or maximum response time: maxj(Cj − rj)
No starvation. Favor long jobs. Worst-case optimization.

I Maximum weighted flow: maxj wj(Cj − rj)
Gives back some importance to short jobs.
Particular case of the stretch or slowdown:
wj=1/running time of the job on empty platform.

FIFO is optimal for max-flow

Consider any instance and a schedule Θ s.t. there exists two jobs
executed consecutively: Ji and Jj with ri < rj and Ci ≥ Cj

ri

Time

rj

In schedule Θ′ we exchange the execution order of Ji and Jj

max
1≤k≤n

C ′k − rk = max{ max
1≤k≤n
k/∈{i,j}

Ck − rk, C ′i − ri, C ′j − rj}

C ′i − ri ≤ Ci − ri and C ′j − rj = Ci − rj < Ci − ri

⇒ max
1≤k≤n

C ′k − rk ≤ max
1≤k≤n

Ck − rk

FIFO is optimal for max-flow

Consider any instance and a schedule Θ s.t. there exists two jobs
executed consecutively: Ji and Jj with ri < rj and Ci ≥ Cj

Time

rjri

In schedule Θ′ we exchange the execution order of Ji and Jj

max
1≤k≤n

C ′k − rk = max{ max
1≤k≤n
k/∈{i,j}

Ck − rk, C ′i − ri, C ′j − rj}

C ′i − ri ≤ Ci − ri and C ′j − rj = Ci − rj < Ci − ri

⇒ max
1≤k≤n

C ′k − rk ≤ max
1≤k≤n

Ck − rk

FIFO is sub-optimal for max-stretch

Optimal

FIFO

0 1 2 3 Time

Max-stretch of FIFO: max{1, 4−1
1 } = 3.

Optimal max-stretch: max{5−0
3 , 1} = 5

3 .

Evaluating the quality of an online schedule

An online algorithm has a competitive factor ρ if and only if

Whatever the set of jobs J1, ..., Jn

Online schedule cost(J1, ..., JN) ≤
ρ× Optimal off-line schedule cost(J1, ..., JN)

The case of list schedules (1/2)

A peculiar framework: tasks are presented one by one to the sched-
uler that must schedule each task on a processor before seeing the
next submitted task (online-list).

Theorem

Any list scheduling algorithm is 2 − 1
p -competitive for the online

minimization of the makespan on p processors, and this bound is
tight.

The case of list schedules (2/2)

Theorem

If the platform contains 2 or 3 processors (i.e., p = 2 or p = 3), then
any list scheduling algorithm achieves the best possible competitive
ratio for the online minimization of the makespan.

p = 2. We consider the instances I1 = (1, 1) and I2 = (1, 1, 2).

p = 3. We consider three instances: I1 = (1, 1, 1), I2 = (1, 1, 1, 3, 3, 3),
and I3 = (1, 1, 1, 3, 3, 3, 6).

FIFO competitiveness

Theorem

First come, first served is:

I optimal for the online minimization of max-flow

I ∆-competitive for the online minimization of sum-flow

I ∆-competitive for the online minimization of max-stretch

I ∆2-competitive for the online minimization of sum-stretch

FIFO competitiveness

Theorem

First come, first served is:

I optimal for the online minimization of max-flow

I ∆-competitive for the online minimization of sum-flow

I ∆-competitive for the online minimization of max-stretch

I ∆2-competitive for the online minimization of sum-stretch

FIFO competitiveness for max-stretch

Theorem

FIFO is ∆ competitive for maximum stretch minimization

This means that

1 FIFO has a competitive factor of ∆ (i.e., on no instance is
FIFO’s max-stretch more than ∆ that of the optimal solution)

2 This bound is tight (=cannot be improved)

Upper bound for max-stretch

Time

During [ri, Cl], FIFO exactly executes Ji, Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl. Then:

S∗ = max
j
S∗j ≥ S∗k =

C∗k − rk
pk

≥ Cl − rl
pk

=
Cl − rl
pl

pl
pk
≥ Sl ×

1

∆

∀l,Sl > S∗l ⇒ ∆× S∗ ≥ Sl

Upper bound for max-stretch

FIFO

Optimal Θ∗
Time

During [ri, Cl], FIFO exactly executes Ji, Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl. Then:

S∗ = max
j
S∗j ≥ S∗k =

C∗k − rk
pk

≥ Cl − rl
pk

=
Cl − rl
pl

pl
pk
≥ Sl ×

1

∆

∀l,Sl > S∗l ⇒ ∆× S∗ ≥ Sl

Upper bound for max-stretch

FIFO

Optimal Θ∗
Time

Cl > C∗lt

Any job Jl s.t. Sl > S∗l (⇔ Cl > C∗l)
t last time before Cl s.t. the processor was idle under FIFO.
t is the release date ri of some job Ji.

During [ri, Cl], FIFO exactly executes Ji, Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl. Then:

S∗ = max
j
S∗j ≥ S∗k =

C∗k − rk
pk

≥ Cl − rl
pk

=
Cl − rl
pl

pl
pk
≥ Sl ×

1

∆

∀l,Sl > S∗l ⇒ ∆× S∗ ≥ Sl

Upper bound for max-stretch

FIFO

Optimal Θ∗
Time

Cl > C∗lt

Any job Jl s.t. Sl > S∗l (⇔ Cl > C∗l)
During [ri, Cl], FIFO exactly executes Ji, Ji+1, ..., Jl−1, Jl.

As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl. Then:

S∗ = max
j
S∗j ≥ S∗k =

C∗k − rk
pk

≥ Cl − rl
pk

=
Cl − rl
pl

pl
pk
≥ Sl ×

1

∆

∀l,Sl > S∗l ⇒ ∆× S∗ ≥ Sl

Upper bound for max-stretch

FIFO

Optimal Θ∗
Time

Cl > C∗lt

Any job Jl s.t. Sl > S∗l (⇔ Cl > C∗l)
During [ri, Cl], FIFO exactly executes Ji, Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl. Then:

S∗ = max
j
S∗j ≥ S∗k =

C∗k − rk
pk

≥ Cl − rl
pk

=
Cl − rl
pl

pl
pk
≥ Sl ×

1

∆

∀l,Sl > S∗l ⇒ ∆× S∗ ≥ Sl

The bound is tight

time0 ε

∆

1

Competitive ratio: 1+∆−ε
1+∆

∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ ≥ ∆− ε

The bound is tight

0 ε

∆

1

time

Max-stretch = 1+∆−ε
1

FIFO

Competitive ratio: 1+∆−ε
1+∆

∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ ≥ ∆− ε

The bound is tight

0 ε

∆

1

time

Max-stretch = 1+∆−ε
1

FIFO

Optimal Max-stretch = 1+∆
∆

Competitive ratio: 1+∆−ε
1+∆

∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ ≥ ∆− ε

The bound is tight

0 ε

∆

1

time

Max-stretch = 1+∆−ε
1

FIFO

Optimal Max-stretch = 1+∆
∆

Competitive ratio: 1+∆−ε
1+∆

∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ ≥ ∆− ε

Outline

1 Introduction and first results

2 Lower bound on the competitive ratio of any algorithm:
the clairvoyant max-stretch case

3 The non-clairvoyant case

4 How to derive a lower bound:
the max-flow case with communications

Bound on the competitive ratio

Theorem

On one processor, any online scheduling algorithm with preemption
minimizing the max-stretch has a competitive ratio greater than
1
2∆
√

2−1, if the system receives at least jobs of three different sizes,
and if ∆ is the ratio between the size of the largest and the smallest
job.

Proof principle: by contradiction we assume that there exists an
algorithm and we build a sequence of jobs and a scenario to make
the algorithm fail.

Bound on the competitive ratio

Theorem

On one processor, any online scheduling algorithm with preemption
minimizing the max-stretch has a competitive ratio greater than
1
2∆
√

2−1, if the system receives at least jobs of three different sizes,
and if ∆ is the ratio between the size of the largest and the smallest
job.

Proof principle: by contradiction we assume that there exists an
algorithm and we build a sequence of jobs and a scenario to make
the algorithm fail.

The adversary

0

The adversary

0

δ

The adversary

0

δ

δ 2δ

Achievable stretch:
2δ − 0

δ
= 2.

The adversary

k

0

δ

δ 2δ

2δ − k

The adversary

0

δ

δ 2δ

2δ − k 2δ + (α− 2)k

α tasks of size k

The job J2+j arrives at time 2δ + (j − 2)k.

The adversary

0

δ

δ 2δ

2δ − k 2δ + (α− 2)k

α tasks of size k

The job J2+j arrives at time 2δ + (j − 2)k.

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

The job J2+j arrives at time 2δ + (j − 2)k.

Achievable stretch:
(2δ + jk)− (2δ + (j − 2)k)

k
= 2.

The adversary

0

δ

2δδ

2δ − k 2δ + (α− 2)k

α tasks of size k

In practice: we do not know what happens after 2δ − k.

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

We want to forbid this case (each size-k job being executed at its
release date).

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

We want to forbid this case (each size-k job being executed at its
release date).

The algorithm being 1
2∆
√

2−1-competitive, J1 and J2 must be com-

pleted at the latest at time: 2 · 1

2
∆
√

2−1 · δ = 2 · 1

2

(
δ

k

)√2−1

· δ

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

We want to forbid this case (each size-k job being executed at its
release date).

The algorithm being 1
2∆
√

2−1-competitive, J1 and J2 must be com-

pleted at the latest at time: 2 · 1

2
∆
√

2−1 · δ = 2 · 1

2

(
δ

k

)√2−1

· δ

We let α =
⌈
1 + k − 2δ

k

⌉
and then 2δ+(α−1)k ≥ 2 · 12

(
δ
k

)√2−1 ·δ.

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

k + 1

We want to forbid this case (each size-k job being executed at its
release date).

The algorithm being 1
2∆
√

2−1-competitive, J1 and J2 must be com-

pleted at the latest at time: 2 · 1

2
∆
√

2−1 · δ = 2 · 1

2

(
δ

k

)√2−1

· δ

We let α =
⌈
1 + k − 2δ

k

⌉
and then 2δ+(α−1)k ≥ 2 · 12

(
δ
k

)√2−1 ·δ.

The adversary

0

δ

2δδ

2δ − k 2δ + (α− 2)k

α tasks of size k

The adversary

0

δ

2δδ

2δ − k

α tasks of size k

2δ + (α− 2)k

β tasks of size 1

2δ + αk + β

The job J2+α+j arrives at time 2δ + (α− 1)k + (j − 1).

The adversary

0

δ

2δδ

2δ − k

α tasks of size k

2δ + (α− 2)k 2δ + αk + β

β tasks of size 1

Achievable stretch (off-line)

Stretch of each job of size k or 1: 1.

Stretch of J1 or J2:
2δ + αk + β

δ

Optimal stretch ≤ 2δ + αk + β

δ

The adversary

0

δ

2δδ

2δ − k

α tasks of size k

2δ + (α− 2)k

β tasks of size 1

2δ + αk + β

Achievable stretch (online)

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

β tasks of size 1

2δ + αk + β

Achievable stretch (online)

The last completed job is of size k.

Stretch ≥ (2δ + αk + β)− (2δ + (α− 2)k)

k
= 2 +

β

k
.

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

β tasks of size 1

2δ + αk + β

Achievable stretch (online)

The last completed job is of size 1.

Stretch ≥ (2δ + αk + β)− (2δ + (α− 1)k + (β − 1))

1
= k + 1.

The adversary

0

δ

2δδ

2δ − k

α tasks of size k

2δ + (α− 2)k

β tasks of size 1

2δ + αk + β

Achievable stretch (online)

Stretch ≥ min

{
2 +

β

k
, k + 1

}
We let: β = dk(k − 1)e

Then: stretch ≥ k + 1.

The adversary: summing things up

α =

⌈
1 + k − 2δ

k

⌉
β = dk(k − 1)e

Optimal stretch ≤ 2δ + αk + β

δ

Achieved stretch ≥ k + 1.

We let k = δ2−
√

2

Therefore k + 1 >

(
1

2
δ
√

2−1

)(
2δ + αk + β

δ

)

The adversary: summing things up

α =

⌈
1 + k − 2δ

k

⌉
β = dk(k − 1)e

Optimal stretch ≤ 2δ + αk + β

δ

Achieved stretch ≥ k + 1.

We let k = δ2−
√

2

Therefore k + 1 >

(
1

2
δ
√

2−1

)(
2δ + αk + β

δ

)

The adversary: summing things up

α =

⌈
1 + k − 2δ

k

⌉
β = dk(k − 1)e

Optimal stretch ≤ 2δ + αk + β

δ

Achieved stretch ≥ k + 1.

We let k = δ2−
√

2

Therefore k + 1 >

(
1

2
δ
√

2−1

)(
2δ + αk + β

δ

)

Outline

1 Introduction and first results

2 Lower bound on the competitive ratio of any algorithm:
the clairvoyant max-stretch case

3 The non-clairvoyant case

4 How to derive a lower bound:
the max-flow case with communications

FIFO competitiveness

Theorem

First come, first served is:

I optimal for the online minimization of max-flow

I ∆-competitive for the online minimization of sum-flow

I ∆-competitive for the online minimization of max-stretch

I ∆2-competitive for the online minimization of sum-stretch

Lower bound as a function of n

Theorem

There is no c-competitive preemptive online algorithm minimizing
the maximum stretch with c < n

Principle of the proof
I We suppose there exists an algorithm whose ratio c = n− ε
I n jobs are released at time 0
I Whatever the scheduler does, no job completes before time n
I Jobs are sorted by non-decreasing cumulative computation time

computed at time n: the i-th job is of size λi−1

I The maximum stretch is at least n (first job has size 1 and is
not completed at n)

I Optimal: execute jobs in Shortest Processing Time first order:∑i
j=1 λ

j−1

λi−1
=

λi − 1

λi−1(λ− 1)
−−−−→
λ→+∞

1

EquiPartition

Theorem

EquiPartition is n-competitive for the minimization of maximum
stretch.

However, EquiPartition is at best ∆+1
2+ln(∆) competitive (when FIFO

is ∆ competitive)

Outline

1 Introduction and first results

2 Lower bound on the competitive ratio of any algorithm:
the clairvoyant max-stretch case

3 The non-clairvoyant case

4 How to derive a lower bound:
the max-flow case with communications

The scheduling problem

The scheduler

I Gather the jobs

I Send them to the processors

The aim

Distribute the identical jobs to the
processors, for the jobs to be pro-
cessed in the best possible way

Network

Processors

Master

Jobs

The scheduling problem

Formally

I n jobs, m processors

I pj : processing time of a job on processor j

I cj : time to send a job from the master to the worker j

I ri: release date of job Ji
I Ci: completion time of job Ji
I The objective function:

I maximal flow: max Ci − ri

Finding a lower bound on the competitiveness (1)

0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time

Idea:

I A fast processor with slow communications (c1 > 1)

I Two identical and slow processors, with fast communications

I If only one job, one must choose the fast processor
(c1 + p1 < 1 + p2)

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

Finding a lower bound on the competitiveness (1)

time0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

τ

We look at time τ ≥ 1 to see what has happened. Three possibili-
ties:

Finding a lower bound on the competitiveness (1)

time0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

τ

We look at time τ ≥ 1 to see what has happened. Three possibilities:

1 Optimal: job on P1, max-flow ≥ c1 + p1.

Finding a lower bound on the competitiveness (1)

time0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

τ

We look at time τ ≥ 1 to see what has happened. Three possibilities:

1 Optimal: job on P1, max-flow ≥ c1 + p1.

2 Nothing done: max-flow ≥ τ + c1 + p1, ratio ≥ τ+c1+p1

c1+p1
.

Finding a lower bound on the competitiveness (1)

time0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

τ

We look at time τ ≥ 1 to see what has happened. Three possibilities:

1 Optimal: job on P1, max-flow ≥ c1 + p1.

2 Nothing done: max-flow ≥ τ + c1 + p1, ratio ≥ τ+c1+p1

c1+p1
.

3 Job sent to P2, max-flow ≥ 1 + p2. Ratio ≥ 1+p2

c1+p1
.

We want to force the algorithm to process the first job on P1.

Finding a lower bound on the competitiveness (1)

time0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

τ

We look at time τ ≥ 1 to see what has happened. If the scheduler
did not pick the first possibility, the adversary sends no more jobs.
Later we will choose τ , c1, p1 and p2 such that the ratio achieved,

min

{
1 + p2

c1 + p1
,
τ + c1 + p1

c1 + p1

}
,

is as large as possible.

Finding a lower bound on the competitiveness (1)

time0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

τ

At time τ we send two new jobs.
We consider all the possible cases.

Finding a lower bound on the competitiveness (1)

time0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

τ

At time τ we send two new jobs.
The two jobs are executed on P1:

max{c1 + p1,

max{max{c1, τ}+ c1 + p1, c1 + 2p1} − τ,
max{max{c1, τ}+ c1 + p1 + max{c1, p1}, c1 + 3p1} − τ}

Finding a lower bound on the competitiveness (1)

time0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

τ

At time τ we send two new jobs.
The first of the two jobs is executed on P2 (or P3), and the other
one on P1.

max{c1 + p1,

(max{c1, τ}+ c2 + p2)− τ,
max{max{c1, τ}+ c2 + c1 + p1, c1 + 2p1} − τ}

Finding a lower bound on the competitiveness (1)

time0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

τ

At time τ we send two new jobs.
The first of the two jobs is executed on P1, and the other one on
P2 (or P3).

max{c1 + p1,

max{max{c1, τ}+ c1 + p1, c1 + 2p1} − τ,
(max{c1, τ}+ c1 + c2 + p2)− τ}

Finding a lower bound on the competitiveness (1)

time0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

τ

At time τ we send two new jobs.
One of the two jobs is executed on P2 and the other one on P3.

max{c1+p1, (max{c1, τ}+c2+p2)−τ, (max{c1, τ}+c2+c2+p2)−τ}

Finding a lower bound on the competitiveness (1)

time0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

τ

At time τ we send two new jobs.
The case where both jobs are executed on P2 (or both on P3) is
worse than the previous one, therefore, we do not need to study it.

Finding a lower bound on the competitiveness (1)

time0

P3(1, p2)

P2(1, p2)

P1(c1, p1)

τ

At time τ we send two new jobs.
The (desired) optimal: the first job on P2, the second on P3, and
the third on P1.

max{c2+p2, (max{c2, τ}+c2+p2)−τ, (max{c2, τ}+c2+c1+p1)−τ}

Finding a lower bound on the competitiveness (2)

Lower bound on the competitiveness of any online algorithm:

min

τ+c1+p1
c1+p1

,

1+p2
c1+p1

,

min

max{c1 + p1,max{max{c1, τ} + c1 + p1, c1 + 2p1} − τ,
max{max{c1, τ} + c1 + p1 + max{c1, p1}, c1 + 3p1} − τ}

max{c1 + p1, (max{c1, τ} + c2 + p2)− τ,max{max{c1, τ} + c2 + c1 + p1, c1 + 2p1} − τ}
max{c1 + p1,max{max{c1, τ} + c1 + p1, c1 + 2p1} − τ, (max{c1, τ} + c1 + c2 + p2)− τ}
max{c1 + p1, (max{c1, τ} + c2 + p2)− τ, (max{c1, τ} + c2 + c2 + p2)− τ}

max{c2+p2,(max{c2,τ}+c2+p2)−τ,(max{c2,τ}+c2+c1+p1)−τ}

Problem: to find τ , c1, p1, and p2 (as c2 = 1) which maximizes this
lower bound.
Constraints: c1 + p1 < 1 + p2.

Finding a lower bound on the competitiveness (3)

1 Numeric resolution

2 Characterization of the shape of the optimal: τ < c1, p1 = 0,
etc.

3 New system:

min

τ+c1
c1

1+p2
c1

min

3c1 − τ
c1 + 1− τ + p2

2c1 − τ + 1 + p2

c1 + 2 + p2 − τ
1+p2

= min

τ + c1
c1

1 + p2
c1

c1 + 1− τ + p2
1 + p2

4 Solution: c1 = 2(1 +
√

2), p2 =
√

2c1 − 1, τ = 2, ρ =
√

2.

Finding a lower bound on the competitiveness (3)

1 Numeric resolution
2 Characterization of the shape of the optimal: τ < c1, p1 = 0,

etc.

3 New system:

min

τ+c1
c1

1+p2
c1

min

3c1 − τ
c1 + 1− τ + p2

2c1 − τ + 1 + p2

c1 + 2 + p2 − τ
1+p2

= min

τ + c1
c1

1 + p2
c1

c1 + 1− τ + p2
1 + p2

4 Solution: c1 = 2(1 +
√

2), p2 =
√

2c1 − 1, τ = 2, ρ =
√

2.

Finding a lower bound on the competitiveness (3)

1 Numeric resolution
2 Characterization of the shape of the optimal: τ < c1, p1 = 0,

etc.
3 New system:

min

τ+c1
c1

1+p2
c1

min

3c1 − τ
c1 + 1− τ + p2

2c1 − τ + 1 + p2

c1 + 2 + p2 − τ
1+p2

= min

τ + c1
c1

1 + p2
c1

c1 + 1− τ + p2
1 + p2

4 Solution: c1 = 2(1 +
√

2), p2 =
√

2c1 − 1, τ = 2, ρ =
√

2.

Finding a lower bound on the competitiveness (3)

1 Numeric resolution
2 Characterization of the shape of the optimal: τ < c1, p1 = 0,

etc.
3 New system:

min

τ+c1
c1

1+p2
c1

min

3c1 − τ
c1 + 1− τ + p2

2c1 − τ + 1 + p2

c1 + 2 + p2 − τ
1+p2

= min

τ + c1
c1

1 + p2
c1

c1 + 1− τ + p2
1 + p2

4 Solution: c1 = 2(1 +
√

2), p2 =
√

2c1 − 1, τ = 2, ρ =
√

2.

	Introduction and first results
	Lower bound on the competitive ratio of any algorithm:the clairvoyant max-stretch case
	The non-clairvoyant case
	How to derive a lower bound:the max-flow case with communications

