Online scheduling

Frédéric Vivien

Frederic.Vivien@inria.fr

October 2, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Introduction and first results

2 Lower bound on the competitive ratio of any algorithm: the clairvoyant max-stretch case

- The non-clairvoyant case
- 4 How to derive a lower bound: the max-flow case with communications

Outline

Introduction and first results

- 2 Lower bound on the competitive ratio of any algorithm: the clairvoyant max-stretch case
- 3 The non-clairvoyant case
- 4 How to derive a lower bound: the max-flow case with communications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Nature of the problem Known

Objective function Known

Characteristics of the instance

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Known beforehand

Offline

Nature of the problem Known

Objective function Known

Known beforehand Characteristics of the instance

Discovered during execution

Offline

Nature of the problem Known

Objective function Known

Known beforehand Characteristics of the instance

Discovered during execution Characteristics of a job discovered When the job is released

Offline

(Clairvoyant) Online

Nature of the problem Known

Objective function Known

Known beforehand Characteristics of the instance

Discovered during execution Characteristics of a job discovered When the job is released When the job completes

Offline

(Clairvoyant) Online

Non-clairvoyant online

Notation and hypotheses

Notation

► Completion time of job J_j: C_j Flow of job J_j: F_j = C_j − r_j (time spent in the system)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Hypotheses

- Jobs may be preempted
- One machine (1 | pmtn | ???)

What should we optimize?

• Makespan: $\max_j C_j$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

What should we optimize?

• Makespan: $\max_j C_j$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What should we optimize?

- Makespan: max_j C_j
 Release dates are not taken into account
- ► Average flow or response time: ∑_j(C_j r_j) Inconvenient: starvation
- ► Maximum flow or maximum response time: max_j(C_j r_j) No starvation. Favor long jobs. Worst-case optimization.

► Maximum weighted flow: max_j w_j(C_j - r_j) Gives back some importance to short jobs. Particular case of the *stretch* or *slowdown*: w_j=1/running time of the job on empty platform.

FIFO is optimal for max-flow

Consider any instance and a schedule Θ s.t. there exists two jobs executed consecutively: J_i and J_j with $r_i < r_j$ and $C_i \ge C_j$

Time

FIFO is optimal for max-flow

Consider any instance and a schedule Θ s.t. there exists two jobs executed consecutively: J_i and J_j with $r_i < r_j$ and $C_i \ge C_j$

Time

In schedule Θ' we exchange the execution order of J_i and J_j

$$\max_{1 \le k \le n} C'_k - r_k = \max\{\max_{\substack{1 \le k \le n \\ k \notin \{i,j\}}} C_k - r_k, C'_i - r_i, C'_j - r_j\}$$

$$C'_i - r_i \le C_i - r_i \quad \text{and} \quad C'_j - r_j = C_i - r_j < C_i - r_i$$

$$\Rightarrow \quad \max_{1 \le k \le n} C'_k - r_k \le \max_{1 \le k \le n} C_k - r_k$$

FIFO is sub-optimal for max-stretch

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Max-stretch of FIFO: $\max\{1, \frac{4-1}{1}\} = 3$.

Optimal max-stretch: $\max\{\frac{5-0}{3}, 1\} = \frac{5}{3}$.

An online algorithm has a competitive factor ρ if and only if

Whatever the set of jobs J_1 , ..., J_n

Online schedule $cost(J_1, ..., J_N) \leq \rho \times Optimal off-line schedule <math>cost(J_1, ..., J_N)$

(ロ)、(型)、(E)、(E)、 E) のQ()

A peculiar framework: tasks are presented one by one to the scheduler that must schedule each task on a processor before seeing the next submitted task (online-list).

Theorem

Any list scheduling algorithm is $2 - \frac{1}{p}$ -competitive for the online minimization of the makespan on p processors, and this bound is tight.

The case of list schedules (2/2)

Theorem

If the platform contains 2 or 3 processors (i.e., p = 2 or p = 3), then any list scheduling algorithm achieves the best possible competitive ratio for the online minimization of the makespan.

- p = 2. We consider the instances $\mathcal{I}_1 = (1, 1)$ and $\mathcal{I}_2 = (1, 1, 2)$.
- p = 3. We consider three instances: $\mathcal{I}_1 = (1, 1, 1)$, $\mathcal{I}_2 = (1, 1, 1, 3, 3, 3)$, and $\mathcal{I}_3 = (1, 1, 1, 3, 3, 3, 6)$.

FIFO competitiveness

Theorem

First come, first served is:

- optimal for the online minimization of max-flow
- ▶ ∆-competitive for the online minimization of sum-flow
- Δ -competitive for the online minimization of max-stretch
- Δ^2 -competitive for the online minimization of sum-stretch

FIFO competitiveness

Theorem

First come, first served is:

- optimal for the online minimization of max-flow
- ▶ ∆-competitive for the online minimization of sum-flow
- Δ-competitive for the online minimization of max-stretch
- Δ^2 -competitive for the online minimization of sum-stretch

FIFO competitiveness for max-stretch

Theorem

FIFO is Δ competitive for maximum stretch minimization

This means that

• FIFO has a competitive factor of Δ (i.e., on no instance is FIFO's max-stretch more than Δ that of the optimal solution)

This bound is tight (=cannot be improved)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

◆□> <圖> < E> < E> < E < のへで</p>

Any job J_l s.t. $S_l > S_l^* (\Leftrightarrow C_l > C_l^*)$

t last time before C_l s.t. the processor was idle under FIFO. t is the release date r_i of some job $J_i.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Any job J_l s.t. $S_l > S_l^*$ ($\Leftrightarrow C_l > C_l^*$) During $[r_i, C_l]$, FIFO exactly executes J_i , J_{i+1} , ..., J_{l-1} , J_l .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Any job J_l s.t. $S_l > S_l^*$ ($\Leftrightarrow C_l > C_l^*$) During $[r_i, C_l]$, FIFO exactly executes J_i , J_{i+1} , ..., J_{l-1} , J_l . As $C_l^* < C_l$, there is a job J_k , $i \le k \le l-1$ s.t. $C_k^* \ge C_l$. Then:

$$\mathcal{S}^* = \max_j \mathcal{S}^*_j \ge \mathcal{S}^*_k = \frac{C^*_k - r_k}{p_k} \ge \frac{C_l - r_l}{p_k} = \frac{C_l - r_l}{p_l} \frac{p_l}{p_k} \ge \mathcal{S}_l \times \frac{1}{\Delta}$$
$$\forall l, \mathcal{S}_l > \mathcal{S}^*_l \implies \Delta \times \mathcal{S}^* \ge \mathcal{S}_l$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\text{Competitive ratio: } \frac{1+\Delta-\epsilon}{\frac{1+\Delta}{\Delta}} = \Delta \frac{1+\Delta-\epsilon}{1+\Delta} = \Delta - \epsilon \ \frac{\Delta}{1+\Delta} \geq \Delta - \epsilon$$

Outline

Introduction and first results

- 2 Lower bound on the competitive ratio of any algorithm: the clairvoyant max-stretch case
- 3 The non-clairvoyant case
- 4 How to derive a lower bound: the max-flow case with communications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bound on the competitive ratio

Theorem

On one processor, any online scheduling algorithm with preemption minimizing the max-stretch has a competitive ratio greater than $\frac{1}{2}\Delta^{\sqrt{2}-1}$, if the system receives at least jobs of three different sizes, and if Δ is the ratio between the size of the largest and the smallest job.

・ロン ・雪 と ・ ヨ と

Theorem

On one processor, any online scheduling algorithm with preemption minimizing the max-stretch has a competitive ratio greater than $\frac{1}{2}\Delta^{\sqrt{2}-1}$, if the system receives at least jobs of three different sizes, and if Δ is the ratio between the size of the largest and the smallest job.

Proof principle: by contradiction we assume that there exists an algorithm and we build a sequence of jobs and a scenario to make the algorithm fail.

-	
Ô	
υ	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

(日) (四) (三) (三)

æ

Achievable stretch:
$$rac{2\delta-0}{\delta}=2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The job J_{2+j} arrives at time $2\delta + (j-2)k$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The job J_{2+j} arrives at time $2\delta + (j-2)k$.

(日)

э.

The job J_{2+j} arrives at time $2\delta + (j-2)k$.

Achievable stretch:
$$\frac{(2\delta + jk) - (2\delta + (j-2)k)}{k} = 2$$

In practice: we do not know what happens after $2\delta - k$.

We want to forbid this case (each size-k job being executed at its release date).

We want to forbid this case (each size-k job being executed at its release date).

The algorithm being $\frac{1}{2}\Delta^{\sqrt{2}-1}$ -competitive, J_1 and J_2 must be completed at the latest at time: $2 \cdot \frac{1}{2}\Delta^{\sqrt{2}-1} \cdot \delta = 2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$

We want to forbid this case (each size-k job being executed at its release date).

The algorithm being $\frac{1}{2}\Delta^{\sqrt{2}-1}$ -competitive, J_1 and J_2 must be completed at the latest at time: $2 \cdot \frac{1}{2}\Delta^{\sqrt{2}-1} \cdot \delta = 2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$ We let $\alpha = \left\lceil 1 + k - \frac{2\delta}{k} \right\rceil$ and then $2\delta + (\alpha - 1)k \ge 2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$.

We want to forbid this case (each size-k job being executed at its release date).

The algorithm being $\frac{1}{2}\Delta^{\sqrt{2}-1}$ -competitive, J_1 and J_2 must be completed at the latest at time: $2 \cdot \frac{1}{2}\Delta^{\sqrt{2}-1} \cdot \delta = 2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$ We let $\alpha = \left\lceil 1 + k - \frac{2\delta}{k} \right\rceil$ and then $2\delta + (\alpha - 1)k \ge 2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

The job $J_{2+\alpha+j}$ arrives at time $2\delta + (\alpha - 1)k + (j - 1)$.

Achievable stretch (off-line)

Stretch of each job of size k or 1: 1.

Stretch of
$$J_1$$
 or J_2 : $\frac{2\delta + \alpha k + \beta}{\delta}$

Optimal stretch
$$\leq \frac{2\delta + \alpha k + \beta}{\delta}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Achievable stretch (online)

Achievable stretch (online)

The last completed job is of size k.

$$\mathsf{Stretch} \geq \frac{(2\delta + \alpha k + \beta) - (2\delta + (\alpha - 2)k)}{k} = 2 + \frac{\beta}{k}$$

Achievable stretch (online)

The last completed job is of size 1.

$$\mathsf{Stretch} \geq \frac{(2\delta + \alpha k + \beta) - (2\delta + (\alpha - 1)k + (\beta - 1))}{1} = k + 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Achievable stretch (online)

$$\mathsf{Stretch} \geq \min\left\{2 + rac{eta}{k}, k+1
ight\}$$

We let: $\beta = \lceil k(k-1) \rceil$

Then: stretch $\geq k + 1$.

The adversary: summing things up

$$\alpha = \left\lceil 1 + k - \frac{2\delta}{k} \right\rceil$$

 $\beta = \lceil k(k-1) \rceil$

$$\mathsf{Optimal \ stretch} \leq \frac{2\delta + \alpha k + \beta}{\delta}$$

Achieved stretch $\geq k + 1$.

The adversary: summing things up

$$\alpha = \left\lceil 1 + k - \frac{2\delta}{k} \right\rceil$$

 $\beta = \lceil k(k-1) \rceil$

$$\mathsf{Optimal \ stretch} \leq \frac{2\delta + \alpha k + \beta}{\delta}$$

Achieved stretch $\geq k + 1$.

We let
$$k = \delta^{2-\sqrt{2}}$$

The adversary: summing things up

$$\alpha = \left\lceil 1 + k - \frac{2\delta}{k} \right\rceil$$

 $\beta = \lceil k(k-1) \rceil$

$$\mathsf{Optimal} \ \mathsf{stretch} \leq rac{2\delta+lpha k+eta}{\delta}$$

Achieved stretch $\geq k + 1$.

We let $k=\delta^{2-\sqrt{2}}$

Therefore
$$k + 1 > \left(\frac{1}{2}\delta^{\sqrt{2}-1}\right) \left(\frac{2\delta + \alpha k + \beta}{\delta}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Outline

Introduction and first results

2 Lower bound on the competitive ratio of any algorithm: the clairvoyant max-stretch case

3 The non-clairvoyant case

4 How to derive a lower bound: the max-flow case with communications

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

FIFO competitiveness

Theorem

First come, first served is:

- optimal for the online minimization of max-flow
- Δ -competitive for the online minimization of sum-flow
- Δ -competitive for the online minimization of max-stretch
- Δ^2 -competitive for the online minimization of sum-stretch

Lower bound as a function of n

Theorem

There is no $c\mbox{-competitive preemptive online algorithm minimizing the maximum stretch with <math display="inline">c < n$

Principle of the proof

- We suppose there exists an algorithm whose ratio $c = n \epsilon$
- n jobs are released at time 0
- \blacktriangleright Whatever the scheduler does, no job completes before time n
- ▶ Jobs are sorted by non-decreasing cumulative computation time computed at time n: the *i*-th job is of size λⁱ⁻¹
- The maximum stretch is at least n (first job has size 1 and is not completed at n)
- Optimal: execute jobs in Shortest Processing Time first order:

$$\frac{\sum_{j=1}^{i} \lambda^{j-1}}{\lambda^{i-1}} = \frac{\lambda^{i} - 1}{\lambda^{i-1}(\lambda - 1)} \xrightarrow[\lambda \to +\infty]{} 1$$

EquiPartition

Theorem

EquiPartition is *n*-competitive for the minimization of maximum stretch.

However, EquiPartition is at best $\frac{\Delta+1}{2+ln(\Delta)}$ competitive (when FIFO is Δ competitive)

Outline

Introduction and first results

2 Lower bound on the competitive ratio of any algorithm: the clairvoyant max-stretch case

- 3 The non-clairvoyant case
- 4 How to derive a lower bound: the max-flow case with communications

The scheduling problem

The scheduler

Gather the jobs

Send them to the processors

The aim

Distribute the *identical* jobs to the processors, for the jobs to be processed in the best possible way

The scheduling problem

Formally

- n jobs, m processors
- ▶ p_j: processing time of a job on processor j
- ▶ c_j: time to send a job from the master to the worker j

- r_i: release date of job J_i
- C_i : completion time of job J_i
- The objective function:
 - maximal flow: max $C_i r_i$

Idea:

- ▶ A fast processor with slow communications (c₁ > 1)
- Two identical and slow processors, with fast communications

• If only one job, one must choose the fast processor $(c_1 + p_1 < 1 + p_2)$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

We look at time $\tau \geq 1$ to see what has happened. Three possibilities:

We look at time $\tau \ge 1$ to see what has happened. Three possibilities: • Optimal: job on P_1 , max-flow $\ge c_1 + p_1$.

We look at time $\tau \geq 1$ to see what has happened. Three possibilities:

- **1** Optimal: job on P_1 , max-flow $\geq c_1 + p_1$.
- **2** Nothing done: max-flow $\geq \tau + c_1 + p_1$, ratio $\geq \frac{\tau + c_1 + p_1}{c_1 + p_1}$.

We look at time $\tau \geq 1$ to see what has happened. Three possibilities:

- Optimal: job on P_1 , max-flow $\geq c_1 + p_1$.
- **2** Nothing done: max-flow $\geq \tau + c_1 + p_1$, ratio $\geq \frac{\tau + c_1 + p_1}{c_1 + p_1}$.

3 Job sent to P_2 , max-flow $\geq 1 + p_2$. Ratio $\geq \frac{1+p_2}{c_1+p_1}$.

We want to force the algorithm to process the first job on P_1 .

We look at time $\tau \ge 1$ to see what has happened. If the scheduler did not pick the first possibility, the adversary sends no more jobs. Later we will choose τ , c_1 , p_1 and p_2 such that the ratio achieved,

$$\min\left\{\frac{1+p_2}{c_1+p_1}, \frac{\tau+c_1+p_1}{c_1+p_1}\right\},\,$$

is as large as possible.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

イロト 不良 トイヨト イロト

э

At time τ we send two new jobs. We consider all the possible cases.

At time τ we send two new jobs. The two jobs are executed on P_1 :

 $\max\{c_1 + p_1, \\ \max\{\max\{c_1, \tau\} + c_1 + p_1, c_1 + 2p_1\} - \tau, \\ \max\{\max\{c_1, \tau\} + c_1 + p_1 + \max\{c_1, p_1\}, c_1 + 3p_1\} - \tau\}$

At time τ we send two new jobs.

The first of the two jobs is executed on P_2 (or P_3), and the other one on P_1 .

 $\max\{c_1 + p_1, \\ (\max\{c_1, \tau\} + c_2 + p_2) - \tau, \\ \max\{\max\{c_1, \tau\} + c_2 + c_1 + p_1, c_1 + 2p_1\} = \tau\} = 0$

At time τ we send two new jobs.

The first of the two jobs is executed on P_1 , and the other one on P_2 (or P_3).

$$\max\{c_1 + p_1, \\ \max\{\max\{c_1, \tau\} + c_1 + p_1, c_1 + 2p_1\} - \tau, \\ (\max\{c_1, \tau\} + c_1 + c_2 + p_2) - \tau\}_{\mathbb{R}}$$

At time τ we send two new jobs.

One of the two jobs is executed on P_2 and the other one on P_3 .

 $\max\{c_1+p_1, (\max\{c_1,\tau\}+c_2+p_2)-\tau, (\max\{c_1,\tau\}+c_2+c_2+p_2)-\tau\}$

At time τ we send two new jobs.

The case where both jobs are executed on P_2 (or both on P_3) is worse than the previous one, therefore, we do not need to study it.

At time τ we send two new jobs.

The (desired) optimal: the first job on P_2 , the second on P_3 , and the third on P_1 .

 $\max\{c_2+p_2, (\max\{c_2,\tau\}+c_2+p_2)-\tau, (\max\{c_2,\tau\}+c_2+c_1+p_1)-\tau\}$

▲ロ▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

Lower bound on the competitiveness of any online algorithm:

 $\begin{cases} \frac{\tau+c_1+p_1}{c_1+p_1}, \\ \frac{1+p_2}{c_1+p_1}, \\ \\ \min \begin{cases} \max\{c_1+p_1, \max\{\max\{c_1, \tau\}+c_1+p_1, c_1+2p_1\} - \tau, \\ \max\{\max\{c_1, \tau\}+c_1+p_1 + \max\{c_1, p_1\}, c_1+3p_1\} - \tau\} \\ \max\{c_1+p_1, \max\{\alpha_1, \tau\}+c_2+p_2) - \tau, \max\{\max\{c_1, \tau\}+c_2+c_1+p_1, c_1+2p_1\} - \tau\} \\ \max\{c_1+p_1, \max\{\max\{c_1, \tau\}+c_1+p_1, c_1+2p_1\} - \tau, (\max\{c_1, \tau\}+c_1+c_2+p_2) - \tau\} \\ \max\{c_1+p_1, (\max\{c_1, \tau\}+c_2+p_2) - \tau, (\max\{c_1, \tau\}+c_2+c_2+p_2) - \tau\} \\ \max\{c_2+p_2, (\max\{c_2, \tau\}+c_2+p_2) - \tau, (\max\{c_2, \tau\}+c_2+c_1+p_1) - \tau\} \end{cases}$

Constraints: $c_1 + p_1 < 1 + p_2$.

Numeric resolution

- Numeric resolution
- 2 Characterization of the shape of the optimal: $\tau < c_1$, $p_1 = 0$, etc.

- Numeric resolution
- ② Characterization of the shape of the optimal: $\tau < c_1$, $p_1 = 0$, etc.
- In the system is a system is a system in the system is a system.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Numeric resolution
- ② Characterization of the shape of the optimal: $\tau < c_1$, $p_1 = 0$, etc.
- In the system of the system

Solution:
$$c_1 = 2(1 + \sqrt{2}), p_2 = \sqrt{2}c_1 - 1, \tau = 2, \rho = \sqrt{2}.$$