Online scheduling

Frédéric Vivien

Frederic.Vivien@inria.fr

October 2, 2014

Outline

(1) Introduction and first results
(2) Lower bound on the competitive ratio of any algorithm: the clairvoyant max-stretch case
(3) The non-clairvoyant case
(4) How to derive a lower bound:
the max-flow case with communications

Outline

（1）Introduction and first results
（2）Lower bound on the competitive ratio of any algorithm： the clairvoyant max－stretch case
（3）The non－clairvoyant case
4．How to derive a lower bound： the max－flow case with communications

Offline vs. online algorithmics

Nature of the problem
 Known

Objective function
Known

Characteristics of the instance

Known
beforehand

Offline

Offline vs. online algorithmics

Nature of the problem
 Known

Objective function
Known

Characteristics of the instance
Known
beforehand

Offline

Offline vs. online algorithmics

Nature of the problem
 Known

Objective function
 Known

Characteristics of the instance
Known
beforehand
Discovered during execution
Characteristics of a job discovered
When the job is released
Offline (Clairvoyant) Online

Offline vs. online algorithmics

Nature of the problem
 Known

Objective function
 Known

Characteristics of the instance
Known
beforehand
Discovered during execution
Characteristics of a job discovered
When the job is released When the job completes
Offline (Clairvoyant) Online Non-clairvoyant online

Notation and hypotheses

Notation

- Jobs J_{1}, \ldots, J_{n} Job J_{j} arrives in the system at the release date r_{j} Job J_{j} has a weight (or a priority) w_{j} Job J_{j} has an execution time p_{j}
Δ is the ratio of the largest to the shortest execution time
- Completion time of job $J_{j}: C_{j}$

Flow of job $J_{j}: F_{j}=C_{j}-r_{j}$ (time spent in the system)
Hypotheses

- Jobs may be preempted
- One machine ($1 \mid$ pmtn | ???)

What should we optimize?

- Makespan: $\max _{j} C_{j}$

What should we optimize?

- Makespan: $\max _{j} C_{j}$

Schedule 1

Schedule 2

What should we optimize?

- Makespan: $\max _{j} C_{j}$

Release dates are not taken into account

- Average flow or response time: $\sum_{j}\left(C_{j}-r_{j}\right)$ Inconvenient: starvation
- Maximum flow or maximum response time: $\max _{j}\left(C_{j}-r_{j}\right)$ No starvation. Favor long jobs. Worst-case optimization.
- Maximum weighted flow: $\max _{j} w_{j}\left(C_{j}-r_{j}\right)$ Gives back some importance to short jobs. Particular case of the stretch or slowdown: $w_{j}=1 /$ running time of the job on empty platform.

FIFO is optimal for max-flow

Consider any instance and a schedule Θ s.t. there exists two jobs executed consecutively: J_{i} and J_{j} with $r_{i}<r_{j}$ and $C_{i} \geq C_{j}$

Time

FIFO is optimal for max-flow

Consider any instance and a schedule Θ s.t. there exists two jobs executed consecutively: J_{i} and J_{j} with $r_{i}<r_{j}$ and $C_{i} \geq C_{j}$

Time

In schedule Θ^{\prime} we exchange the execution order of J_{i} and J_{j}

$$
\begin{gathered}
\max _{1 \leq k \leq n} C_{k}^{\prime}-r_{k}=\max \left\{\max _{\substack{1 \leq k \leq n \\
k \notin\{i, j\}}} C_{k}-r_{k}, C_{i}^{\prime}-r_{i}, C_{j}^{\prime}-r_{j}\right\} \\
C_{i}^{\prime}-r_{i} \leq C_{i}-r_{i} \quad \text { and } \quad C_{j}^{\prime}-r_{j}=C_{i}-r_{j}<C_{i}-r_{i} \\
\Rightarrow \quad \max _{1 \leq k \leq n} C_{k}^{\prime}-r_{k} \leq \max _{1 \leq k \leq n} C_{k}-r_{k}
\end{gathered}
$$

FIFO is sub-optimal for max-stretch

Max-stretch of FIFO: $\max \left\{1, \frac{4-1}{1}\right\}=3$.
Optimal max-stretch: $\max \left\{\frac{5-0}{3}, 1\right\}=\frac{5}{3}$.

Evaluating the quality of an online schedule

An online algorithm has a competitive factor ρ if and only if

Whatever the set of jobs J_{1}, \ldots, J_{n}
Online schedule $\operatorname{cost}\left(J_{1}, \ldots, J_{N}\right) \leq$ $\rho \times$ Optimal off-line schedule $\operatorname{cost}\left(J_{1}, \ldots, J_{N}\right)$

The case of list schedules $(1 / 2)$

A peculiar framework: tasks are presented one by one to the scheduler that must schedule each task on a processor before seeing the next submitted task (online-list).

Theorem

Any list scheduling algorithm is $2-\frac{1}{p}$-competitive for the online minimization of the makespan on p processors, and this bound is tight.

The case of list schedules (2/2)

Theorem

If the platform contains 2 or 3 processors (i.e., $p=2$ or $p=3$), then any list scheduling algorithm achieves the best possible competitive ratio for the online minimization of the makespan.
$p=2$. We consider the instances $\mathcal{I}_{1}=(1,1)$ and $\mathcal{I}_{2}=(1,1,2)$.
$p=3$. We consider three instances: $\mathcal{I}_{1}=(1,1,1), \mathcal{I}_{2}=(1,1,1,3,3,3)$, and $\mathcal{I}_{3}=(1,1,1,3,3,3,6)$.

FIFO competitiveness

Theorem

First come, first served is:

- optimal for the online minimization of max-flow
- Δ-competitive for the online minimization of sum-flow
- Δ-competitive for the online minimization of max-stretch
- Δ^{2}-competitive for the online minimization of sum-stretch

FIFO competitiveness

Theorem

First come, first served is:

- optimal for the online minimization of max-flow
- Δ-competitive for the online minimization of sum-flow
- Δ-competitive for the online minimization of max-stretch
- Δ^{2}-competitive for the online minimization of sum-stretch

FIFO competitiveness for max-stretch

Theorem

FIFO is Δ competitive for maximum stretch minimization

This means that
(1) FIFO has a competitive factor of Δ (i.e., on no instance is FIFO's max-stretch more than Δ that of the optimal solution)
(2) This bound is tight (=cannot be improved)

Upper bound for max-stretch

Upper bound for max-stretch

Time
Optimal Θ^{*}
FIFO

Upper bound for max-stretch

Any job J_{l} s.t. $\mathcal{S}_{l}>\mathcal{S}_{l}^{*}\left(\Leftrightarrow C_{l}>C_{l}^{*}\right)$
t last time before C_{l} s.t. the processor was idle under FIFO.
t is the release date r_{i} of some job J_{i}.

Upper bound for max-stretch

Any job J_{l} s.t. $\mathcal{S}_{l}>\mathcal{S}_{l}^{*}\left(\Leftrightarrow C_{l}>C_{l}^{*}\right)$
During $\left[r_{i}, C_{l}\right]$, FIFO exactly executes $J_{i}, J_{i+1}, \ldots, J_{l-1}, J_{l}$.

Upper bound for max-stretch

Any job J_{l} s.t. $\mathcal{S}_{l}>\mathcal{S}_{l}^{*}\left(\Leftrightarrow C_{l}>C_{l}^{*}\right)$
During $\left[r_{i}, C_{l}\right]$, FIFO exactly executes $J_{i}, J_{i+1}, \ldots, J_{l-1}, J_{l}$.
As $C_{l}^{*}<C_{l}$, there is a job $J_{k}, i \leq k \leq l-1$ s.t. $C_{k}^{*} \geq C_{l}$. Then:

$$
\begin{gathered}
\mathcal{S}^{*}=\max _{j} \mathcal{S}_{j}^{*} \geq \mathcal{S}_{k}^{*}=\frac{C_{k}^{*}-r_{k}}{p_{k}} \geq \frac{C_{l}-r_{l}}{p_{k}}=\frac{C_{l}-r_{l}}{p_{l}} \frac{p_{l}}{p_{k}} \geq \mathcal{S}_{l} \times \frac{1}{\Delta} \\
\forall l, \mathcal{S}_{l}>\mathcal{S}_{l}^{*} \Rightarrow \Delta \times \mathcal{S}^{*} \geq \mathcal{S}_{l}
\end{gathered}
$$

The bound is tight

Competitive ratio: $\frac{1+\Delta-\epsilon}{\frac{1+\Delta}{\Delta}}=\Delta \frac{1+\Delta-\epsilon}{1+\Delta}=\Delta-\epsilon \frac{\Delta}{1+\Delta} \geq \Delta-\epsilon$

Outline

(1) Introduction and first results
(2) Lower bound on the competitive ratio of any algorithm: the clairvoyant max-stretch case
(3) The non-clairvoyant case
(4) How to derive a lower bound: the max-flow case with communications

Bound on the competitive ratio

Theorem

On one processor, any online scheduling algorithm with preemption minimizing the max-stretch has a competitive ratio greater than $\frac{1}{2} \Delta^{\sqrt{2}-1}$, if the system receives at least jobs of three different sizes, and if Δ is the ratio between the size of the largest and the smallest job.

Bound on the competitive ratio

Theorem

On one processor, any online scheduling algorithm with preemption minimizing the max-stretch has a competitive ratio greater than $\frac{1}{2} \Delta^{\sqrt{2}-1}$, if the system receives at least jobs of three different sizes, and if Δ is the ratio between the size of the largest and the smallest job.

Proof principle: by contradiction we assume that there exists an algorithm and we build a sequence of jobs and a scenario to make the algorithm fail.

The adversary

The adversary

The adversary

Achievable stretch: $\frac{2 \delta-0}{\delta}=2$.

The adversary

The adversary

The job J_{2+j} arrives at time $2 \delta+(j-2) k$.

The adversary

The job J_{2+j} arrives at time $2 \delta+(j-2) k$.

The adversary

The job J_{2+j} arrives at time $2 \delta+(j-2) k$.

Achievable stretch: $\frac{(2 \delta+j k)-(2 \delta+(j-2) k)}{k}=2$.

The adversary

In practice: we do not know what happens after $2 \delta-k$.

The adversary

We want to forbid this case (each size- k job being executed at its release date).

The adversary

We want to forbid this case (each size- k job being executed at its release date).

The algorithm being $\frac{1}{2} \Delta^{\sqrt{2}-1}$-competitive, J_{1} and J_{2} must be completed at the latest at time: $2 \cdot \frac{1}{2} \Delta^{\sqrt{2}-1} \cdot \delta=2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$

The adversary

We want to forbid this case (each size- k job being executed at its release date).

The algorithm being $\frac{1}{2} \Delta^{\sqrt{2}-1}$-competitive, J_{1} and J_{2} must be completed at the latest at time: $2 \cdot \frac{1}{2} \Delta^{\sqrt{2}-1} \cdot \delta=2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$ We let $\alpha=\left\lceil 1+k-\frac{2 \delta}{k}\right\rceil$ and then $2 \delta+(\alpha-1) k \geq 2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$.

The adversary

We want to forbid this case (each size- k job being executed at its release date).

The algorithm being $\frac{1}{2} \Delta^{\sqrt{2}-1}$-competitive, J_{1} and J_{2} must be completed at the latest at time: $2 \cdot \frac{1}{2} \Delta^{\sqrt{2}-1} \cdot \delta=2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$ We let $\alpha=\left\lceil 1+k-\frac{2 \delta}{k}\right\rceil$ and then $2 \delta+(\alpha-1) k \geq 2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$.

The adversary

The adversary

The job $J_{2+\alpha+j}$ arrives at time $2 \delta+(\alpha-1) k+(j-1)$.

The adversary

Achievable stretch (off-line)
Stretch of each job of size k or 1: 1 .
Stretch of J_{1} or $J_{2}: \frac{2 \delta+\alpha k+\beta}{\delta}$
Optimal stretch $\leq \frac{2 \delta+\alpha k+\beta}{\delta}$

The adversary

Achievable stretch (online)

The adversary

Achievable stretch (online)
The last completed job is of size k.
Stretch $\geq \frac{(2 \delta+\alpha k+\beta)-(2 \delta+(\alpha-2) k)}{k}=2+\frac{\beta}{k}$.

The adversary

Achievable stretch (online)

The last completed job is of size 1 .
Stretch $\geq \frac{(2 \delta+\alpha k+\beta)-(2 \delta+(\alpha-1) k+(\beta-1))}{1}=k+1$.

The adversary

Achievable stretch (online)
Stretch $\geq \min \left\{2+\frac{\beta}{k}, k+1\right\}$
We let: $\beta=\lceil k(k-1)\rceil$
Then: stretch $\geq k+1$.

The adversary: summing things up

$\alpha=\left\lceil 1+k-\frac{2 \delta}{k}\right\rceil$
$\beta=\lceil k(k-1)\rceil$
Optimal stretch $\leq \frac{2 \delta+\alpha k+\beta}{\delta}$
Achieved stretch $\geq k+1$.

The adversary: summing things up

$\alpha=\left\lceil 1+k-\frac{2 \delta}{k}\right\rceil$
$\beta=\lceil k(k-1)\rceil$
Optimal stretch $\leq \frac{2 \delta+\alpha k+\beta}{\delta}$
Achieved stretch $\geq k+1$.
We let $k=\delta^{2-\sqrt{2}}$

The adversary: summing things up

$\alpha=\left\lceil 1+k-\frac{2 \delta}{k}\right\rceil$
$\beta=\lceil k(k-1)\rceil$
Optimal stretch $\leq \frac{2 \delta+\alpha k+\beta}{\delta}$
Achieved stretch $\geq k+1$.
We let $k=\delta^{2-\sqrt{2}}$
Therefore $k+1>\left(\frac{1}{2} \delta^{\sqrt{2}-1}\right)\left(\frac{2 \delta+\alpha k+\beta}{\delta}\right)$

Outline

（1）Introduction and first results
（2）Lower bound on the competitive ratio of any algorithm： the clairvoyant max－stretch case
（3）The non－clairvoyant case

4 How to derive a lower bound：
the max－flow case with communications

FIFO competitiveness

Theorem

First come, first served is:

- optimal for the online minimization of max-flow
- Δ-competitive for the online minimization of sum-flow
- Δ-competitive for the online minimization of max-stretch
- Δ^{2}-competitive for the online minimization of sum-stretch

Lower bound as a function of n

Theorem

There is no c-competitive preemptive online algorithm minimizing the maximum stretch with $c<n$

Principle of the proof

- We suppose there exists an algorithm whose ratio $c=n-\epsilon$
- n jobs are released at time 0
- Whatever the scheduler does, no job completes before time n
- Jobs are sorted by non-decreasing cumulative computation time computed at time n : the i-th job is of size λ^{i-1}
- The maximum stretch is at least n (first job has size 1 and is not completed at n)
- Optimal: execute jobs in Shortest Processing Time first order:

$$
\frac{\sum_{j=1}^{i} \lambda^{j-1}}{\lambda^{i-1}}=\frac{\lambda^{i}-1}{\lambda^{i-1}(\lambda-1)} \xrightarrow[\lambda \rightarrow+\infty]{ } 1
$$

EquiPartition

Theorem

EquiPartition is n-competitive for the minimization of maximum stretch.

However, EquiPartition is at best $\frac{\Delta+1}{2+\ln (\Delta)}$ competitive (when FIFO is Δ competitive)

Outline

(1) Introduction and first results
(2) Lower bound on the competitive ratio of any algorithm: the clairvoyant max-stretch case
(3) The non-clairvoyant case
(4) How to derive a lower bound:
the max-flow case with communications

The scheduling problem

Jobs

The scheduler

- Gather the jobs
- Send them to the processors

The aim

Distribute the identical jobs to the processors, for the jobs to be processed in the best possible way

The scheduling problem

Formally

- n jobs, m processors
- p_{j} : processing time of a job on processor j
- c_{j} : time to send a job from the master to the worker j
- r_{i} : release date of job J_{i}
- C_{i} : completion time of job J_{i}
- The objective function:
- maximal flow: $\max C_{i}-r_{i}$

Finding a lower bound on the competitiveness (1)

Idea:

- A fast processor with slow communications $\left(c_{1}>1\right)$
- Two identical and slow processors, with fast communications
- If only one job, one must choose the fast processor $\left(c_{1}+p_{1}<1+p_{2}\right)$

Finding a lower bound on the competitiveness (1)

Finding a lower bound on the competitiveness (1)

We look at time $\tau \geq 1$ to see what has happened. Three possibilities:

Finding a lower bound on the competitiveness (1)

We look at time $\tau \geq 1$ to see what has happened. Three possibilities:
(1) Optimal: job on P_{1}, max-flow $\geq c_{1}+p_{1}$.

Finding a lower bound on the competitiveness (1)

We look at time $\tau \geq 1$ to see what has happened. Three possibilities:
(1) Optimal: job on P_{1}, max-flow $\geq c_{1}+p_{1}$.
(2) Nothing done: max-flow $\geq \tau+c_{1}+p_{1}$, ratio $\geq \frac{\tau+c_{1}+p_{1}}{c_{1}+p_{1}}$.

Finding a lower bound on the competitiveness (1)

We look at time $\tau \geq 1$ to see what has happened. Three possibilities:
(1) Optimal: job on P_{1}, max-flow $\geq c_{1}+p_{1}$.
(2) Nothing done: max-flow $\geq \tau+c_{1}+p_{1}$, ratio $\geq \frac{\tau+c_{1}+p_{1}}{c_{1}+p_{1}}$.
(3) Job sent to P_{2}, max-flow $\geq 1+p_{2}$. Ratio $\geq \frac{1+p_{2}}{c_{1}+p_{1}}$.

We want to force the algorithm to process the first job on P_{1}.

Finding a lower bound on the competitiveness (1)

We look at time $\tau \geq 1$ to see what has happened. If the scheduler did not pick the first possibility, the adversary sends no more jobs. Later we will choose τ, c_{1}, p_{1} and p_{2} such that the ratio achieved,

$$
\min \left\{\frac{1+p_{2}}{c_{1}+p_{1}}, \frac{\tau+c_{1}+p_{1}}{c_{1}+p_{1}}\right\}
$$

is as large as possible.

Finding a lower bound on the competitiveness (1)

At time τ we send two new jobs.
We consider all the possible cases.

Finding a lower bound on the competitiveness (1)

At time τ we send two new jobs.
The two jobs are executed on P_{1} :

$$
\begin{aligned}
& \max \left\{c_{1}+p_{1},\right. \\
& \quad \max \left\{\max \left\{c_{1}, \tau\right\}+c_{1}+p_{1}, c_{1}+2 p_{1}\right\}-\tau \\
& \left.\max \left\{\max \left\{c_{1}, \tau\right\}+c_{1}+p_{1}+\max \left\{c_{1}, p_{1}\right\}, c_{1}+3 p_{1}\right\}-\tau\right\}
\end{aligned}
$$

Finding a lower bound on the competitiveness (1)

At time τ we send two new jobs.
The first of the two jobs is executed on P_{2} (or P_{3}), and the other one on P_{1}.

$$
\begin{array}{ll}
\max \left\{c_{1}+p_{1},\right. & \\
& \left(\max \left\{c_{1}, \tau\right\}+c_{2}+p_{2}\right)-\tau, \\
& \max \left\{\max \left\{c_{1}, \tau\right\}+c_{2}+c_{1}+p_{1}, c_{1}+2 p_{1}\right\} \\
1
\end{array}
$$

Finding a lower bound on the competitiveness (1)

At time τ we send two new jobs.
The first of the two jobs is executed on P_{1}, and the other one on P_{2} (or P_{3}).

$$
\begin{aligned}
& \max \left\{c_{1}+p_{1},\right. \\
& \max \left\{\max \left\{c_{1}, \tau\right\}+c_{1}+p_{1}, c_{1}+2 p_{1}\right\}-\tau \\
& \\
& \left.\left(\max \left\{c_{1}, \tau\right\}+c_{1}+c_{2}+p_{2}\right)-\tau\right\}
\end{aligned}
$$

Finding a lower bound on the competitiveness (1)

At time τ we send two new jobs.
One of the two jobs is executed on P_{2} and the other one on P_{3}.

$$
\max \left\{c_{1}+p_{1},\left(\max \left\{c_{1}, \tau\right\}+c_{2}+p_{2}\right)-\tau,\left(\max \left\{c_{1}, \tau\right\}+c_{2}+c_{2}+p_{2}\right)-\tau\right\}
$$

Finding a lower bound on the competitiveness (1)

At time τ we send two new jobs.
The case where both jobs are executed on P_{2} (or both on P_{3}) is worse than the previous one, therefore, we do not need to study it.

Finding a lower bound on the competitiveness (1)

At time τ we send two new jobs.
The (desired) optimal: the first job on P_{2}, the second on P_{3}, and the third on P_{1}.

$$
\max \left\{c_{2}+p_{2},\left(\max \left\{c_{2}, \tau\right\}+c_{2}+p_{2}\right)-\tau,\left(\max \left\{c_{2}, \tau\right\}+c_{2}+c_{1}+p_{1}\right)-\tau\right\}
$$

Finding a lower bound on the competitiveness (2)

Lower bound on the competitiveness of any online algorithm:

Problem: to find τ, c_{1}, p_{1}, and p_{2} (as $c_{2}=1$) which maximizes this lower bound.
Constraints: $c_{1}+p_{1}<1+p_{2}$.

Finding a lower bound on the competitiveness (3)

(1) Numeric resolution

Finding a lower bound on the competitiveness (3)

(1) Numeric resolution
(2) Characterization of the shape of the optimal: $\tau<c_{1}, p_{1}=0$, etc.

Finding a lower bound on the competitiveness (3)

(1) Numeric resolution
(2) Characterization of the shape of the optimal: $\tau<c_{1}, p_{1}=0$, etc.
(3) New system:

$$
\min \left\{\begin{array}{l}
\frac{\tau+c_{1}}{c_{1}} \\
\frac{1+p_{2}}{c_{1}} \\
\frac{\min \left\{\begin{array}{l}
3 c_{1}-\tau \\
c_{1}+1-\tau+p_{2} \\
2 c_{1}-\tau+1+p_{2} \\
c_{1}+2+p_{2}-\tau
\end{array}\right.}{1+p_{2}}
\end{array} \quad=\min \left\{\begin{array}{l}
\frac{\tau+c_{1}}{c_{1}} \\
\frac{1+p_{2}}{c_{1}} \\
\frac{c_{1}+1-\tau+p_{2}}{1+p_{2}}
\end{array}\right.\right.
$$

Finding a lower bound on the competitiveness (3)

(1) Numeric resolution
(2) Characterization of the shape of the optimal: $\tau<c_{1}, p_{1}=0$, etc.
(3) New system:

$$
\min \left\{\begin{array}{l}
\frac{\tau+c_{1}}{c_{1}} \\
\frac{1+p_{2}}{c_{1}} \\
\min \left\{\begin{array}{l}
3 c_{1}-\tau \\
c_{1}+1-\tau+p_{2} \\
2 c_{1}-\tau+1+p_{2} \\
c_{1}+2+p_{2}-\tau
\end{array}\right. \\
\frac{1+p_{2}}{}
\end{array} \quad=\min \left\{\begin{array}{l}
\frac{\tau+c_{1}}{c_{1}} \\
\frac{1+p_{2}}{c_{1}} \\
\frac{c_{1}+1-\tau+p_{2}}{1+p_{2}}
\end{array}\right.\right.
$$

(9) Solution: $c_{1}=2(1+\sqrt{2}), p_{2}=\sqrt{2} c_{1}-1, \tau=2, \rho=\sqrt{2}$.

