
How to deal with uncertainties and dynamicity?

Frédéric Vivien

October 9, 2014

1/ 39



2/ 39

Outline

1 Sensitivity and Robustness

2 Analyzing the sensitivity: the case of Backfilling

3 Extreme robust solution: Internet-Based Computing

4 Dynamic load-balancing and performance prediction

5 Conclusion



3/ 39

Outline

1 Sensitivity and Robustness

2 Analyzing the sensitivity: the case of Backfilling

3 Extreme robust solution: Internet-Based Computing

4 Dynamic load-balancing and performance prediction

5 Conclusion



4/ 39

The problem: the world is not perfect!

I Uncertainties
I On the platforms’ characteristics

(Processor power, link bandwidth, etc.)
I On the applications’ characteristics

(Volume of computation to be performed, volume of messages
to be sent, etc.)

I Dynamicity
I Of network (interferences with other applications, etc.)
I Of processors (interferences with other users, other processors

of the same node, other cores of the same processor, hardware
failure, etc.)

I Of applications (on which detail should the simulation focus?)



5/ 39

Solutions: to prevent or to cure?

To prevent

I Algorithms tolerant to uncertainties and dynamicity.

To cure

I Algorithms auto-adapting to actual conditions.

Leitmotiv: the more the information, the more precise we can stat-
ically define the solutions, the better our chances to “succeed”



6/ 39

Analyzing the sensitivity

Question: we have defined a solution, how is it going to behave “in
practice”?

Possible approach

1 Definition of an algorithm A.

2 Modeling the uncertainties and the dynamicity.

3 Analyzing the sensitivity of A as follows:

I For each theoretical instance of the problem

I Evaluate the solution found by A
I For each “actual” instance corresponding to the given theoret-

ical instance, find the optimal solution and the relative perfor-
mance of the solution found by A.

Sensitivity of A: worst relative performance, or (weighted) av-
erage relative performance, etc.



7/ 39

Analyzing the sensitivity: an example

Problem

I Master-slave platform with two identical processors

I Flow of two types of identical tasks

I Objective function: maximize minimum throughput between
the two applications (max-min fairness)

P1

P2

A possible solution... null if processor P2 fails.



7/ 39

Analyzing the sensitivity: an example

Problem

I Master-slave platform with two identical processors

I Flow of two types of identical tasks

I Objective function: maximize minimum throughput between
the two applications (max-min fairness)

P1

P2

A possible solution...

null if processor P2 fails.



7/ 39

Analyzing the sensitivity: an example

Problem

I Master-slave platform with two identical processors

I Flow of two types of identical tasks

I Objective function: maximize minimum throughput between
the two applications (max-min fairness)

P1

P2

A possible solution... null if processor P2 fails.



8/ 39

Robust solutions

An algorithm is said to be robust if its solutions stay close to the
optimal when the actual parameters are slightly different from the
theoretical parameters.

P1

P2

This solution stays optimal whatever the variations in the perfor-
mance of processors: it is not sensitive to this parameter!



9/ 39

An example: the problem

Problem:

I A master has an output bandwidth B.

I p workers; worker Pi is linked with the bandwidth bi and a
computation rate ci .

I n task flows; each flow is a set of identical tasks
A task of flow i requires βk units of communications and γk
units of computations

I ρ
(k)
i : throughput of application k on processor i .

ρ(k) =
∑

i ρ
(k)
i is the overall throughput of application k on the

platform

I Objective: maximize mink ρ
(k).

Dynamicity: a processor may fail



9/ 39

An example: the problem

Problem:

I A master has an output bandwidth B.

I p workers; worker Pi is linked with the bandwidth bi and a
computation rate ci .

I n task flows; each flow is a set of identical tasks
A task of flow i requires βk units of communications and γk
units of computations

I ρ
(k)
i : throughput of application k on processor i .

ρ(k) =
∑

i ρ
(k)
i is the overall throughput of application k on the

platform

I Objective: maximize mink ρ
(k).

Dynamicity: a processor may fail



9/ 39

An example: the problem

Problem:

I A master has an output bandwidth B.

I p workers; worker Pi is linked with the bandwidth bi and a
computation rate ci .

I n task flows; each flow is a set of identical tasks
A task of flow i requires βk units of communications and γk
units of computations

I ρ
(k)
i : throughput of application k on processor i .

ρ(k) =
∑

i ρ
(k)
i is the overall throughput of application k on the

platform

I Objective: maximize mink ρ
(k).

Dynamicity: a processor may fail



9/ 39

An example: the problem

Problem:

I A master has an output bandwidth B.

I p workers; worker Pi is linked with the bandwidth bi and a
computation rate ci .

I n task flows; each flow is a set of identical tasks
A task of flow i requires βk units of communications and γk
units of computations

I ρ
(k)
i : throughput of application k on processor i .

ρ(k) =
∑

i ρ
(k)
i is the overall throughput of application k on the

platform

I Objective: maximize mink ρ
(k).

Dynamicity: a processor may fail



9/ 39

An example: the problem

Problem:

I A master has an output bandwidth B.

I p workers; worker Pi is linked with the bandwidth bi and a
computation rate ci .

I n task flows; each flow is a set of identical tasks
A task of flow i requires βk units of communications and γk
units of computations

I ρ
(k)
i : throughput of application k on processor i .

ρ(k) =
∑

i ρ
(k)
i is the overall throughput of application k on the

platform

I Objective: maximize mink ρ
(k).

Dynamicity: a processor may fail



9/ 39

An example: the problem

Problem:

I A master has an output bandwidth B.

I p workers; worker Pi is linked with the bandwidth bi and a
computation rate ci .

I n task flows; each flow is a set of identical tasks
A task of flow i requires βk units of communications and γk
units of computations

I ρ
(k)
i : throughput of application k on processor i .

ρ(k) =
∑

i ρ
(k)
i is the overall throughput of application k on the

platform

I Objective: maximize mink ρ
(k).

Dynamicity: a processor may fail



10/ 39

An example: classical solution

1 Resource constraints: processing power

∀i ,
∑
k

ρ
(k)
i γk ≤ ci

2 Resource constraints: workers’ bandwidth

∀i ,
∑
k

ρ
(k)
i βk ≤ bi

3 Resource constraints: master’s bandwidth∑
i ,k

ρ
(k)
i βk ≤ B

4 Objective

Maximize min
k

∑
i

ρ
(k)
i



10/ 39

An example: classical solution

1 Resource constraints: processing power

∀i ,
∑
k

ρ
(k)
i γk ≤ ci

2 Resource constraints: workers’ bandwidth

∀i ,
∑
k

ρ
(k)
i βk ≤ bi

3 Resource constraints: master’s bandwidth∑
i ,k

ρ
(k)
i βk ≤ B

4 Objective

Maximize min
k

∑
i

ρ
(k)
i



10/ 39

An example: classical solution

1 Resource constraints: processing power

∀i ,
∑
k

ρ
(k)
i γk ≤ ci

2 Resource constraints: workers’ bandwidth

∀i ,
∑
k

ρ
(k)
i βk ≤ bi

3 Resource constraints: master’s bandwidth∑
i ,k

ρ
(k)
i βk ≤ B

4 Objective

Maximize min
k

∑
i

ρ
(k)
i



10/ 39

An example: classical solution

1 Resource constraints: processing power

∀i ,
∑
k

ρ
(k)
i γk ≤ ci

2 Resource constraints: workers’ bandwidth

∀i ,
∑
k

ρ
(k)
i βk ≤ bi

3 Resource constraints: master’s bandwidth∑
i ,k

ρ
(k)
i βk ≤ B

4 Objective

Maximize min
k

∑
i

ρ
(k)
i



11/ 39

An example: a robust solution

1 ∀i ,
∑
k

ρ
(k)
i γk ≤ ci

2 ∀i ,
∑
k

ρ
(k)
i βk ≤ bi

3

∑
i ,k

ρ
(k)
i βk ≤ B

4 Objective when exactly worker Pp fails:

ρp̄ = min
k

∑
i 6=p

ρ
(k)
i

5 Objective: Maximize min

{
min
p

ρp̄

ρ
(opt)
p̄

,min
k

∑
i

ρ
(k)
i

ρ(opt)

}



11/ 39

An example: a robust solution

1 ∀i ,
∑
k

ρ
(k)
i γk ≤ ci

2 ∀i ,
∑
k

ρ
(k)
i βk ≤ bi

3

∑
i ,k

ρ
(k)
i βk ≤ B

4 Objective when exactly worker Pp fails:

ρp̄ = min
k

∑
i 6=p

ρ
(k)
i

5 Objective: Maximize min

{
min
p

ρp̄

ρ
(opt)
p̄

,min
k

∑
i

ρ
(k)
i

ρ(opt)

}



11/ 39

An example: a robust solution

1 ∀i ,
∑
k

ρ
(k)
i γk ≤ ci

2 ∀i ,
∑
k

ρ
(k)
i βk ≤ bi

3

∑
i ,k

ρ
(k)
i βk ≤ B

4 Objective when exactly worker Pp fails:

ρp̄ = min
k

∑
i 6=p

ρ
(k)
i

5 Objective: Maximize min

{
min
p

ρp̄

ρ
(opt)
p̄

,min
k

∑
i

ρ
(k)
i

ρ(opt)

}



12/ 39

Outline

1 Sensitivity and Robustness

2 Analyzing the sensitivity: the case of Backfilling

3 Extreme robust solution: Internet-Based Computing

4 Dynamic load-balancing and performance prediction

5 Conclusion



13/ 39

Analyzing the sensitivity: the case of Backfilling (1)

Context:

I cluster shared between many users

I need for an allocation policy, and a reservation policy

I job request: number of processors + maximal utilization time
(A job exceeding its estimate is automatically killed)

Simplistic policies:

I First Come First Served: lead to resource waste

I Reservations: too static (jobs finish usually earlier than pre-
dicted)

I Backfilling: large scheduling overhead, possible starvation



14/ 39

Analyzing the sensitivity: the case of Backfilling (2)

The EASY backfilling scheme

I The jobs are considered in First-Come First-Served order

I Each time a job arrives or a job completes, a reservation is
made for the first job that cannot be immediately started, later
jobs that can be started immediately are started.

I In practice jobs are submitted with runtime estimates.
A job exceeding its estimate is automatically killed.



15/ 39

Analyzing the sensitivity: the case of Backfilling (3)

The set-up

I 128-node IBM SP2 (San Diego Supercomputer Center)

I Log from May 1998 to April 2000: 67,667 jobs
Parallel Workload Archive (www.cs.huji.ac.il/labs/parallel/workload/)

I Job runtime limit: 18 hours.
(Some dozens of seconds may be needed to kill a job.)

I Performance measure: average slowdown (= average stretch).

Bounded slowdown: max

(
1,

Tw + Tr

max(10,Tr )

)

Execution is simulated based on the trace: enable to change task
duration (or scheduling policy).

www.cs.huji.ac.il/labs/parallel/workload/


15/ 39

Analyzing the sensitivity: the case of Backfilling (3)

The set-up

I 128-node IBM SP2 (San Diego Supercomputer Center)

I Log from May 1998 to April 2000: 67,667 jobs
Parallel Workload Archive (www.cs.huji.ac.il/labs/parallel/workload/)

I Job runtime limit: 18 hours.
(Some dozens of seconds may be needed to kill a job.)

I Performance measure: average slowdown (= average stretch).

Bounded slowdown: max

(
1,

Tw + Tr

max(10,Tr )

)

Execution is simulated based on the trace: enable to change task
duration (or scheduling policy).

www.cs.huji.ac.il/labs/parallel/workload/


16/ 39

Analyzing the sensitivity: the case of Backfilling (4)

The length of a job running for 18 hours and 30 seconds is shorten
by 30 seconds.



16/ 39

Analyzing the sensitivity: the case of Backfilling (4)



16/ 39

Analyzing the sensitivity: the case of Backfilling (4)



16/ 39

Analyzing the sensitivity: the case of Backfilling (4)



17/ 39

Outline

1 Sensitivity and Robustness

2 Analyzing the sensitivity: the case of Backfilling

3 Extreme robust solution: Internet-Based Computing

4 Dynamic load-balancing and performance prediction

5 Conclusion



18/ 39

Internet-Based Computing

Context

I Volunteer computing (over the Internet)

I Processing resources unknown, unreliable

I Application with precedence constraints (task graph)

The principle

I Motivation: lessening the likelihood of the “gridlock” that can
arise when a computation stalls pending computation of already
allocated tasks.



19/ 39

Internet-Based Computing: example

A possible schedule
(enabled, in process, completed)



19/ 39

Internet-Based Computing: example

A possible schedule
(enabled, in process, completed)



19/ 39

Internet-Based Computing: example

A possible schedule
(enabled, in process, completed)



19/ 39

Internet-Based Computing: example

A possible schedule
(enabled, in process, completed)



19/ 39

Internet-Based Computing: example

A possible schedule
(enabled, in process, completed)



19/ 39

Internet-Based Computing: example

A possible schedule
(enabled, in process, completed)



19/ 39

Internet-Based Computing: example

Another possible schedule
(enabled, in process, completed)



19/ 39

Internet-Based Computing: example

Another possible schedule
(enabled, in process, completed)



19/ 39

Internet-Based Computing: example

Another possible schedule
(enabled, in process, completed)



19/ 39

Internet-Based Computing: example

Another possible schedule
(enabled, in process, completed)



19/ 39

Internet-Based Computing: example

Another possible schedule
(enabled, in process, completed)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



20/ 39

Internet-Based Computing: example

The IC-optimal schedule: after t tasks have been executed, the
number of eligible (= executable) tasks is maximal (for any t)



21/ 39

Internet-Based Computing: results

Results:

I IC-optimal schedule for basic DAGs (forks, joins, cliques, etc.)

I Decomposition of DAGs into basic building blocks

I IC-optimal schedules for blocks compositions

Shortcomings:

I No IC-optimal schedules for many DAGs (even trees)

I Move from “maximize number of eligible tasks at all times” to
“maximal average number of eligible tasks”



22/ 39

Outline

1 Sensitivity and Robustness

2 Analyzing the sensitivity: the case of Backfilling

3 Extreme robust solution: Internet-Based Computing

4 Dynamic load-balancing and performance prediction

5 Conclusion



23/ 39

General scheme

To cure (rather than to prevent): the algorithm balance the load to
take into account uncertainties and dynamicity.

I From time to time, do:

Each invocation has a cost: the invocations should only take
place at “useful” instants

I Compute a good solution using the observed parameters.

How do we predict the future from the past?

I Evaluate the cost of balancing the load
I If the gain is larger than the cost: load-balance

If the objective is to minimize the running time, the comparison
is obvious. How do we compare a time and some QoS?



23/ 39

General scheme

To cure (rather than to prevent): the algorithm balance the load to
take into account uncertainties and dynamicity.

I From time to time, do:

Each invocation has a cost: the invocations should only take
place at “useful” instants

I Compute a good solution using the observed parameters.

How do we predict the future from the past?

I Evaluate the cost of balancing the load
I If the gain is larger than the cost: load-balance

If the objective is to minimize the running time, the comparison
is obvious. How do we compare a time and some QoS?



23/ 39

General scheme

To cure (rather than to prevent): the algorithm balance the load to
take into account uncertainties and dynamicity.

I From time to time, do:

Each invocation has a cost: the invocations should only take
place at “useful” instants

I Compute a good solution using the observed parameters.

How do we predict the future from the past?

I Evaluate the cost of balancing the load

I If the gain is larger than the cost: load-balance

If the objective is to minimize the running time, the comparison
is obvious. How do we compare a time and some QoS?



23/ 39

General scheme

To cure (rather than to prevent): the algorithm balance the load to
take into account uncertainties and dynamicity.

I From time to time, do:

Each invocation has a cost: the invocations should only take
place at “useful” instants

I Compute a good solution using the observed parameters.

How do we predict the future from the past?

I Evaluate the cost of balancing the load
I If the gain is larger than the cost: load-balance

If the objective is to minimize the running time, the comparison
is obvious. How do we compare a time and some QoS?



23/ 39

General scheme

To cure (rather than to prevent): the algorithm balance the load to
take into account uncertainties and dynamicity.

I From time to time, do:
Each invocation has a cost: the invocations should only take
place at “useful” instants

I Compute a good solution using the observed parameters.

How do we predict the future from the past?

I Evaluate the cost of balancing the load
I If the gain is larger than the cost: load-balance

If the objective is to minimize the running time, the comparison
is obvious. How do we compare a time and some QoS?



23/ 39

General scheme

To cure (rather than to prevent): the algorithm balance the load to
take into account uncertainties and dynamicity.

I From time to time, do:
Each invocation has a cost: the invocations should only take
place at “useful” instants

I Compute a good solution using the observed parameters.

How do we predict the future from the past?

I Evaluate the cost of balancing the load
I If the gain is larger than the cost: load-balance

If the objective is to minimize the running time, the comparison
is obvious. How do we compare a time and some QoS?



23/ 39

General scheme

To cure (rather than to prevent): the algorithm balance the load to
take into account uncertainties and dynamicity.

I From time to time, do:
Each invocation has a cost: the invocations should only take
place at “useful” instants

I Compute a good solution using the observed parameters.
How do we predict the future from the past?

I Evaluate the cost of balancing the load
I If the gain is larger than the cost: load-balance

If the objective is to minimize the running time, the comparison
is obvious. How do we compare a time and some QoS?



24/ 39

Performance monitoring

Distributed system which periodically monitors/records network and
processor performance.

Also, allows to predict the future performance of the network and
of the processors.

Does the past enable to predict the future?



24/ 39

Performance monitoring

Distributed system which periodically monitors/records network and
processor performance.

Also, allows to predict the future performance of the network and
of the processors.

Does the past enable to predict the future?



25/ 39

How useful is old information?

The problem

I The values used when taking decisions have already “aged”.

I Is it a problem? Should we take this ageing into account?



26/ 39

Framework: the platform

I A set of n servers.

I Tasks arrive according to a Poisson law of througput λn, λ < 1.

I Task execution time: exponential law of mean 1.

I Each server executes in FIFO order the tasks it receives.

I We look at the time each task spent in the system (=flow).



27/ 39

Framework: information

There is a bulletin board on which are displayed the loads of the
different processors.

This information may be wrong or approximate.

We only deal with the case in which this information is old.

This is the only information available to the tasks: they cannot com-
municate between each other and have some coordinated behavior.



28/ 39

The obvious strategies

I Random and uniform choice of the server.
I Low overhead, finite length of queues.

I Random and uniform choice of d servers, the task being sent
on the least loaded of the d servers.

I Better than random, practical in distributed settings (poll a
small number of processors)

I Task sent on the least loaded server.
I Optimal in a variety of situations, need for centralization.



28/ 39

The obvious strategies

I Random and uniform choice of the server.
I Low overhead, finite length of queues.

I Random and uniform choice of d servers, the task being sent
on the least loaded of the d servers.

I Better than random, practical in distributed settings (poll a
small number of processors)

I Task sent on the least loaded server.
I Optimal in a variety of situations, need for centralization.



28/ 39

The obvious strategies

I Random and uniform choice of the server.
I Low overhead, finite length of queues.

I Random and uniform choice of d servers, the task being sent
on the least loaded of the d servers.

I Better than random, practical in distributed settings (poll a
small number of processors)

I Task sent on the least loaded server.
I Optimal in a variety of situations, need for centralization.



29/ 39

First model: periodic updates

I Each T units of time the bulletin board is updated with correct
information.

I Pi ,j(t): fraction of queues with true load j but load i on the
board, at time t

I qi (t) rate of arrivals at a queue with size i on the board at time
t

System dynamics:

dPi ,j(t)

dt
= Pi ,j−1(t)× qi (t) + Pi ,j+1(t)− Pi ,j(t)× qi (t)− Pi ,j(t)



30/ 39

First model: specific strategies

fractions of servers with (apparent) load i : bi (t) =
∑

j Pi ,j(t)

I choose the least loaded among d random servers

qi (t) = λ

(∑
j≥i bj(t)

)d
−
(∑

j>i bj(t)
)d

bi (t)

I choose the shortest queue (assume there is always a server with
load 0)

q0(t) =
λ

b0(t)

qi (t) = 0 i 6= 0



30/ 39

First model: specific strategies

fractions of servers with (apparent) load i : bi (t) =
∑

j Pi ,j(t)

I choose the least loaded among d random servers

qi (t) = λ

(∑
j≥i bj(t)

)d
−
(∑

j>i bj(t)
)d

bi (t)

I choose the shortest queue (assume there is always a server with
load 0)

q0(t) =
λ

b0(t)

qi (t) = 0 i 6= 0



31/ 39

Three possible resolutions

1. Theoretical:

I fixed point when
dPi,j (t)

dt = 0?

I fixed cycle on [kT , (k + 1)T ]

I can be solved using waiting queue theory (close form, but com-
plex)

2. Practice with the above differential system:

I simulations, on truncated version of the system (bounding i
and j)

3. Practice without the differential system:

I simulate 100 queues

I can use every distribution you want

After using 2 and 3: comparable results on same set of parameters.



31/ 39

Three possible resolutions

1. Theoretical:

I fixed point when
dPi,j (t)

dt = 0?

I fixed cycle on [kT , (k + 1)T ]

I can be solved using waiting queue theory (close form, but com-
plex)

2. Practice with the above differential system:

I simulations, on truncated version of the system (bounding i
and j)

3. Practice without the differential system:

I simulate 100 queues

I can use every distribution you want

After using 2 and 3: comparable results on same set of parameters.



31/ 39

Three possible resolutions

1. Theoretical:

I fixed point when
dPi,j (t)

dt = 0?

I fixed cycle on [kT , (k + 1)T ]

I can be solved using waiting queue theory (close form, but com-
plex)

2. Practice with the above differential system:

I simulations, on truncated version of the system (bounding i
and j)

3. Practice without the differential system:

I simulate 100 queues

I can use every distribution you want

After using 2 and 3: comparable results on same set of parameters.



31/ 39

Three possible resolutions

1. Theoretical:

I fixed point when
dPi,j (t)

dt = 0?

I fixed cycle on [kT , (k + 1)T ]

I can be solved using waiting queue theory (close form, but com-
plex)

2. Practice with the above differential system:

I simulations, on truncated version of the system (bounding i
and j)

3. Practice without the differential system:

I simulate 100 queues

I can use every distribution you want

After using 2 and 3: comparable results on same set of parameters.



32/ 39

First model: results

n = 100 and λ = 0.5

n = 100 and λ = 0.9



32/ 39

First model: results

n = 100 and λ = 0.5 n = 100 and λ = 0.9



32/ 39

First model: results

n = 8 and λ = 0.9 n = 100 and λ = 0.9



33/ 39

First model: more elaborated strategies

I Time-based: random choice among the servers which are sup-
posed to be the least loaded.

I Record-Insert: centralized service in which each task updates
the bulletin board by indicating on which server it is sent.

n = 100 and λ = 0.9



34/ 39

Second model: continuous updates

Model: continuous updates, but the information used is T units of
time old.

n = 100 and λ = 0.9

Age of information
exactly T



34/ 39

Second model: continuous updates

Model: continuous updates, but the information used is T units of
time old.

n = 100 and λ = 0.9

Age of information
exactly T exponential distribution,average T



34/ 39

Second model: continuous updates

Model: continuous updates, but the information used is T units of
time old.

n = 100 and λ = 0.9

Age of information
exactly T uniform distribution on [T2 ; 3T

2 ]



34/ 39

Second model: continuous updates

Model: continuous updates, but the information used is T units of
time old.

n = 100 and λ = 0.9

Age of information
exactly T uniform distribution on [0; 2T ]



35/ 39

Third model: de-synchronized updates

The different servers update their information in a de-synchronized
manner, each following an exponential law of average T .

n = 100 and λ = 0.9

Regular updates De-synchronized updates.



36/ 39

And if some were cheating?

With a probability p a task does not choose between two randomly
determined servers, but takes the least loaded of all servers.



37/ 39

Complete vs. incomplete information

Complete information

I Requires some centralization (or total replication);

I Communications of the most remote elements to the “center”;

I Obsolescence of the information.

Decentralized schedulers

I The local data are more up-to-date;

I A local optimization does not always lead to a global optimiza-
tion...



38/ 39

Outline

1 Sensitivity and Robustness

2 Analyzing the sensitivity: the case of Backfilling

3 Extreme robust solution: Internet-Based Computing

4 Dynamic load-balancing and performance prediction

5 Conclusion



39/ 39

Conclusion

I An obvious need to be able to cope with the dynamicity and
the uncertainties.

I Crucial need to be able to model the dynamicity and the un-
certainty.

I The static world is already complex enough!

I Where is the trade-off between the precision of the models and
their usability?

I Trade-off between static and dynamic approaches?


	Sensitivity and Robustness
	Analyzing the sensitivity: the case of Backfilling
	Extreme robust solution: Internet-Based Computing
	Dynamic load-balancing and performance prediction
	Conclusion

