
Work-stealing

October 14, 2014

1/ 25



2/ 25

Context

I A parallel platform with p processors
I A task-graph G to be executed
I Non-clairvoyant setting: the structure of G and/or the

execution times of its constitutive tasks are discovered
online



3/ 25

Work-sharing approach

Centralized scheduling
I A single list stores all ready tasks
I All processors retrieve work from that list

Advantage(s)
I Global view and knowledge

Drawback(s)
I Does not scale (contentions, etc.)



4/ 25

Work-stealing approach

Distributed scheduling
I Each processor owns a list of “its” ready tasks

Advantage(s)
I No contention problem
I Scalable solution

Drawback(s)
I Processors with empty lists do not know where to retrieve

work from



5/ 25

Stealing policies 1/2

Global round-robin
I A global variable holds the identity of the next processor to

steal from
I Variable incremented after each steal (successful or not)
I Advantage: eventual progress
I Drawback: centralized solution...

Local round-robin
I Each processor has its own variable indicating the next

processor it should try to steal from
I Variable incremented after each steal (successful or not)
I Advantage: eventual progress; solution is scalable
I Drawback: all stealing processors may attempt to steal

from the same processor; arbitrary notion of “distance”
between processors



6/ 25

Stealing policies 2/2

Random stealing (Blumofe and Leiserson)
I The processor to steal from is randomly and uniformly

chosen
I Advantage: decentralized; scalable; no notion of

“distance”; low probability of simultaneous steal from same
processor

I Drawback: performance???



7/ 25

Execution time as a function of number of steals

Assumption
I A steal takes a unit time (whether it is successful or not)

(Hence, contentions are taken into account)
Notation

I Overall work: W (execution time on a single processor)
I Overall execution time: Tp

I Number of steal attempts: S

p × Tp = W + S

(A processor is either working or doing a steal attempt)



8/ 25

The work-stealing algorithm

Principle
I Deepest-first order for execution
I Breadth-first order for steals

Specification
I Each processor stores ready tasks in a deque

(double-ended queue)
I A new ready task is stored at the bottom of the deque
I The next task to be (locally) processed is taken from the

bottom of the deque
I A task is stolen from the top of a randomly picked deque



9/ 25

Algorithm performance

Assumptions
I The DAG has a single entry node
I The DAG has a depth D
I The maximum out-degree of a node is 2
I A node has a unit execution time

Number of steal attempts

E[S] = O(p × D)

With probability at least 1− ε, the number of steals is bounded
by

S = O
(

p
(

D + log
(

1
ε

)))



10/ 25

Enabling tree

I If execution of node u enables node v
I (u, v) is an enabling edge
I u designated parent of v
I Every node (except the root) has exactly one designated

parent
I The enabling edges generate an enabling tree
I Node u of depth d(u) in the enabling tree has weight

w(u) = D − d(u)



11/ 25

Structural lemma 1/2

Theorem
The designated parents of the nodes in the deque lie on some
root-to-leaf path in the enabling tree

Proof by induction
I Initial case: trivial when deque is empty
I Induction

I Trivial in the case of a steal
I Trivial when an execution complete when the deque was

empty: at most two ready nodes, at most one in the deque
I What about execution completion when the deque was not

previously empty?
If a single new ready node: no problem (this node is
processed right away)



12/ 25

Structural lemma 2/2

Execution completion when the deque was not previously
empty

0u

1u

2u

v

3u

0v

3v

1v

2

➠
2v

0u

0v

1u

3

2u

3

v

u

1

v

x

y

(a) Before. (b) After.

Figure 9: The deque of a processor before and after the execution of the assigned node enables 2 children and .

any kernel. We consider various restrictions on kernel behavior in order to demonstrate environments in
which the running time of the work stealer is optimal.

The following definitions will prove to be useful in our analysis. An instruction in the sequence executed
by some process is a milestone if and only if one of the following two conditions holds: (i) execution of
a node by process occurs at that instruction, or (ii) a popTop invocation completes. From the scheduling
loop of Figure 3, we observe that a given process may execute at most some constant number of instructions
between successive milestones. Throughout this section, we let denote a sufficiently large constant such
that in any sequence of consecutive instructions executed by a process, at least one is a milestone.

The remainder of this section is organized as follows. Section 4.1 reduces the analysis to bounding the
number of “throws”. Section 4.2 defines a potential function that is central to all of our upper-bound argu-
ments. Sections 4.3 and 4.4 present our upper bounds for dedicated and multiprogrammed environments.

4.1 Throws
In this section we show that the execution time of our work stealer is , where is the
number of “throws”, that is, steal attempts satisfying a technical condition stated below. This goal cannot
be achieved without restricting the kernel, so in addition to proving this bound on execution time, we shall
state and justify certain kernel restrictions.

One fundamental obstacle prevents us from proving the desired performance bound within the (unre-
stricted) multiprogramming model of Section 2. The problem is that the kernel may bias the random steal
attempts towards the empty deques. In particular, consider the steal attempts initiated within some fixed
interval of steps. The adversary can bias these steal attempts towards the empty deques by delaying those
steal attempts that choose nonempty deques as victims so that they occur after the end of the interval.

To address this issue, we restrict the kernel to schedule in rounds rather than steps. A process that is
scheduled in a particular round executes between and instructions during the round, where is the
constant defined at the beginning of Section 4. The precise number of instructions that a process executes
during a round is determined by the kernel in an arbitrary manner. We assume that the process executes
these to instructions in serial order, but we allow the instruction streams of different processes to
be interleaved arbitrarily, as determined by the kernel. We claim that our requirement that processes be

15



13/ 25

Amortized analysis using a potential function

Potential function
I Let Ri be the set of ready nodes at the beginning of round i
I Each ready node u ∈ Ri has a potential φi(u):

φi(u) =

{
32w(u)−1 if u is processed
32w(u) otherwise (u is in a deque)

I Potential at round i :

Φi =
∑
u∈Ri

φi(u)

I Initial potential: Φ0 = 32D−1

I Final potential: 0



14/ 25

Potential never increases

Two potential-changing actions
I Node u is removed from a deque (either through

work-stealing or because the completion of the previous
processing did not enable any node)
φi(u)− φi+1(u) = 32w(u) − 32w(u)−1 = 2

332w(u) = 2
3φi(u)

I Completion of a processed node (enabling some nodes)
Completion of node u enables nodes x and y : x is
processed and y placed in the deque

φi(u)− φi+1(x)− φi+1(y) = 32w(u)−1 − 32w(x)−1 − 32w(y)

= 32w(u)−1 − 32(w(u)−1)−1 − 32(w(u)−1)

= 32w(u)−1 (1− 1
9 −

1
3

)
= 5

9φi(u) > 0



15/ 25

Partitioning processors

I q a processor: Ri(q) set of ready nodes in q’s deque plus
the node it processes

Φ(q) =
∑

u∈Ri (q)

φi(u)

I Ai : set of processors whose deque is empty
Di : set of other processors

Φi = Φi(Ai) + Φi(Di)

I Aim: prove that every p steal attempts the potential
decreases by a constant fraction with constant probability



16/ 25

Top-heavy deques

Theorem
Let q be a processor in Di . The topmost node u in q’s deque is
such that:

φi(u) ≥ 3
4

Φi(q)

Proof
I Let y be the node processed by q
I Suppose u is the only node in the deque
I Suppose u and y have the same designated parent

Φi(q) = φi(u) + φi(y)

= 32w(u) + 32w(y)−1

= 32w(u) + 32w(u)−1

= 4
3φi(u)



17/ 25

Balls and weighted bins property

Theorem
Suppose that p balls are thrown independently and uniformly at
random into p bins, where bin i has weight Wi , with

∑
i Wi = W.

For each bin i we define the random variable Xi as:

Xi =

{
Wi if some ball lands in bin i
0 otherwise

Let X =
∑

i Xi . For any β, 0 < β < 1:

Pr(X ≥ βW ) > 1− 1
(1− β)e



18/ 25

Impact of p steal attempts 1/3

Theorem
Consider any round i and a later round j such that p steal
attempts occurred from round i (included) to round j (excluded).
Then:

Pr
(

Φi − Φj ≥
1
4

Φi(Di)

)
>

1
4



19/ 25

Impact of p steal attempts 2/3

I Let q ∈ Di

I Let u be the node at the top of q’s deque at round i
I We assume one of the p steal attempts target q
I Cases

1 u is stolen
2 Another node is stolen: therefore u was assigned
3 No node is stolen

1 u was previously stolen
2 q has started the processing of u

In any case, at the very least u is processed and the
potential decreased by at least 2

3φi(u)

2
3
φi(u) ≥ 2

3
3
4

Φi(q) =
1
2

Φi(q)



20/ 25

Impact of p steal attempts 3/3

We consider a series of p steal attempts
I If a steal attempt targets q ∈ Di , the potential decreases by

1
2Φi(q)

I ∀q ∈ Di , Wq = 1
2Φi(q)

I ∀q ∈ Ai , Wq = 0
I W = 1

2Φi(Di)

I We use the “Balls and weighted bins theorem” with β = 1
2

The potential decreases by βW = 1
4Φi(Di) with a

probability greater than 1− 1
(1− 1

2 )e
= 1− 2

e >
1
4



21/ 25

Estimating the number of steal attempts 1/2

I A phase is defined by a series of Θ(P) steal attempts
I Phase starting with round i and ending with round j

(excluded)
I Φi = Φi(Ai) + Φi(Di)

I Potential loss due to the steal attempts: at least 1
4Φi(Di)

with probability at least 1
4

I Potential loss due to task completion on Ai
If node u completes, potential drops by at least
5
9φ(u) > 1

4φ(u).
Overall: greater than 1

4Φi(Ai)

I Pr(Φi − Φj >
1
4Φi) >

1
4



22/ 25

Estimating the number of steal attempts 2/2

I Phase is successful if potential drops by at least 1
4

I Initial potential: Φ0 = 32D−1

I Final potential: 0
I Maximal number of successful phases: S(3

4

)S×32D−1 < 1 ⇒ S is at most (2D−1) log 4
3
(3) < 8D

I The expected number of phases is then at most 32D
I The expected number of steal attempts is then O(p · D)

I The probability that the execution takes 64D + 16 ln
(1
ε

)
phases or more is less than ε

I The number of steal attempts is O
((

D + log
(1
ε

))
p
)

with
probability at least 1− ε



23/ 25

Algorithm performance

Assumptions
I The DAG has a single entry node
I The DAG has a depth D
I The maximum out-degree of a node is 2
I A node has a unit execution time

Number of steal attempts: E[S] = O(p × D)
With probability at least 1− ε, number of steals is bounded by

S = O
(

p
(

D + log
(

1
ε

)))

E(Tp) =
W
p

+ O(D)

and Tp = O
(
W
p

+ D + log
(

1
ε

))
with probability ≥ 1− ε



24/ 25

What about the assumptions?

I The DAG has a single entry node
Transformation increases D by dlog2(I)e where I is the
number of entry nodes.

I The maximum out-degree of a node is 2
Transformation multiplies D by dlog2(δ)e

I A node has a unit execution time
In fact: maximum execution time is unit time
Generalization: multiply number of steal attempts by the
duration of the longest task...



25/ 25

Conclusion

I Not a list scheduling approach: because there are no
centralized scheduler a processor may be left idle when
there is ready nodes

I

E(Tp) =
W
p

+ O(D) ⇒ E(Tp) = O(Topt)

I Many existing variants of random work stealing: Try to take
advantage of (data) locality, to avoid lengthy
communications, etc.


