Work-stealing

October 14, 2014

Context

- A parallel platform with p processors
- A task-graph G to be executed
- Non-clairvoyant setting: the structure of G and/or the execution times of its constitutive tasks are discovered online

Work-sharing approach

Centralized scheduling

- A single list stores all ready tasks
- All processors retrieve work from that list

Advantage(s)

- Global view and knowledge

Drawback(s)

- Does not scale (contentions, etc.)

Work-stealing approach

Distributed scheduling

- Each processor owns a list of "its" ready tasks

Advantage(s)

- No contention problem
- Scalable solution

Drawback(s)

- Processors with empty lists do not know where to retrieve work from

Stealing policies $1 / 2$

Global round-robin

- A global variable holds the identity of the next processor to steal from
- Variable incremented after each steal (successful or not)
- Advantage: eventual progress
- Drawback: centralized solution...

Local round-robin

- Each processor has its own variable indicating the next processor it should try to steal from
- Variable incremented after each steal (successful or not)
- Advantage: eventual progress; solution is scalable
- Drawback: all stealing processors may attempt to steal from the same processor; arbitrary notion of "distance" between processors

Stealing policies $2 / 2$

Random stealing (Blumofe and Leiserson)

- The processor to steal from is randomly and uniformly chosen
- Advantage: decentralized; scalable; no notion of "distance"; low probability of simultaneous steal from same processor
- Drawback: performance???

Execution time as a function of number of steals

Assumption

- A steal takes a unit time (whether it is successful or not) (Hence, contentions are taken into account)
Notation
- Overall work: W (execution time on a single processor)
- Overall execution time: T_{p}
- Number of steal attempts: S

$$
p \times T_{p}=W+S
$$

(A processor is either working or doing a steal attempt)

The work-stealing algorithm

Principle

- Deepest-first order for execution
- Breadth-first order for steals

Specification

- Each processor stores ready tasks in a deque (double-ended queue)
- A new ready task is stored at the bottom of the deque
- The next task to be (locally) processed is taken from the bottom of the deque
- A task is stolen from the top of a randomly picked deque

Algorithm performance

Assumptions

- The DAG has a single entry node
- The DAG has a depth D
- The maximum out-degree of a node is 2
- A node has a unit execution time

Number of steal attempts

$$
\mathbb{E}[S]=O(p \times D)
$$

With probability at least $1-\epsilon$, the number of steals is bounded by

$$
S=O\left(p\left(D+\log \left(\frac{1}{\epsilon}\right)\right)\right)
$$

Enabling tree

- If execution of node u enables node v
- (u, v) is an enabling edge
- u designated parent of v
- Every node (except the root) has exactly one designated parent
- The enabling edges generate an enabling tree
- Node u of depth $d(u)$ in the enabling tree has weight $w(u)=D-d(u)$

Structural lemma 1/2

Theorem

The designated parents of the nodes in the deque lie on some root-to-leaf path in the enabling tree

Proof by induction

- Initial case: trivial when deque is empty
- Induction
- Trivial in the case of a steal
- Trivial when an execution complete when the deque was empty: at most two ready nodes, at most one in the deque
- What about execution completion when the deque was not previously empty?
If a single new ready node: no problem (this node is processed right away)

Structural lemma 2/2

Execution completion when the deque was not previously empty

(a) Before.

(b) After.

Amortized analysis using a potential function

Potential function

- Let R_{i} be the set of ready nodes at the beginning of round i
- Each ready node $u \in R_{i}$ has a potential $\phi_{i}(u)$:

$$
\phi_{i}(u)= \begin{cases}3^{2 w(u)-1} & \text { if } u \text { is processed } \\ 3^{2 w(u)} & \text { otherwise }(u \text { is in a deque })\end{cases}
$$

- Potential at round i :

$$
\Phi_{i}=\sum_{u \in R_{i}} \phi_{i}(u)
$$

- Initial potential: $\Phi_{0}=3^{2 D-1}$
- Final potential: 0

Potential never increases

Two potential-changing actions

- Node u is removed from a deque (either through work-stealing or because the completion of the previous processing did not enable any node)

$$
\phi_{i}(u)-\phi_{i+1}(u)=3^{2 w(u)}-3^{2 w(u)-1}=\frac{2}{3} 3^{2 w(u)}=\frac{2}{3} \phi_{i}(u)
$$

- Completion of a processed node (enabling some nodes) Completion of node u enables nodes x and $y: x$ is processed and y placed in the deque

$$
\begin{aligned}
\phi_{i}(u)-\phi_{i+1}(x)-\phi_{i+1}(y) & =3^{2 w(u)-1}-3^{2 w(x)-1}-3^{2 w(y)} \\
& =3^{2 w(u)-1}-3^{2(w(u)-1)-1}-3^{2(w(u)-1)} \\
& =3^{2 w(u)-1}\left(1-\frac{1}{9}-\frac{1}{3}\right) \\
& =\frac{5}{9} \phi_{i}(u)>0
\end{aligned}
$$

Partitioning processors

- q a processor: $R_{i}(q)$ set of ready nodes in q 's deque plus the node it processes

$$
\Phi(q)=\sum_{u \in R_{i}(q)} \phi_{i}(u)
$$

- A_{i} : set of processors whose deque is empty D_{i} : set of other processors

$$
\Phi_{i}=\Phi_{i}\left(A_{i}\right)+\Phi_{i}\left(D_{i}\right)
$$

- Aim: prove that every p steal attempts the potential decreases by a constant fraction with constant probability

Top-heavy deques

Theorem

Let q be a processor in D_{i}. The topmost node u in q's deque is such that:

$$
\phi_{i}(u) \geq \frac{3}{4} \Phi_{i}(q)
$$

Proof

- Let y be the node processed by q
- Suppose u is the only node in the deque
- Suppose u and y have the same designated parent

$$
\begin{aligned}
\Phi_{i}(q) & =\phi_{i}(u)+\phi_{i}(y) \\
& =3^{2 w(u)}+3^{2 w(y)-1} \\
& =3^{2 w(u)}+3^{2 w(u)-1} \\
& =\frac{4}{3} \phi_{i}(u)
\end{aligned}
$$

Balls and weighted bins property

Theorem

Suppose that p balls are thrown independently and uniformly at random into p bins, where bin i has weight W_{i}, with $\sum_{i} W_{i}=W$. For each bin i we define the random variable X_{i} as:

$$
X_{i}= \begin{cases}W_{i} & \text { if some ball lands in bin } i \\ 0 & \text { otherwise }\end{cases}
$$

Let $X=\sum_{i} X_{i}$. For any $\beta, 0<\beta<1$:

$$
\operatorname{Pr}(X \geq \beta W)>1-\frac{1}{(1-\beta) e}
$$

Impact of p steal attempts $1 / 3$

Theorem

Consider any round i and a later round j such that p steal attempts occurred from round i (included) to round j (excluded). Then:

$$
\operatorname{Pr}\left(\Phi_{i}-\Phi_{j} \geq \frac{1}{4} \Phi_{i}\left(D_{i}\right)\right)>\frac{1}{4}
$$

Impact of p steal attempts $2 / 3$

- Let $q \in D_{i}$
- Let u be the node at the top of q 's deque at round i
- We assume one of the p steal attempts target q
- Cases
(1) u is stolen
(2) Another node is stolen: therefore u was assigned
(3) No node is stolen
(1) u was previously stolen
(2) q has started the processing of u

In any case, at the very least u is processed and the potential decreased by at least $\frac{2}{3} \phi_{i}(u)$

$$
\frac{2}{3} \phi_{i}(u) \geq \frac{2}{3} \frac{3}{4} \Phi_{i}(q)=\frac{1}{2} \Phi_{i}(q)
$$

Impact of p steal attempts $3 / 3$

We consider a series of p steal attempts

- If a steal attempt targets $q \in D_{i}$, the potential decreases by $\frac{1}{2} \Phi_{i}(q)$
- $\forall q \in D_{i}, W_{q}=\frac{1}{2} \Phi_{i}(q)$
- $\forall q \in A_{i}, W_{q}=0$
- $W=\frac{1}{2} \Phi_{i}\left(D_{i}\right)$
- We use the "Balls and weighted bins theorem" with $\beta=\frac{1}{2}$

The potential decreases by $\beta W=\frac{1}{4} \Phi_{i}\left(D_{i}\right)$ with a probability greater than $1-\frac{1}{\left(1-\frac{1}{2}\right) e}=1-\frac{2}{e}>\frac{1}{4}$

Estimating the number of steal attempts $1 / 2$

- A phase is defined by a series of $\Theta(P)$ steal attempts
- Phase starting with round i and ending with round j (excluded)
- $\Phi_{i}=\Phi_{i}\left(A_{i}\right)+\Phi_{i}\left(D_{i}\right)$
- Potential loss due to the steal attempts: at least $\frac{1}{4} \Phi_{i}\left(D_{i}\right)$ with probability at least $\frac{1}{4}$
- Potential loss due to task completion on A_{i} If node u completes, potential drops by at least $\frac{5}{9} \phi(u)>\frac{1}{4} \phi(u)$.
Overall: greater than $\frac{1}{4} \Phi_{i}\left(A_{i}\right)$
- $\operatorname{Pr}\left(\Phi_{i}-\Phi_{j}>\frac{1}{4} \Phi_{i}\right)>\frac{1}{4}$

Estimating the number of steal attempts 2/2

- Phase is successful if potential drops by at least $\frac{1}{4}$
- Initial potential: $\Phi_{0}=3^{2 D-1}$
- Final potential: 0
- Maximal number of successful phases: \mathcal{S}

$$
\left(\frac{3}{4}\right)^{\mathcal{S}} \times 3^{2 D-1}<1 \Rightarrow \mathcal{S} \text { is at most }(2 D-1) \log _{\frac{4}{3}}(3)<8 D
$$

- The expected number of phases is then at most 32D
- The expected number of steal attempts is then $O(p \cdot D)$
- The probability that the execution takes $64 D+16 \ln \left(\frac{1}{\epsilon}\right)$ phases or more is less than ϵ
- The number of steal attempts is $O\left(\left(D+\log \left(\frac{1}{\epsilon}\right)\right) p\right)$ with probability at least $1-\epsilon$

Algorithm performance

Assumptions

- The DAG has a single entry node
- The DAG has a depth D
- The maximum out-degree of a node is 2
- A node has a unit execution time

Number of steal attempts: $\mathbb{E}[S]=O(p \times D)$
With probability at least $1-\epsilon$, number of steals is bounded by

$$
\begin{gathered}
S=O\left(p\left(D+\log \left(\frac{1}{\epsilon}\right)\right)\right) \\
\mathbb{E}\left(T_{p}\right)=\frac{\mathcal{W}}{p}+O(D)
\end{gathered}
$$

and $\quad T_{p}=O\left(\frac{\mathcal{W}}{p}+D+\log \left(\frac{1}{\epsilon}\right)\right)$ with probability $\geq 1-\epsilon$

What about the assumptions?

- The DAG has a single entry node Transformation increases D by $\left\lceil\log _{2}(I)\right\rceil$ where I is the number of entry nodes.
- The maximum out-degree of a node is 2 Transformation multiplies D by $\left\lceil\log _{2}(\delta)\right\rceil$
- A node has a unit execution time In fact: maximum execution time is unit time Generalization: multiply number of steal attempts by the duration of the longest task...

Conclusion

- Not a list scheduling approach: because there are no centralized scheduler a processor may be left idle when there is ready nodes

$$
\mathbb{E}\left(T_{p}\right)=\frac{\mathcal{W}}{p}+O(D) \quad \Rightarrow \quad \mathbb{E}\left(T_{p}\right)=O\left(T_{\mathrm{opt}}\right)
$$

- Many existing variants of random work stealing: Try to take advantage of (data) locality, to avoid lengthy communications, etc.

