Work-stealing

October 14, 2014

1/25

Context

» A parallel platform with p processors
» A task-graph G to be executed

» Non-clairvoyant setting: the structure of G and/or the
execution times of its constitutive tasks are discovered
online

2/25

Work-sharing approach

Centralized scheduling

» A single list stores all ready tasks

» All processors retrieve work from that list
Advantage(s)

» Global view and knowledge
Drawback(s)

» Does not scale (contentions, etc.)

3/25

Work-stealing approach

Distributed scheduling

» Each processor owns a list of “its” ready tasks
Advantage(s)

» No contention problem

» Scalable solution
Drawback(s)

» Processors with empty lists do not know where to retrieve
work from

4/ 25

Stealing policies 1/2

Global round-robin

» A global variable holds the identity of the next processor to
steal from

» Variable incremented after each steal (successful or not)
» Advantage: eventual progress
» Drawback: centralized solution...

Local round-robin

» Each processor has its own variable indicating the next
processor it should try to steal from

» Variable incremented after each steal (successful or not)
» Advantage: eventual progress; solution is scalable

» Drawback: all stealing processors may attempt to steal
from the same processor; arbitrary notion of “distance”

between processors e

Stealing policies 2/2

Random stealing (Blumofe and Leiserson)

» The processor to steal from is randomly and uniformly
chosen

» Advantage: decentralized; scalable; no notion of
“distance”; low probability of simultaneous steal from same
processor

» Drawback: performance???

6/ 25

Execution time as a function of number of steals

Assumption

» A steal takes a unit time (whether it is successful or not)
(Hence, contentions are taken into account)

Notation
» Overall work: W (execution time on a single processor)
» Overall execution time: Ty
» Number of steal attempts: S

(A processor is either working or doing a steal attempt)

7/ 25

The work-stealing algorithm

Principle
» Deepest-first order for execution
» Breadth-first order for steals

Specification
» Each processor stores ready tasks in a deque
(double-ended queue)
» A new ready task is stored at the bottom of the deque

» The next task to be (locally) processed is taken from the
bottom of the deque

» A task is stolen from the top of a randomly picked deque

8/25

Algorithm performance

Assumptions

» The DAG has a single entry node
The DAG has a depth D
The maximum out-degree of a node is 2
A node has a unit execution time
Number of steal attempts

v

v

v

E[S] = O(p x D)

With probability at least 1 — ¢, the number of steals is bounded

by S:O<p<D+|°9 (1)))

9/ 25

Enabling tree

» If execution of node u enables node v
» (u,v) is an enabling edge
» u designated parent of v
» Every node (except the root) has exactly one designated
parent

» The enabling edges generate an enabling tree

» Node u of depth d(u) in the enabling tree has weight
w(u) = D — d(u)

10/ 25

Structural lemma 1/2

The designated parents of the nodes in the deque lie on some
root-to-leaf path in the enabling tree

Proof by induction

» Initial case: trivial when deque is empty
» Induction

» Trivial in the case of a steal

» Trivial when an execution complete when the deque was
empty: at most two ready nodes, at most one in the deque

» What about execution completion when the deque was not
previously empty?
If a single new ready node: no problem (this node is
processed right away)

11/25

Structural lemma 2/2

Execution completion when the deque was not previously

empty

(a) Before.

[

o

@\
[T 2

(=) ()

S
°
)

()

T~

O

(b) After.

12/25

Amortized analysis using a potential function

Potential function
Let R; be the set of ready nodes at the beginning of round i
Each ready node u € R; has a potential ¢;(u):

v

v

) = 32wW)=1 if u is processed
A7) 32w(W) otherwise (u is in a deque)

Potential at round i:

v

O =) ¢i(u)

ueR;

v

Initial potential: ¢y = 3201
Final potential: 0

v

13/25

Potential never increases

Two potential-changing actions

» Node u is removed from a deque (either through
work-stealing or because the completion of the previous
processing did not enable any node)
6iu) = gisr(u) = 32 — G2 = £32WY) = £4(u)

» Completion of a processed node (enabling some nodes)
Completion of node u enables nodes x and y: x is
processed and y placed in the deque

$i(U) — Pig1(x) — pipa(y) = 32WW=T _g2wl0)=1 _ 32w(y)
— 32w(u)—-1 _ 32(w(u)-1)-1 _ g2(w(u)-1)
=31 (1§)
= 3¢i(u) >0

14/ 25

Partitioning processors

» g a processor: R;(q) set of ready nodes in g’s deque plus
the node it processes

()=) ¢i(u)
UER;(q)
» A;: set of processors whose deque is empty
D;: set of other processors
®; = 0;(A) + (D))

» Aim: prove that every p steal attempts the potential
decreases by a constant fraction with constant probability

15/ 25

Top-heavy deques

Let g be a processor in D;. The topmost node u in q’s deque is
such that:

OESCIC)

Proof
» Let y be the node processed by g
» Suppose u is the only node in the deque

» Suppose u and y have the same designated parent
®i(q) = di(u) + i(y)
— 32W(U) + 32w(y)71
— 32W(U) + 32W(U)—1
= 59i(u)

16/ 25

Balls and weighted bins property

Theorem

Suppose that p balls are thrown independently and uniformly at
random into p bins, where bin i has weight W;, with)", W; = W.
For each bin i we define the random variable X; as:

W; if some ball lands in bin i
Xi= :
0 otherwise

LetX =) ;X;. Forany 3,0 <3 <1:

1

Pr(XzﬁW)>1—m

17/ 25

Impact of p steal attempts 1/3

Consider any round i and a later round j such that p steal
attempts occurred from round i (included) to round j (excluded).
Then:

1 1
Pr (q),' — (Dj > Z(D,(D,)) > Z

18/ 25

Impact of p steal attempts 2/3

v

Let g € D;
Let u be the node at the top of g’s deque at round /

We assume one of the p steal attempts target g
Cases
@ vuisstolen

@ Another node is stolen: therefore u was assigned
© No node is stolen

@ u was previously stolen

@ q has started the processing of u
In any case, at the very least u is processed and the
potential decreased by at least %d),-(u)

v

v

v

23 1

ggb,-(u) > gzd’i(CI) = §¢f(Q)

19/ 25

Impact of p steal attempts 3/3

We consider a series of p steal attempts
» If a steal attempt targets g € D;, the potential decreases by

2%i(9)
> Vg € D;, Wy = 9i(q)
> Vg e A, Wy=0
> W= Jo(D))

=

We use the “Balls and weighted bins theorem” with 5 =
The potential decreases by W = 1<I>,-(D,-) with a

probability greater than 1 — (1_1%)(_) =1-2>1

v

20/ 25

Estimating the number of steal attempts 1/2

» A phase is defined by a series of ©(P) steal attempts

» Phase starting with round / and ending with round j
(excluded)

> ;= ®;(A) + @i(D))
» Potential loss due to the steal attempts: at least J ;(D;)
with probability at least §

» Potential loss due to task completion on A;
If node u completes, potential drops by at least

§(u) > fo(u).
Overall: greater than $®;(A))

> Pr(®; —&; > %(D,') > %

21/25

Estimating the number of steal attempts 2/2

» Phase is successful if potential drops by at least JT
» Initial potential: ¢y = 3201
» Final potential: 0
» Maximal number of successful phases: S
(%)S><3ZD*1 <1 = Sisatmost(2D—1)logs(3) < 8D
» The expected number of phases is then at most 32D
» The expected number of steal attempts is then O(p - D)

» The probability that the execution takes 64D + 161n (1)
phases or more is less than e

» The number of steal attempts is O ((D + log (1)) p) with
probability at least 1 — ¢

22/ 25

Algorithm performance

Assumptions
» The DAG has a single entry node
» The DAG has a depth D
» The maximum out-degree of a node is 2
» A node has a unit execution time

Number of steal attempts: E[S] = O(p x D)
With probability at least 1 — ¢, number of steals is bounded by

s-ofp(orm())

23/ 25

What about the assumptions?

» The DAG has a single entry node
Transformation increases D by [log,(/)] where [is the
number of entry nodes.

» The maximum out-degree of a node is 2
Transformation multiplies D by [log,(6)]

» A node has a unit execution time
In fact: maximum execution time is unit time
Generalization: multiply number of steal attempts by the
duration of the longest task...

24/ 25

Conclusion

» Not a list scheduling approach: because there are no
centralized scheduler a processor may be left idle when
there is ready nodes

B(Tp) = va +0(D) = E(Tp) = O(Top)

» Many existing variants of random work stealing: Try to take

advantage of (data) locality, to avoid lengthy
communications, etc.

25/ 25

