
Resource Allocation Using Virtual Machines

October 14, 2014

1/ 75

2/ 75

Clusters

I Traditional HPC:
I Supercomputing: 81% of Top500 list
I Many “small” clusters everywhere

I Data Processing:
I Google: 500,000 clustered servers, Map/Reduce

operations
I Hadoop, Dryad, etc.

I Service Hosting:
I IBM’s Blue Cloud
I Amazon Elastic Cloud (EC2)

3/ 75

Cluster Costs

I Startup Costs:
I At least N times a single computer
I Large clusters require a server room
I “Enterprise” hardware
I Dedicated cooling systems
I Professional installation

I Ongoing Costs:
I Electricity (extra for cooling)
I Repairs
I Dedicated staff

4/ 75

Cluster Sharing

I So, clusters are shared.
I To spread costs
I To keep utilization levels high

I Current scheduling approaches for HPC clusters
I Gang scheduling
I Batch scheduling

5/ 75

Gang scheduling: which no one uses

I Globally coordinated time sharing
I Related threads or processes scheduled to run

simultaneously on different processors
I Coordinated context switching is performed across all

nodes to switch from the processes in one time-slice to
those in the next time-slice

I Complicated and slow
I Memory pressure a concern

6/ 75

Batch scheduling: which no one likes

I Usually FCFS with backfilling
I Backfilling needs (unreliable) compute time estimates

I User predictions are inaccurate even in the presence of
strong incentives for accuracy

I Automatically predicted execution times may be more
accurate than user provided ones

I Using backfilling with estimates equal to twice the actual
execution times improve performance

I No particular objective
I User dissatisfaction
I Inefficient use of nodes/resources

7/ 75

User Dissatisfaction

I Known disconnect between user satisfaction and what job
schedulers do [Lee and Snavely, 2007]

I What’s needed: a sound objective metric
I Difficult to optimize
I Easier with preemption and migration

8/ 75

First Example of Cluster Usage

Advanced Computing Center for Research & Education
Vanderbilt University
30 days usage up to November 5, 2013
http://www.accre.vanderbilt.edu/

http://www.accre.vanderbilt.edu/

8/ 75

First Example of Cluster Usage

8/ 75

First Example of Cluster Usage

8/ 75

First Example of Cluster Usage

8/ 75

First Example of Cluster Usage

8/ 75

First Example of Cluster Usage

9/ 75

Second Example of Cluster Usage

Normal (parallel) jobs.

0

250

500

750

1000

0 25 50 75 100
Core Utilization Mean (%)

Foehn − Normal Jobs

N
um

be
r o

f J
ob

s

Fig. 1: Distribution of the jobs’ core uti-
lization means.

0

500

1000

0 50 100 150
Mean Memory Used (%)
Foehn − Normal Jobs

N
um

be
r o

f J
ob

s

Fig. 2: Distribution of the mean memory
used by job.

0

250

500

750

1000

0 25 50 75 100
Maximum Memory Used (%)

Foehn − Normal Jobs

N
um

be
r o

f J
ob

s

Fig. 3: Distribution of the maximum
memory used per job by an allocated core
to this job, values6100%.

0

5

10

15

100 200 300 400 500
Maximum Memory Used (%)

Foehn − Normal Jobs

N
um

be
r o

f J
ob

s

Fig. 4: Distribution of the maximum
memory used per job by an allocated core
to this job, values>100%.

core utilization under 25% and jobs with average core utilization near 100%)
we remark something very particular. The mean number of allocated cores is 4
times bigger for the jobs that have a core utilization in the lower peak. This can
be an IO scalability issue with jobs waiting on IO, as we know that Foehn DFS
has bandwidth problems, this having been reported several times by the users.
However this can also come from an over-reservation of cores by the users. Sadly,
we currently miss information to explain the reason of this phenomenon.

Beste↵ort Class Jobs. Figure 5 presents the distribution of core utilization
for beste↵ort jobs on Foehn cluster. We observe two peaks, one corresponding
to a core utilization mean around 25%, the other around 100%. For the lower

9/ 75

Second Example of Cluster Usage

Besteffort (mostly sequential) jobs.

utilization peak (from 0 to 25%), its SA ratio is 55.5%. The SA ratio for the jobs
exactly in the 25% peak is 42.4%. For the jobs involved in the higher distribution
peak, even though there are fewer, their SA ratio is about the same (40.8%).
99.2% of these jobs reserve only 1 core. These jobs never use more than the
theoretical memory per core. 99.5% of them actually use less than 1/3 of this
theoretical memory per core.

Only 6 users are involved in the low core utilization peak, but 5 of them
are also involved in the high utilization peak. The user only present in the low
utilization peak accounts for 41.9% of the beste↵ort SA and has a core utilization
less than 25% in 99.4% of the cases. He reserves 4 cores in all his beste↵ort jobs.
In almost all the cases his processes consume less than 310MB and never higher
than 620MB.
After contacting the user, he explained that he noticed that if two of his jobs
were running on the same node, the performances of the two jobs were very
bad. After investigating the cause of this it was found that the application was
memory intensive in terms of bandwidth. The maximum memory used was small
compared to the amount of memory available on the node but when two jobs
were accessing the memory at same time, there was a bottleneck in the access
to the memory. The solution adopted by the user to avoid this performance loss
was to reserve the whole socket (corresponding thus to 4 cores) even though the
application only used 1 core. As Foehn nodes are NUMA, reserving the whole
socket enabled the jobs to have their own memory slot and thereby not being
disturbed. The problem here was not a misconfiguration of the job or a bad
reservation request but a lack in the RJMS constraint description that forced
the user to over-reserve.

0

2500

5000

7500

10000

12500

15000

17500

20000

0 25 50 75 100
Core Utilization Mean (%)
Foehn − BestEffort Jobs

N
um

be
r o

f J
ob

s

Fig. 5: Distribution of the jobs’ core uti-
lization means.

0

10000

20000

30000

40000

0 25 50 75
Mean Memory Used (%)
Foehn − BestEffort Jobs

N
um

be
r o

f J
ob

s

Fig. 6: Distribution of the mean memory
used by job.

Figure 6 shows that beste↵ort jobs don’t consume a lot of memory on average.
Only 6 jobs (not represented on the figure for clarity) have a mean memory

User reserves whole socket (4-cores) to run a
memory-bandwidth greedy single-core job (using ≤ 620MB)

10/ 75

Inefficiency

I Space sharing with rigid allocations:
I “Holes” in the schedule (unused nodes)
I Unused resources within allocations (unused processors or

cores in used nodes)
I Missing tool to describe what is an acceptable sharing

I Integral allocations:
I Idle resources (e.g., a task that needs only 20% of the CPU

leaves it 80% idle while running)
I Existing work focuses primarily on node utilization, NOT

resource utilization
Study of the 5 clusters of the DAS-2 platform: 30% of jobs
use “no memory”, 16% of jobs use 324 KB, 33% of jobs use
2.6 to 3 MB.
(Average usage of the Grid 5000 platform in 2008: 65%)

I One solution: fractional allocations

11/ 75

Virtual machine technology

Multiple jobs on one host

I Multiple tasks on one node (time sharing)
I Resource sharing
I Performance isolation: the monitor imposes precise

resource shares
I Low-overhead and accurate: ≈ 1%

I Sharing of fractional resources
Example: 1 CPU with two cores, 3 VM instances, each
receiving 33.3% of the CPU capacity

I Enables preemption and migration

12/ 75

The Proposal

I Use virtual machine technology.
I Define a run-time computable metric that captures notions

of performance and fairness.
I Design algorithms or heuristics that allocate resources to

jobs while explicitly trying to achieve high ratings by the
metric.

13/ 75

Outline

1 Introduction

2 The Steady-State Case

3 Algorithms

4 Simulation Experiments

5 Online Non-Clairvoyant Problem

14/ 75

Outline

1 Introduction

2 The Steady-State Case

3 Algorithms

4 Simulation Experiments

5 Online Non-Clairvoyant Problem

15/ 75

Requirements, Needs, and Yield

I Tasks have rigid requirements and fluid needs
I All tasks of a parallel job have the same requirements and

needs
I For a task to be placed on a node there must be rigid

resources available at least equal to its requirements
I A task can be allocated less of a fluid resource than its

need, but performance is linearly degraded
I The yield of a job is a value between 0 and 1; tasks are

allocated an amount of each fluid resource equal to the job
yield multiplied by the need in that resource

The yield of a job gives its performance relative to if it were run
on a dedicated system.

15/ 75

Requirements, Needs, and Yield

I Tasks have rigid requirements and fluid needs
I All tasks of a parallel job have the same requirements and

needs
I For a task to be placed on a node there must be rigid

resources available at least equal to its requirements
I A task can be allocated less of a fluid resource than its

need, but performance is linearly degraded
I The yield of a job is a value between 0 and 1; tasks are

allocated an amount of each fluid resource equal to the job
yield multiplied by the need in that resource

The yield of a job gives its performance relative to if it were run
on a dedicated system.

16/ 75

Assumptions

I Steady-state execution with infinite jobs
I Makes the problem more tractable [Marchal et al., 2006]
I Avoids user estimates of job duration (notoriously

inaccurate)
I Good when job duration longer than schedule time

I Requirements and needs are constant throughout the
execution

I Known resource requirements and needs
I (Techniques available for discovery

[Jones et al., 2006a, Jones et al., 2006b])

17/ 75

Static Problem

Additional assumptions
I The platform is supposed to be homogeneous:

all hosts have the same characteristics
I All jobs are sequential jobs
I No use of migration

18/ 75

Resources

I Each server provides d types of resources
I For each job i , rij denotes its resource need or requirement

for resource type j (fraction between 0 and 1)
I δij is a binary value: 1 if rij is a requirement (rigid need),

and 0 if rij is only a (fluid) need.

19/ 75

Objective Metric Considerations

I Performance and fairness
I One popular metric: stretch (or slowdown)

I Time the job spends in the system divided by the time that
would be spent in a dedicated system

I Popular to quantify schedule quality post-mortem
I Not used to make scheduling decisions
I Minimizing the maximum stretch captures notions of both

performance and fairness.
I Runtime computation requires user estimates
I Not applicable to infinite jobs

20/ 75

Yield

I Instantaneous version of the stretch
I Goal: Maximize the minimum yield
I Minimum yield can be “seen” as the inverse of the

maximum stretch

21/ 75

Complexity

Maximizing the minimum yield
I Problem is NP-hard in the strong sense
I Even if no memory constraints
I Reduction from 3-Partition

22/ 75

Going further: the scaled yield

I Each job is set a minimum yield: minimum quality of
service that is acceptable by the user
(e.g., interactive applications, maximum response time)

I The minimum yield could be null
I The scaled yield of a service:

scaled yield =
yield−minimum yield

1−minimum yield
.

I Objective: maximize the minimum scaled yield

23/ 75

Mixed Integer Linear Program 1/2

I Binary variable eih: whether task i runs on server h:

∀i ,h eih ∈ {0,1}

I yih the (unscaled) yield of service i on server h

0 ≤ yih ≤ 1 yih ∈ Q
I Each job is executed exactly once

∀i
∑

h

eih = 1

I Yield not null on a host⇒ host executing the job

∀i ,h 0 ≤ yih ≤ eih

23/ 75

Mixed Integer Linear Program 1/2

I Binary variable eih: whether task i runs on server h:

∀i ,h eih ∈ {0,1}
I yih the (unscaled) yield of service i on server h

0 ≤ yih ≤ 1 yih ∈ Q

I Each job is executed exactly once

∀i
∑

h

eih = 1

I Yield not null on a host⇒ host executing the job

∀i ,h 0 ≤ yih ≤ eih

23/ 75

Mixed Integer Linear Program 1/2

I Binary variable eih: whether task i runs on server h:

∀i ,h eih ∈ {0,1}
I yih the (unscaled) yield of service i on server h

0 ≤ yih ≤ 1 yih ∈ Q
I Each job is executed exactly once

∀i
∑

h

eih = 1

I Yield not null on a host⇒ host executing the job

∀i ,h 0 ≤ yih ≤ eih

23/ 75

Mixed Integer Linear Program 1/2

I Binary variable eih: whether task i runs on server h:

∀i ,h eih ∈ {0,1}
I yih the (unscaled) yield of service i on server h

0 ≤ yih ≤ 1 yih ∈ Q
I Each job is executed exactly once

∀i
∑

h

eih = 1

I Yield not null on a host⇒ host executing the job

∀i ,h 0 ≤ yih ≤ eih

24/ 75

Mixed Integer Linear Program 2/2

I The yield must at least be equal to the minimum yield

∀i
∑

h

yih ≥ ŷi

I Resources must not be exceeded

∀h, j
∑

i

rij(yih(1− δij) + eihδij) ≤ 1

I Constraint on the minimum scaled yield

∀i
∑

h

yih ≥ ŷi + Y (1− ŷi)

I Objective: maximize the minimum scaled yield Y

24/ 75

Mixed Integer Linear Program 2/2

I The yield must at least be equal to the minimum yield

∀i
∑

h

yih ≥ ŷi

I Resources must not be exceeded

∀h, j
∑

i

rij(yih(1− δij) + eihδij) ≤ 1

I Constraint on the minimum scaled yield

∀i
∑

h

yih ≥ ŷi + Y (1− ŷi)

I Objective: maximize the minimum scaled yield Y

24/ 75

Mixed Integer Linear Program 2/2

I The yield must at least be equal to the minimum yield

∀i
∑

h

yih ≥ ŷi

I Resources must not be exceeded

∀h, j
∑

i

rij(yih(1− δij) + eihδij) ≤ 1

I Constraint on the minimum scaled yield

∀i
∑

h

yih ≥ ŷi + Y (1− ŷi)

I Objective: maximize the minimum scaled yield Y

24/ 75

Mixed Integer Linear Program 2/2

I The yield must at least be equal to the minimum yield

∀i
∑

h

yih ≥ ŷi

I Resources must not be exceeded

∀h, j
∑

i

rij(yih(1− δij) + eihδij) ≤ 1

I Constraint on the minimum scaled yield

∀i
∑

h

yih ≥ ŷi + Y (1− ŷi)

I Objective: maximize the minimum scaled yield Y

25/ 75

Mixed Integer Linear Program: summary

Maximize Y under the constraints:

∀i ,h eih ∈ {0,1} , yih ∈ Q (1)
∀i

∑
h eih = 1 (2)

∀i ,h 0 ≤ yih ≤ eih (3)
∀i

∑
h yih ≥ ŷi (4)

∀h, j
∑

i rij(yih(1− δij) + eihδij) ≤ 1 (5)
∀i

∑
h yih ≥ ŷi + Y (1− ŷi) (6)

26/ 75

Outline

1 Introduction

2 The Steady-State Case

3 Algorithms

4 Simulation Experiments

5 Online Non-Clairvoyant Problem

27/ 75

Solving the Problem

I We have defined an optimization problem, found that it’s
NP-hard, and produced an MILP formulation.

I Question: How do we solve it?
I We consider three classes of algorithms:

I Exact solutions and absolute performance bounds
I LP-based heuristics
I Greedy heuristics
I Multi-capacity bin packing heuristics

28/ 75

Exact and Relaxed Solutions

I MILP solving NP-hard
I GNU Linear Programming Kit (GLPK) for small instances

I Rational (non-Integer) eij :
I Solution in polynomial time
I Generally not feasible
I Produces upper bound on optimal
I Useful to quantify performance of heuristics: absolute

reference for the performance of heuristics

29/ 75

Linear Program-based heuristics: the bound

If the rational LP can be solved (i.e., the aggregate resource
capacities can meet all rigid and constrained fluid needs), then
it has an immediate solution:

Y = min
(

1, min
j∈NZ

H −
∑

i rij(ŷi(1− δij) + δij)∑
i(1− ŷi)rij(1− δij)

)
,

where NZ is the set of indices j ∈ {1, . . . ,d} such that∑
i(1− ŷi)rij(1− δij) is non-zero. This maximum minimum yield

is achieved by the trivial allocation eih = 1/H and
yih = 1

H (ŷi + Y (1− ŷi)), for all i and h.

30/ 75

Linear Program-based heuristics: rounding

I How to obtain an integer solution from a rational one?

I Randomized Rounding (RRND)

I Consider jobs in arbitrary order
I Assign job i to host h with probability eih
I If host h cannot accomodate job i sets eih to 0, scale non

null eij ’s and go back to previous step
I If no host can accomodate job i , the heuristic fails

I Randomized Rounding with No Zero probability (RRNDNZ)
Same as previously except that all eih initially null are set to
some value ε << 1 (ε = 0.01)

I Iterative resolutions

I SLOWDIVING: Fix the value of the eih variable whose value
is closest to its nearest rounding; then solve again the
linear program

I FASTDIVING: assign the job i with the largest value eih;
solve again the linear program

30/ 75

Linear Program-based heuristics: rounding

I How to obtain an integer solution from a rational one?
I Randomized Rounding (RRND)

I Consider jobs in arbitrary order
I Assign job i to host h with probability eih
I If host h cannot accomodate job i sets eih to 0, scale non

null eij ’s and go back to previous step
I If no host can accomodate job i , the heuristic fails

I Randomized Rounding with No Zero probability (RRNDNZ)
Same as previously except that all eih initially null are set to
some value ε << 1 (ε = 0.01)

I Iterative resolutions

I SLOWDIVING: Fix the value of the eih variable whose value
is closest to its nearest rounding; then solve again the
linear program

I FASTDIVING: assign the job i with the largest value eih;
solve again the linear program

30/ 75

Linear Program-based heuristics: rounding

I How to obtain an integer solution from a rational one?
I Randomized Rounding (RRND)

I Consider jobs in arbitrary order

I Assign job i to host h with probability eih
I If host h cannot accomodate job i sets eih to 0, scale non

null eij ’s and go back to previous step
I If no host can accomodate job i , the heuristic fails

I Randomized Rounding with No Zero probability (RRNDNZ)
Same as previously except that all eih initially null are set to
some value ε << 1 (ε = 0.01)

I Iterative resolutions

I SLOWDIVING: Fix the value of the eih variable whose value
is closest to its nearest rounding; then solve again the
linear program

I FASTDIVING: assign the job i with the largest value eih;
solve again the linear program

30/ 75

Linear Program-based heuristics: rounding

I How to obtain an integer solution from a rational one?
I Randomized Rounding (RRND)

I Consider jobs in arbitrary order
I Assign job i to host h with probability eih

I If host h cannot accomodate job i sets eih to 0, scale non
null eij ’s and go back to previous step

I If no host can accomodate job i , the heuristic fails
I Randomized Rounding with No Zero probability (RRNDNZ)

Same as previously except that all eih initially null are set to
some value ε << 1 (ε = 0.01)

I Iterative resolutions

I SLOWDIVING: Fix the value of the eih variable whose value
is closest to its nearest rounding; then solve again the
linear program

I FASTDIVING: assign the job i with the largest value eih;
solve again the linear program

30/ 75

Linear Program-based heuristics: rounding

I How to obtain an integer solution from a rational one?
I Randomized Rounding (RRND)

I Consider jobs in arbitrary order
I Assign job i to host h with probability eih
I If host h cannot accomodate job i sets eih to 0, scale non

null eij ’s and go back to previous step

I If no host can accomodate job i , the heuristic fails
I Randomized Rounding with No Zero probability (RRNDNZ)

Same as previously except that all eih initially null are set to
some value ε << 1 (ε = 0.01)

I Iterative resolutions

I SLOWDIVING: Fix the value of the eih variable whose value
is closest to its nearest rounding; then solve again the
linear program

I FASTDIVING: assign the job i with the largest value eih;
solve again the linear program

30/ 75

Linear Program-based heuristics: rounding

I How to obtain an integer solution from a rational one?
I Randomized Rounding (RRND)

I Consider jobs in arbitrary order
I Assign job i to host h with probability eih
I If host h cannot accomodate job i sets eih to 0, scale non

null eij ’s and go back to previous step
I If no host can accomodate job i , the heuristic fails

I Randomized Rounding with No Zero probability (RRNDNZ)
Same as previously except that all eih initially null are set to
some value ε << 1 (ε = 0.01)

I Iterative resolutions

I SLOWDIVING: Fix the value of the eih variable whose value
is closest to its nearest rounding; then solve again the
linear program

I FASTDIVING: assign the job i with the largest value eih;
solve again the linear program

30/ 75

Linear Program-based heuristics: rounding

I How to obtain an integer solution from a rational one?
I Randomized Rounding (RRND)

I Consider jobs in arbitrary order
I Assign job i to host h with probability eih
I If host h cannot accomodate job i sets eih to 0, scale non

null eij ’s and go back to previous step
I If no host can accomodate job i , the heuristic fails

I Randomized Rounding with No Zero probability (RRNDNZ)
Same as previously except that all eih initially null are set to
some value ε << 1 (ε = 0.01)

I Iterative resolutions

I SLOWDIVING: Fix the value of the eih variable whose value
is closest to its nearest rounding; then solve again the
linear program

I FASTDIVING: assign the job i with the largest value eih;
solve again the linear program

30/ 75

Linear Program-based heuristics: rounding

I How to obtain an integer solution from a rational one?
I Randomized Rounding (RRND)

I Consider jobs in arbitrary order
I Assign job i to host h with probability eih
I If host h cannot accomodate job i sets eih to 0, scale non

null eij ’s and go back to previous step
I If no host can accomodate job i , the heuristic fails

I Randomized Rounding with No Zero probability (RRNDNZ)
Same as previously except that all eih initially null are set to
some value ε << 1 (ε = 0.01)

I Iterative resolutions

I SLOWDIVING: Fix the value of the eih variable whose value
is closest to its nearest rounding; then solve again the
linear program

I FASTDIVING: assign the job i with the largest value eih;
solve again the linear program

30/ 75

Linear Program-based heuristics: rounding

I How to obtain an integer solution from a rational one?
I Randomized Rounding (RRND)

I Consider jobs in arbitrary order
I Assign job i to host h with probability eih
I If host h cannot accomodate job i sets eih to 0, scale non

null eij ’s and go back to previous step
I If no host can accomodate job i , the heuristic fails

I Randomized Rounding with No Zero probability (RRNDNZ)
Same as previously except that all eih initially null are set to
some value ε << 1 (ε = 0.01)

I Iterative resolutions
I SLOWDIVING: Fix the value of the eih variable whose value

is closest to its nearest rounding; then solve again the
linear program

I FASTDIVING: assign the job i with the largest value eih;
solve again the linear program

30/ 75

Linear Program-based heuristics: rounding

I How to obtain an integer solution from a rational one?
I Randomized Rounding (RRND)

I Consider jobs in arbitrary order
I Assign job i to host h with probability eih
I If host h cannot accomodate job i sets eih to 0, scale non

null eij ’s and go back to previous step
I If no host can accomodate job i , the heuristic fails

I Randomized Rounding with No Zero probability (RRNDNZ)
Same as previously except that all eih initially null are set to
some value ε << 1 (ε = 0.01)

I Iterative resolutions
I SLOWDIVING: Fix the value of the eih variable whose value

is closest to its nearest rounding; then solve again the
linear program

I FASTDIVING: assign the job i with the largest value eih;
solve again the linear program

31/ 75

Greedy heuristics 1/4

Job sorting criteria
1 randomly;
2 sorted by decreasing maximum need;
3 by decreasing sum of needs;
4 by decreasing maximum requirement and constrained

need;
5 by decreasing sum of requirements and constrained

needs;
6 by decreasing maximum resource requirement or need;
7 by decreasing sum of requirements and needs.

32/ 75

Greedy heuristics 2/4

For a given job i

I Let jn be the index of the resource corresponding to the
maximum fluid need of i

I Let jr be the index of the resource corresponding to the
maximum requirement or constrained need of i

I Let Ih be the set of the indices of the jobs already placed
on server h.

33/ 75

Greedy heuristics 3/4

Host sorting criteria to pick a server for a given job i

1 pick server h with the smallest maxi ′∈Ih ri ′jn ;
2 pick server h with the smallest

∑
i ′∈Ih ri ′jn .

3 Best fit approach evaluating the load of each server h
based on maxi ′∈Ih ri ′jr

4 Best fit approach evaluating the load of each server h
based on

∑
i ′∈Ih ri ′jr

5 Worst-fit approach corresponding to 3
6 Worst-fit approach corresponding to 4
7 First fit placement, placing a job on the first server that can

accommodate its requirements and constrained needs

34/ 75

Greedy heuristics 3/4

I 7× 7 = 49 greedy heuristics
I These heuristics are lightweight
I Greedy heuristic number 50: run the 49 heuristics and

takes the best solution (if any)

35/ 75

Vector Packing

I Problem similar to bin packing, 2 major differences
I Multiple dimensions: multi-dimensional bin-packing or

vector packing or multi-capacity bin-packing
I Needs are only upper bounds not tight constraints

Fix a tentative yield value
I Needs become requirements
I Can apply any vector-packing algorithm

Binary search on the best achievable minimum yield

36/ 75

Best Fit and First Fit Vector Packing

I Best Fit and First Fit algorithm
I Sort vectors by

I decreasing SUM of coordinates
I Decreasing MAXimum of the coordinates
I Decreasing LEXicographical order of the coordintes

All together: 6 algorithms

37/ 75

Permutation Pack and Choose Pack Vector Packing

I Motivation: attempt to balance the load along the
dimensions

I PP partition the N vectors in one of the d !/(d − w)! lists
I Each list contains vectors with a common permutation of

their largest w dimensions
I Vectors in a list are sorted according to: decreasing SUM of

coordinates, decreasing DIFFerence of largest to smallest
coordinate, decreasing RATIO of largest to smallest
coordinate

I PP fills bin trying to reduce load imbalance: consider the w
least loaded resource dimensions

I CP: relaxation of PP: Does not enforce any ordering
between the w dimensions
“Only” needs d !/w !(w − d)! lists

38/ 75

Outline

1 Introduction

2 The Steady-State Case

3 Algorithms

4 Simulation Experiments

5 Online Non-Clairvoyant Problem

39/ 75

Small Problem Set: Minimum Yield vs. Free Memory

I Bound only
4% higher
than optimal

0.2 0.4 0.6 0.8

0.65

0.7

0.75

0.8

0.85

Fraction Free Memory

M
in

im
um

 Y
ie

ld

bound
optimal

40/ 75

Greedy heuristics

5 10 15 20 25
30

40

50

60

70

80

90

% fr

Av
er

ag
e

re
la

tiv
e

%
 d

fb

P1
P2
P3
P4
P5
P6
P7

5 10 15 20 25
30

40

50

60

70

80

90

% fr
Av

er
ag

e
re

la
tiv

e
%

 d
fb

S1
S2
S3
S4
S5
S6
S7

Bi-criteria graphical comparison of all GREEDY_Sx_Py
algorithms, averaged over all 72,900 instances.

41/ 75

LP-based algorithms 1/2

Average dfb, 90th percentile dfb, and fr, for the LP-based
algorithms and GREEDY, over 48,600 problem instances.
Relative dfb values are shown in parentheses.

dfb
Algorithm Average 90th perc. fr (%)
RRND 0.58 (78.33%) 0.86 (98.52%) 66.56
RRNDNZ 0.58 (77.95%) 0.89 (98.28%) 22.02
FASTDIVING 0.60 (75.03%) 0.84 (94.39%) 78.02
SLOWDIVING 0.57 (72.75%) 0.81 (93.60%) 77.92
GREEDY 0.21 (29.17%) 0.38 (51.49%) 7.50

42/ 75

LP-based algorithms 2/2

Average execution times (H = 64 and N = 128, 256, or 512.)

Average Execution Time (sec)
Algorithm N = 128 N = 256 N = 512
RRND 16.30 61.70 255.44
RRNDNZ 16.74 61.15 250.83
FASTDIVING 32.42 113.89 416.32
SLOWDIVING 382.58 1771.35 6704.79
GREEDY 0.05 0.10 0.24

43/ 75

Vector-packing algorithms

dfb
Algorithm Average 90th perc. fr (%)
GREEDYLIGHT 0.16 (31.49%) 0.35 (56.25%) 8.16
GREEDY 0.16 (30.07%) 0.34 (61.01%) 7.73
VP_PPRATIO 0.08 (14.54%) 0.17 (28.32%) 15.81
VP_PPDIFF 0.08 (13.67%) 0.16 (21.10%) 15.35
VP_FFLEX 0.07 (12.85%) 0.15 (27.86%) 15.45
VP_PPMAX 0.07 (13.08%) 0.15 (26.67%) 14.99
VP_PPSUM 0.07 (12.84%) 0.15 (26.39%) 14.93
VP_CPRATIO 0.07 (11.09%) 0.14 (21.21%) 11.45
VP_BFLEX 0.06 (12.15%) 0.14 (27.10%) 13.75
VP_CPDIFF 0.06 (10.19%) 0.12 (21.10%) 8.70
VP_CPMAX 0.05 (10.10%) 0.11 (20.60%) 8.43
VP_CPSUM 0.05 (9.92%) 0.11 (20.40%) 8.20
VP_BFMAX 0.04 (11.39%) 0.11 (29.40%) 8.48
VP_FFMAX 0.04 (11.26%) 0.11 (29.33%) 8.33
VP_BFSUM 0.04 (10.95%) 0.10 (28.72%) 7.91
VP_FFSUM 0.04 (10.95%) 0.10 (28.40%) 7.91

Choose Pack (CP) dominates Permutation Pack (PP)

43/ 75

Vector-packing algorithms

dfb
Algorithm Average 90th perc. fr (%)
GREEDYLIGHT 0.16 (31.49%) 0.35 (56.25%) 8.16
GREEDY 0.16 (30.07%) 0.34 (61.01%) 7.73
VP_PPRATIO 0.08 (14.54%) 0.17 (28.32%) 15.81
VP_PPDIFF 0.08 (13.67%) 0.16 (21.10%) 15.35
VP_FFLEX 0.07 (12.85%) 0.15 (27.86%) 15.45
VP_PPMAX 0.07 (13.08%) 0.15 (26.67%) 14.99
VP_PPSUM 0.07 (12.84%) 0.15 (26.39%) 14.93
VP_CPRATIO 0.07 (11.09%) 0.14 (21.21%) 11.45
VP_BFLEX 0.06 (12.15%) 0.14 (27.10%) 13.75
VP_CPDIFF 0.06 (10.19%) 0.12 (21.10%) 8.70
VP_CPMAX 0.05 (10.10%) 0.11 (20.60%) 8.43
VP_CPSUM 0.05 (9.92%) 0.11 (20.40%) 8.20
VP_BFMAX 0.04 (11.39%) 0.11 (29.40%) 8.48
VP_FFMAX 0.04 (11.26%) 0.11 (29.33%) 8.33
VP_BFSUM 0.04 (10.95%) 0.10 (28.72%) 7.91
VP_FFSUM 0.04 (10.95%) 0.10 (28.40%) 7.91

VP_CPDIFF dominates VP_CPRATIO

43/ 75

Vector-packing algorithms

dfb
Algorithm Average 90th perc. fr (%)
GREEDYLIGHT 0.16 (31.49%) 0.35 (56.25%) 8.16
GREEDY 0.16 (30.07%) 0.34 (61.01%) 7.73
VP_PPRATIO 0.08 (14.54%) 0.17 (28.32%) 15.81
VP_PPDIFF 0.08 (13.67%) 0.16 (21.10%) 15.35
VP_FFLEX 0.07 (12.85%) 0.15 (27.86%) 15.45
VP_PPMAX 0.07 (13.08%) 0.15 (26.67%) 14.99
VP_PPSUM 0.07 (12.84%) 0.15 (26.39%) 14.93
VP_CPRATIO 0.07 (11.09%) 0.14 (21.21%) 11.45
VP_BFLEX 0.06 (12.15%) 0.14 (27.10%) 13.75
VP_CPDIFF 0.06 (10.19%) 0.12 (21.10%) 8.70
VP_CPMAX 0.05 (10.10%) 0.11 (20.60%) 8.43
VP_CPSUM 0.05 (9.92%) 0.11 (20.40%) 8.20
VP_BFMAX 0.04 (11.39%) 0.11 (29.40%) 8.48
VP_FFMAX 0.04 (11.26%) 0.11 (29.33%) 8.33
VP_BFSUM 0.04 (10.95%) 0.10 (28.72%) 7.91
VP_FFSUM 0.04 (10.95%) 0.10 (28.40%) 7.91

VP_CPSUM is never dominated

43/ 75

Vector-packing algorithms

dfb
Algorithm Average 90th perc. fr (%)
GREEDYLIGHT 0.16 (31.49%) 0.35 (56.25%) 8.16
GREEDY 0.16 (30.07%) 0.34 (61.01%) 7.73
VP_PPRATIO 0.08 (14.54%) 0.17 (28.32%) 15.81
VP_PPDIFF 0.08 (13.67%) 0.16 (21.10%) 15.35
VP_FFLEX 0.07 (12.85%) 0.15 (27.86%) 15.45
VP_PPMAX 0.07 (13.08%) 0.15 (26.67%) 14.99
VP_PPSUM 0.07 (12.84%) 0.15 (26.39%) 14.93
VP_CPRATIO 0.07 (11.09%) 0.14 (21.21%) 11.45
VP_BFLEX 0.06 (12.15%) 0.14 (27.10%) 13.75
VP_CPDIFF 0.06 (10.19%) 0.12 (21.10%) 8.70
VP_CPMAX 0.05 (10.10%) 0.11 (20.60%) 8.43
VP_CPSUM 0.05 (9.92%) 0.11 (20.40%) 8.20
VP_BFMAX 0.04 (11.39%) 0.11 (29.40%) 8.48
VP_FFMAX 0.04 (11.26%) 0.11 (29.33%) 8.33
VP_BFSUM 0.04 (10.95%) 0.10 (28.72%) 7.91
VP_FFSUM 0.04 (10.95%) 0.10 (28.40%) 7.91

Lexicographical ordering algorithms are dominated

43/ 75

Vector-packing algorithms

dfb
Algorithm Average 90th perc. fr (%)
GREEDYLIGHT 0.16 (31.49%) 0.35 (56.25%) 8.16
GREEDY 0.16 (30.07%) 0.34 (61.01%) 7.73
VP_PPRATIO 0.08 (14.54%) 0.17 (28.32%) 15.81
VP_PPDIFF 0.08 (13.67%) 0.16 (21.10%) 15.35
VP_FFLEX 0.07 (12.85%) 0.15 (27.86%) 15.45
VP_PPMAX 0.07 (13.08%) 0.15 (26.67%) 14.99
VP_PPSUM 0.07 (12.84%) 0.15 (26.39%) 14.93
VP_CPRATIO 0.07 (11.09%) 0.14 (21.21%) 11.45
VP_BFLEX 0.06 (12.15%) 0.14 (27.10%) 13.75
VP_CPDIFF 0.06 (10.19%) 0.12 (21.10%) 8.70
VP_CPMAX 0.05 (10.10%) 0.11 (20.60%) 8.43
VP_CPSUM 0.05 (9.92%) 0.11 (20.40%) 8.20
VP_BFMAX 0.04 (11.39%) 0.11 (29.40%) 8.48
VP_FFMAX 0.04 (11.26%) 0.11 (29.33%) 8.33
VP_BFSUM 0.04 (10.95%) 0.10 (28.72%) 7.91
VP_FFSUM 0.04 (10.95%) 0.10 (28.40%) 7.91

VP_FFSUM is as good or better than VP_FFMAX

43/ 75

Vector-packing algorithms

dfb
Algorithm Average 90th perc. fr (%)
GREEDYLIGHT 0.16 (31.49%) 0.35 (56.25%) 8.16
GREEDY 0.16 (30.07%) 0.34 (61.01%) 7.73
VP_PPRATIO 0.08 (14.54%) 0.17 (28.32%) 15.81
VP_PPDIFF 0.08 (13.67%) 0.16 (21.10%) 15.35
VP_FFLEX 0.07 (12.85%) 0.15 (27.86%) 15.45
VP_PPMAX 0.07 (13.08%) 0.15 (26.67%) 14.99
VP_PPSUM 0.07 (12.84%) 0.15 (26.39%) 14.93
VP_CPRATIO 0.07 (11.09%) 0.14 (21.21%) 11.45
VP_BFLEX 0.06 (12.15%) 0.14 (27.10%) 13.75
VP_CPDIFF 0.06 (10.19%) 0.12 (21.10%) 8.70
VP_CPMAX 0.05 (10.10%) 0.11 (20.60%) 8.43
VP_CPSUM 0.05 (9.92%) 0.11 (20.40%) 8.20
VP_BFMAX 0.04 (11.39%) 0.11 (29.40%) 8.48
VP_FFMAX 0.04 (11.26%) 0.11 (29.33%) 8.33
VP_BFSUM 0.04 (10.95%) 0.10 (28.72%) 7.91
VP_FFSUM 0.04 (10.95%) 0.10 (28.40%) 7.91

VP_BFSUM is as good or better than VP_BFMAX

44/ 75

Comparison to optimal

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

Slack

%
 r

el
at

iv
e

d
if

fe
re

n
ce

VP_CPSum vs. OPT (average)

VP_CPSum vs. OPT (90th percentile)

OPT vs. LPBound (average)

OPT vs. LPBound (90th percentile)

45/ 75

Summary

I We have formalized a new cluster resource allocation
approach that implicitly relies on virtualization technology
to:

I Increase cluster utilization through fractional resource
sharing

I Optimize a precise metric that captures notions of
performance and fairness

I Algorithm of Choice: VP_CPSUM

46/ 75

Outline

1 Introduction

2 The Steady-State Case

3 Algorithms

4 Simulation Experiments

5 Online Non-Clairvoyant Problem

47/ 75

HPC Scheduling Problem Overview

I We assume a cluster of homogeneous nodes dedicated to
processing user jobs

I Users can submit requests at arbitrary times
I Running jobs are made up of nearly identical tasks

I The number of tasks is specified by the user
I Tasks may need to block while communicating

I Jobs are temporary
I May have to wait until resources are available to start
I Runtime is not known in advance

48/ 75

Stretch

I Stretch: the time a job spends in the system divided by the
time that would be spent in a dedicated
system [Bender et al., 1998]

I Popular to quantify schedule quality post-mortem
I Not generally used to make scheduling decisions
I Runtime computation requires (unreliable) user estimates
I Minimizing average stretch prone to starvation
I Minimizing maximum stretch captures notions of both

performance and fairness [Legrand et al., 2008]

49/ 75

Optimal Lower Bound

I Given a clairvoyant scenario and infinite system memory,
can compute a max-stretch lower bound in P-time

I Bound may not be achievable in practice
I Useful for comparing the performance of scheduling

algorithms

50/ 75

Our Approach

I Basic idea: Consider an on-line maximum stretch
minimization problem instance as a sequence of off-line
minimum yield maximization problem instances

I Need heuristics to map tasks to nodes
I Need additional heuristics to allocate resources
I Need to decide when to apply heuristics

51/ 75

Task Placement Heuristics

We apply task placement heuristics studied for the off-line
problem [Stillwell et al., 2010]:

I Greedy Task Placement – Incremental, puts each task on
the node with the lowest computational load on which it
can fit without violating memory constraints

I MCB Task Placement – Global, iteratively applies
multi-capacity (vector) bin-packing heuristics during a
binary search for the maximized minimum yield

I Achieves higher minimum yield values than Greedy
I Can potentially cause lots of migration

I But what if the system is oversubscribed?
I Need a priority function to decide which jobs to run

52/ 75

Virtual Time

Definition
The virtual time vj(t) of job j at time t is the subjective time
experienced by the job.

I vj(t) =
∫ t

rj
yj(τ)dτ

I job completes when vj(t) = execution time (not known
beforehand)

53/ 75

The Need for Preemption

I final goal is to minimize maximum stretch
I without preemption, stretch of non-clairvoyant on-line

algorithms unbounded
I consider 2 jobs
I both require all of the system resources
I one has cj = 1
I other has cj = ∆

I need criteria to decide which jobs should be preempted

54/ 75

Priority

Jobs should be preempted in order by increasing priority.
I Newly arrived jobs may have infinite priority
I First Idea: 1

VIRTUAL TIME
I Informed by ideas about fairness
I Lead to good results
I But theoretically prone to starvation

I Second Idea: FLOW TIME
VIRTUAL TIME

I Addresses starvation problem
I But lead to poor performance

I Third Idea: FLOW TIME
(VIRTUAL TIME)2

I Combines idea #1 and idea #2
I Addresses starvation
I Performs about the same as first priority function

55/ 75

Use of Priority

I By Greedy
I GreedyP – Greedily schedule tasks, and suspend

lower-priority tasks if necessary to run higher-priority tasks
I GreedyPM – Like GreedyP, but can also migrate tasks

instead of suspending them
I By MCB

I If no valid solution can be found for any yield value, remove
the lowest priority task and try again

56/ 75

Resource Allocation

I Once tasks are placed on nodes we iteratively maximize
the minimum yield

I Based on network resource allocation ideas about fairness
I Easy to compute and slightly better than maximizing

average yield

57/ 75

When to apply Heuristics

We consider a number of different options:
I Job Submission – heuristics can use greedy or bin packing

approaches
I Job Completion – as above, can help with throughput

when there are lots of short running jobs
I Periodically – some heuristics periodically apply vector

packing to improve overall job placement

58/ 75

MCB-Stretch Algorithm

I Like MCB, but tries to minimize maximum stretch
I Requires knowledge of time until next rescheduling period,

uses current and estimated future stretch
I Second phase focuses on iteratively minimizing the

maximum stretch

59/ 75

Methodology

I Experiments conducted using discrete event simulator
I Mix of synthetic and real trace data
I Ran experiments with and without migration penalties
I Periodic approaches use a 600 second (10 minute) period
I Absolute bound on max stretch computed for each

instance
I Performance comparison based on max stretch

degradation from bound

60/ 75

Batch Scheduling Algorithms

I FCFS – Allocates nodes equal to the number of tasks to
jobs on a first-come-first-served basis.

I EASY – Only makes a reservation for the first job in the
queue. Otherwise allocates nodes to the first job in the
queue that can run with the current number of available
nodes. Requires (unreliable) user-supplied run-time
estimates to make reservations.

61/ 75

Max Stretch Degradation vs. Load, No Migration Cost

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

st
re

tc
h

de
gr

ad
at

io
n

F
ro

m
 B

ou
nd

Load

FCFS

EASY

61/ 75

Max Stretch Degradation vs. Load, No Migration Cost

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

st
re

tc
h

de
gr

ad
at

io
n

F
ro

m
 B

ou
nd

Load

FCFS
EASY
Greedy*

61/ 75

Max Stretch Degradation vs. Load, No Migration Cost

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

st
re

tc
h

de
gr

ad
at

io
n

F
ro

m
 B

ou
nd

Load

FCFS
EASY
Greedy*

GreedyPM*

61/ 75

Max Stretch Degradation vs. Load, No Migration Cost

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

st
re

tc
h

de
gr

ad
at

io
n

F
ro

m
 B

ou
nd

Load

FCFS
EASY
Greedy*

GreedyPM*

/per

61/ 75

Max Stretch Degradation vs. Load, No Migration Cost

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

st
re

tc
h

de
gr

ad
at

io
n

F
ro

m
 B

ou
nd

Load

FCFS
EASY
Greedy*

GreedyPM*

/per

GreedyPM*/per

61/ 75

Max Stretch Degradation vs. Load, No Migration Cost

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

st
re

tc
h

de
gr

ad
at

io
n

F
ro

m
 B

ou
nd

Load

FCFS
EASY
Greedy*

GreedyPM*

/per

GreedyPM*/per
MCB*/per

61/ 75

Max Stretch Degradation vs. Load, No Migration Cost

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

st
re

tc
h

de
gr

ad
at

io
n

F
ro

m
 B

ou
nd

Load

FCFS
EASY
Greedy*

GreedyPM*

/per

GreedyPM*/per
MCB*/per

/stretch-per

62/ 75

Max Stretch Degradation vs. Load, 5 minute penalty

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

st
re

tc
h

de
gr

ad
at

io
n

F
ro

m
 B

ou
nd

Load

FCFS
EASY
Greedy*

GreedyPM*

/per

GreedyPM*/per

MCB*/per

/stretch-per

63/ 75

Limiting Migration

I Short-running jobs suffer a greater penalty to stretch from
preemption/migration

I No way to tell short from long running jobs a-priori
I We do know the subjective time experienced by a job
I The minvt parameter specifies the minimum virtual time for

a job before it can be migrated
I Does not affect preemption due to priority
I We tried 300 seconds and 600 seconds, 600 performed

slightly better

64/ 75

Max Stretch Degradation vs. Load, 5 minute penalty

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

st
re

tc
h

de
gr

ad
at

io
n

F
ro

m
 B

ou
nd

Load

FCFS
EASY
Greedy*

GreedyPM*

/per

GreedyPM*/per

MCB*/per

/stretch-per

64/ 75

Max Stretch Degradation vs. Load, 5 minute penalty

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

st
re

tc
h

de
gr

ad
at

io
n

F
ro

m
 B

ou
nd

Load

FCFS
EASY
Greedy*

GreedyPM*

/per

GreedyPM*/per

MCB*/per

/stretch-per

MCB*/per/mvt

64/ 75

Max Stretch Degradation vs. Load, 5 minute penalty

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

st
re

tc
h

de
gr

ad
at

io
n

F
ro

m
 B

ou
nd

Load

FCFS
EASY
Greedy*

GreedyPM*

/per

GreedyPM*/per

MCB*/per

/stretch-per

MCB*/per/mvt
GreedyPM*/per/mvt

65/ 75

Bandwidth Utilization

Preemption and migration bandwidth costs for selected
algorithms. Average and maximum values over scaled
synthetic traces with load ≥ 0.7

Algorithm (GB / sec)
pmtn mig

avg. max avg. max
GreedyPM * 0.03 0.07 0.02 0.05
GreedyPM */per 0.56 1.37 0.29 0.66
GreedyPM */per/MVT 0.54 1.34 0.26 0.62
MCB */per/MVT 0.54 1.11 0.56 1.53
/per/MVT 0.49 1.08 0.19 0.58
/stretch-per/MVT 0.28 0.64 0.37 0.78

65/ 75

Bandwidth Utilization

Preemption and migration bandwidth costs for selected
algorithms. Average and maximum values over scaled
synthetic traces with load ≥ 0.7

Algorithm (GB / sec)
pmtn mig

avg. max avg. max
GreedyPM * 0.03 0.07 0.02 0.05
GreedyPM */per 0.56 1.37 0.29 0.66
GreedyPM */per/MVT 0.54 1.34 0.26 0.62
MCB */per/MVT 0.54 1.11 0.56 1.53
/per/MVT 0.49 1.08 0.19 0.58
/stretch-per/MVT 0.28 0.64 0.37 0.78

66/ 75

Bandwidth vs. Period

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 B
an

dw
id

th
 (

G
B

/s
)

Period (seconds)

67/ 75

Max Stretch Degradation vs. Period

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 M
ax

st
re

tc
h

D
eg

ra
da

tio
n

Period (seconds)

68/ 75

Conclusions

I DFRS algorithms are capable of widely outperforming
traditional approaches, even assuming a heavy penalty for
migration

I A variety of approaches need to be combined in order to
achieve the best results

I Bandwidth costs are reasonable, and can be further
reduced without a significant performance penalty by
choosing an appropriate rescheduling period from a broad
range

69/ 75

Summary

I We have proposed a novel approach to job scheduling on
clusters, Dynamic Fractional Resource Scheduling, that
makes use of modern virtual machine technology and
seeks to optimize a runtime-computable, user-centric
measure of performance called the minimum yield

I Our approach avoids the use of unreliable runtime
estimates

I This approach has the potential to lead to
order-of-magnitude improvements in performance over
current technology

I Overhead costs from migration are manageable

70/ 75

References I

Bender, M. A., Chakrabarti, S., and Muthukrishnan, S.
(1998).
Flow and stretch metrics for scheduling continuous job
streams.
In SODA, pages 270–279.

Jones, S. T., Arpaci-Dusseau, A. C., and Arpaci-Dusseau,
R. H. (2006a).
Antfarm: Tracking processes in a virtual machine
environment.
In USENIX.

71/ 75

References II

Jones, S. T., Arpaci-Dusseau, A. C., and Arpaci-Dusseau,
R. H. (2006b).
Geiger: Monitoring the buffer cache in a virtual machine
environment.
In ASPLOS.

Lee, C. B. and Snavely, A. E. (2007).
Precise and realistic utility functions for user-centric
performance analysis of schedulers.
In HPDC, pages 107–116.

Legrand, A., Su, A., and Vivien, F. (2008).
Minimizing the stretch when scheduling flows of divisible
requests.
J. Sched.
to appear, DOI: 10.1007/s10951-008-0078-4.

72/ 75

References III

Marchal, L., Yang, Y., Casanova, H., and Robert, Y. (2006).
Steady-state scheduling of multiple divisible load
applications on wide-area distributed computing platforms.
J. HPCA, 20(3):365–381.

Stillwell, M., Schanzenbach, D., Vivien, F., and Casanova,
H. (2009).
Resource allocation using virtual clusters.
In Proceedings of the 9th IEEE International Symposium on
Cluster Computing and the Grid.

73/ 75

References IV

Stillwell, M., Schanzenbach, D., Vivien, F., and Casanova,
H. (2010).
Resource allocation algorithms for virtualized service
hosting platforms.
Journal of Parallel and Distributed Computing,
70(9):962–974.

74/ 75

Mixed-Integer Linear Program

∀j ,h ejh ∈ {0,1}, yjh ∈ [0,1], yjh ≤ ejh

∀j
H∑

h=1

ejh = 1

∀j ,h,d ejhre
jd + yjhne

jd ≤ ce
hd

∀h,d
J∑

j=1

(ejhra
jd + yjhna

jd) ≤ ca
hd

∀j
H∑

h=1

yjh ≥ Y

75/ 75

Run Times

Algorithm 100 tasks 250 tasks 500 tasks
RRNZ 4.855 45.782 270.245
METAGREEDY 0.014 0.061 0.154
METAVP 0.142 0.564 1.715
METAHVP 0.514 1.943 6.432

Average seconds on Intel Xeon 2.27Ghz processor

	Introduction
	The Steady-State Case
	Algorithms
	Simulation Experiments
	Online Non-Clairvoyant Problem

