Computing with limited memory

Loris Marchal (CNRS, Lyon, France)
loris.marchal@ens-lyon.fr

November 19, 2013

Outline

Introduction and motivation
Minimize I/O in out-of-core matrix computations
Naïve and optimized algorithms for matrix product
Lower bound on the I/O volume
Extending lower bounds to other operations
Cache-oblivious algorithms
Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals Complexity of parallel tree processing
Practical solutions for limited memory
Conclusion

Outline

Introduction and motivation
Minimize I/O in out-of-core matrix computations Naïve and optimized algorithms for matrix product Lower bound on the I/O volume Extending lower bounds to other operations Cache-oblivious algorithms

Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals Complexity of parallel tree processing Practical solutions for limited memory

Conclusion

Introduction

Usual performance metric: makespan (or other time-related metric)

- Gap between processing power and communication cost increasing exponentially

	annual improvements
Flops rate	59%
mem. bandwidth	26%
mem. latency	5%

Introduction

Usual performance metric: makespan (or other time-related metric)
Today: focus on memory

- Workflows with large temporary data
- Bad evolution of perf. for computation vs. communication: 1 /Flops $\ll 1$ /bandwidth \ll latency
- Gap between processing power and communication cost increasing exponentially

	annual improvements
Flops rate	59%
mem. bandwidth	26%
mem. latency	5%

- Avoid communications (I/O)
- Restrict to in-core memory (out-of-core is expensive)

Introduction

Usual performance metric: makespan (or other time-related metric)
Today: focus on memory

- Workflows with large temporary data
- Bad evolution of perf. for computation vs. communication: 1 /Flops $\ll 1$ /bandwidth \ll latency
- Gap between processing power and communication cost increasing exponentially

	annual improvements
Flops rate	59%
mem. bandwidth	26%
mem. latency	5%

- Avoid communications (I/O)
- Restrict to in-core memory (out-of-core is expensive)

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations Naïve and optimized algorithms for matrix product Lower bound on the I/O volume Extending lower bounds to other operations
Cache-oblivious algorithms

```
Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals
Complexity of parallel tree processing
Practical solutions for limited memory
```


Conclusion

Model

Out-of-core execution:

- Fast memory of size M
- M is to small to accomodate all data
- Unlimited disk space
- Disk access are slow: minimize read/write (I/O)

Applies to other two-level systems
 - Fast hut limited cache / Iarge and slower memory
 - Fast but limited L1 cache / Large and slower L2/L3 cache

Model

Out-of-core execution:

- Fast memory of size M
- M is to small to accomodate all data
- Unlimited disk space
- Disk access are slow: minimize read/write (I/O)

Applies to other two-level systems:

- Fast but limited cache / Large and slower memory
- Fast but limited L1 cache / Large and slower L2/L3 cache

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations Naïve and optimized algorithms for matrix product
Lower bound on the I/O volume
Extending lower bounds to other operations
Cache-oblivious algorithms

```
Memory-Aware DAGs scheduling Pebble game
Optimal depth-first and general traversals
Complexity of parallel tree processing
Practical solutions for limited memory
```

Conclusion

Basic matrix-product algorithm: analysis

```
naive-matrix-multiply(n, C, A, B)
for \(i=1\) to \(n\)
    for \(j=1\) to \(n C[i, j]=0\)
    for \(k=1\) to \(n\)
        \(C[i, j]=C[i, j]+A[i, k] * B[k, j]\)
        end for
    end for
end for
```

- how many I/O operations with a memory of size M
> assumption: $M<n^{2} / 2$
\rightarrow all B elements accessed during outer loop: at least $n^{2} / 2$ reads a total: at least $\mathrm{m}^{3} / 2 \mathrm{read}\left(\right.$ at $\mathrm{most} 1 \mathrm{~m}^{3} \mathrm{read} / \mathrm{mrite}$)

Basic matrix-product algorithm: analysis

```
naive-matrix-multiply(n, C, A, B)
for \(i=1\) to \(n\)
    for \(j=1\) to \(n C[i, j]=0\)
    for \(k=1\) to \(n\)
        \(C[i, j]=C[i, j]+A[i, k] * B[k, j]\)
        end for
    end for
end for
```

- how many I/O operations with a memory of size M
- assumption: $M<n^{2} / 2$
- all B elements accessed during outer loop: at least $n^{2} / 2$ reads
\Rightarrow total: at least $n^{3} / 2$ read (at most $4 n^{3}$ read/write)

Basic matrix-product algorithm: analysis

```
naive-matrix-multiply(n, C, A, B)
for \(i=1\) to \(n\)
    for \(j=1\) to \(n C[i, j]=0\)
    for \(k=1\) to \(n\)
        \(C[i, j]=C[i, j]+A[i, k] * B[k, j]\)
        end for
    end for
end for
```

- how many I/O operations with a memory of size M
- assumption: $M<n^{2} / 2$
- all B elements accessed during outer loop: at least $n^{2} / 2$ reads
\rightarrow total: at least $n^{3} / 2$ read (at most $4 n^{3}$ read/write)

Basic matrix-product algorithm: analysis

```
naive-matrix-multiply(n, C, A, B)
for \(i=1\) to \(n\)
    for \(j=1\) to \(n C[i, j]=0\)
    for \(k=1\) to \(n\)
        \(C[i, j]=C[i, j]+A[i, k] * B[k, j]\)
        end for
    end for
end for
```

- how many I/O operations with a memory of size M
- assumption: $M<n^{2} / 2$
- all B elements accessed during outer loop: at least $n^{2} / 2$ reads
- total: at least $n^{3} / 2$ read (at most $4 n^{3}$ read/write)

Matrix-product algorithm: how to do better ?

Idea: use blocks of size $\sqrt{M} / 3$

```
blocked-matrix-multiply(n,C,A,B)
b = square root of (memory size/3)
for i = 1 to n step b
    for j = 1 to n step b
        fill C[i:i+b-1,j:j+b-1] with zeros
        for k = 1 to n step b
            naive-matrix-multiply(b,C[i:i+b-1,j:j+b-1],
                        A[i:i+b-1,k:k+b-1],
                        B[k:k+b-1,j:j+b-1])
        end for
    end for
end for
```

- each iteration of the inner loop accesses only $3 b^{2}=M$ data: each data is read/written only once
> bound on the number of transfers:

Matrix-product algorithm: how to do better ?

Idea: use blocks of size $\sqrt{M} / 3$

```
blocked-matrix-multiply(n,C,A,B)
b = square root of (memory size/3)
for i = 1 to n step b
    for j = 1 to n step b
        fill C[i:i+b-1,j:j+b-1] with zeros
        for k = 1 to n step b
            naive-matrix-multiply(b,C[i:i+b-1,j:j+b-1],
                        A[i:i+b-1,k:k+b-1],
                    B[k:k+b-1,j:j+b-1])
        end for
    end for
end for
```

- each iteration of the inner loop accesses only $3 b^{2}=M$ data: each data is read/written only once
- bound on the number of transfers:

$$
\left.(n / b)^{3} \times 2 M=(n / \sqrt{M / 3})^{3} \times 2 M=O\left(n^{3} / \sqrt{M}\right)\right)
$$

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
Naïve and optimized algorithms for matrix product
Lower bound on the I/O volume
Extending lower bounds to other operations
Cache-oblivious algorithms
Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals
Complexity of parallel tree processing
Practical solutions for limited memory
Conclusion

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i, j}$ is alive in phase p is it computes $a_{i, k} b_{k, j}$ for some k

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i, j}$ is alive in phase p is it computes $a_{i, k} b_{k, j}$ for some k
- alive $c_{i, j}$ either in memory or written: at most $2 M$ alive $c_{i, j}$ in a phase

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i, j}$ is alive in phase p is it computes $a_{i, k} b_{k, j}$ for some k
- alive $c_{i, j}$ either in memory or written: at most $2 M$ alive $c_{i, j}$ in a phase
- at most $2 M$ elements of $A(\mathrm{~B})$ in memory during phase $p: A_{p}\left(B_{p}\right)$

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i, j}$ is alive in phase p is it computes $a_{i, k} b_{k, j}$ for some k
- alive $c_{i, j}$ either in memory or written: at most $2 M$ alive $c_{i, j}$ in a phase
- at most $2 M$ elements of $A(\mathrm{~B})$ in memory during phase $p: A_{p}\left(B_{p}\right)$
- S_{p}^{1} : set of rows of A with \sqrt{M} or more elements in $A_{p}\left(\left|S_{p}^{1}\right| \leq 2 \sqrt{M}\right)$

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i, j}$ is alive in phase p is it computes $a_{i, k} b_{k, j}$ for some k
- alive $c_{i, j}$ either in memory or written: at most $2 M$ alive $c_{i, j}$ in a phase
- at most $2 M$ elements of $A(\mathrm{~B})$ in memory during phase $p: A_{p}\left(B_{p}\right)$
- S_{p}^{1} : set of rows of A with \sqrt{M} or more elements in $A_{p}\left(\left|S_{p}^{1}\right| \leq 2 \sqrt{M}\right)$
- each row used in at most $\left|B_{p}\right| \leq 2 M$ products

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i, j}$ is alive in phase p is it computes $a_{i, k} b_{k, j}$ for some k
- alive $c_{i, j}$ either in memory or written: at most $2 M$ alive $c_{i, j}$ in a phase
- at most $2 M$ elements of $A(\mathrm{~B})$ in memory during phase $p: A_{p}\left(B_{p}\right)$
- S_{p}^{1} : set of rows of A with \sqrt{M} or more elements in $A_{p}\left(\left|S_{p}^{1}\right| \leq 2 \sqrt{M}\right)$
- each row used in at most $\left|B_{p}\right| \leq 2 M$ products
- at most $4 M^{3 / 2}$ multiplications with elements from S_{p}^{1}

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i, j}$ is alive in phase p is it computes $a_{i, k} b_{k, j}$ for some k
- alive $c_{i, j}$ either in memory or written: at most $2 M$ alive $c_{i, j}$ in a phase
- at most $2 M$ elements of $A(\mathrm{~B})$ in memory during phase $p: A_{p}\left(B_{p}\right)$
- S_{p}^{1} : set of rows of A with \sqrt{M} or more elements in $A_{p}\left(\left|S_{p}^{1}\right| \leq 2 \sqrt{M}\right)$
- each row used in at most $\left|B_{p}\right| \leq 2 M$ products
- at most $4 M^{3 / 2}$ multiplications with elements from S_{p}^{1}
- S_{p}^{2} : set of rows of A with fewer elements in A_{p}

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i, j}$ is alive in phase p is it computes $a_{i, k} b_{k, j}$ for some k
- alive $c_{i, j}$ either in memory or written: at most $2 M$ alive $c_{i, j}$ in a phase
- at most $2 M$ elements of $A(\mathrm{~B})$ in memory during phase $p: A_{p}\left(B_{p}\right)$
- S_{p}^{1} : set of rows of A with \sqrt{M} or more elements in $A_{p}\left(\left|S_{p}^{1}\right| \leq 2 \sqrt{M}\right)$
- each row used in at most $\left|B_{p}\right| \leq 2 M$ products
- at most $4 M^{3 / 2}$ multiplications with elements from S_{p}^{1}
- S_{p}^{2} : set of rows of A with fewer elements in A_{p}
- each row used for a different alive $c_{i, j}$
- total: at most $6 M^{3 / 2}$ per phase

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i, j}$ is alive in phase p is it computes $a_{i, k} b_{k, j}$ for some k
- alive $c_{i, j}$ either in memory or written: at most $2 M$ alive $c_{i, j}$ in a phase
- at most $2 M$ elements of $A(\mathrm{~B})$ in memory during phase $p: A_{p}\left(B_{p}\right)$
- S_{p}^{1} : set of rows of A with \sqrt{M} or more elements in $A_{p}\left(\left|S_{p}^{1}\right| \leq 2 \sqrt{M}\right)$
- each row used in at most $\left|B_{p}\right| \leq 2 M$ products
- at most $4 M^{3 / 2}$ multiplications with elements from S_{p}^{1}
- S_{p}^{2} : set of rows of A with fewer elements in A_{p}
- each row used for a different alive $c_{i, j}$
- at most $\sqrt{M} \times 2 M$ multiplications with elements from S_{p}^{2}
- total: at most $6 M^{3 / 2}$ per phase
- number of full phases $=\left\lfloor n^{3} / 6 M^{3 / 2}\right\rfloor \geq n^{3} / 6 M^{3 / 2}-1$

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i, j}$ is alive in phase p is it computes $a_{i, k} b_{k, j}$ for some k
- alive $c_{i, j}$ either in memory or written: at most $2 M$ alive $c_{i, j}$ in a phase
- at most $2 M$ elements of $A(\mathrm{~B})$ in memory during phase $p: A_{p}\left(B_{p}\right)$
- S_{p}^{1} : set of rows of A with \sqrt{M} or more elements in $A_{p}\left(\left|S_{p}^{1}\right| \leq 2 \sqrt{M}\right)$
- each row used in at most $\left|B_{p}\right| \leq 2 M$ products
- at most $4 M^{3 / 2}$ multiplications with elements from S_{p}^{1}
- S_{p}^{2} : set of rows of A with fewer elements in A_{p}
- each row used for a different alive $c_{i, j}$
- at most $\sqrt{M} \times 2 M$ multiplications with elements from S_{p}^{2}
- total: at most $6 M^{3 / 2}$ per phase
- number of full phases $=\left\lfloor n^{3} / 6 M^{3 / 2}\right\rfloor \geq n^{3} / 6 M^{3 / 2}-1$
- number of transfers

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i, j}$ is alive in phase p is it computes $a_{i, k} b_{k, j}$ for some k
- alive $c_{i, j}$ either in memory or written: at most $2 M$ alive $c_{i, j}$ in a phase
- at most $2 M$ elements of $A(\mathrm{~B})$ in memory during phase $p: A_{p}\left(B_{p}\right)$
- S_{p}^{1} : set of rows of A with \sqrt{M} or more elements in $A_{p}\left(\left|S_{p}^{1}\right| \leq 2 \sqrt{M}\right)$
- each row used in at most $\left|B_{p}\right| \leq 2 M$ products
- at most $4 M^{3 / 2}$ multiplications with elements from S_{p}^{1}
- S_{p}^{2} : set of rows of A with fewer elements in A_{p}
- each row used for a different alive $c_{i, j}$
- at most $\sqrt{M} \times 2 M$ multiplications with elements from S_{p}^{2}
- total: at most $6 M^{3 / 2}$ per phase
- number of full phases $=\left\lfloor n^{3} / 6 M^{3 / 2}\right\rfloor \geq n^{3} / 6 M^{3 / 2}-1$
- number of transfers

Matrix-product algorithm: can we do even better?

- Consider a "normal" matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i, j}$ is alive in phase p is it computes $a_{i, k} b_{k, j}$ for some k
- alive $c_{i, j}$ either in memory or written: at most $2 M$ alive $c_{i, j}$ in a phase
- at most $2 M$ elements of $A(\mathrm{~B})$ in memory during phase $p: A_{p}\left(B_{p}\right)$
- S_{p}^{1} : set of rows of A with \sqrt{M} or more elements in $A_{p}\left(\left|S_{p}^{1}\right| \leq 2 \sqrt{M}\right)$
- each row used in at most $\left|B_{p}\right| \leq 2 M$ products
- at most $4 M^{3 / 2}$ multiplications with elements from S_{p}^{1}
- S_{p}^{2} : set of rows of A with fewer elements in A_{p}
- each row used for a different alive $c_{i, j}$
- at most $\sqrt{M} \times 2 M$ multiplications with elements from S_{p}^{2}
- total: at most $6 M^{3 / 2}$ per phase
- number of full phases $=\left\lfloor n^{3} / 6 M^{3 / 2}\right\rfloor \geq n^{3} / 6 M^{3 / 2}-1$
- number of transfers $\geq \frac{n^{3}}{6 \sqrt{M}}-M$

Matrix-product algorithm: better bound

Lemma (Loomis-Whitney inequality).
With N_{A}, N_{B}, N_{C} elements of A, B, C, we can perform at most $\sqrt{N_{A} N_{B} N_{C}}$ elementary multiplications.

Further improvement:

- number of transfers:

Matrix-product algorithm: better bound

Lemma (Loomis-Whitney inequality).
With N_{A}, N_{B}, N_{C} elements of A, B, C, we can perform at most $\sqrt{N_{A} N_{B} N_{C}}$ elementary multiplications.

- in each phase of the previous proof: $N_{A}, N_{B}, N_{C} \leq 2 M$
- at most $2 \sqrt{2} M^{3 / 2}$ products
- number of transfers: $\geq \frac{n^{3}}{2 \sqrt{2 M}}-M$

Further improvement:

- number of transfers:

Matrix-product algorithm: better bound

Lemma (Loomis-Whitney inequality).
With N_{A}, N_{B}, N_{C} elements of A, B, C, we can perform at most $\sqrt{N_{A} N_{B} N_{C}}$ elementary multiplications.

- in each phase of the previous proof: $N_{A}, N_{B}, N_{C} \leq 2 M$
- at most $2 \sqrt{2} M^{3 / 2}$ products
- number of transfers: $\geq \frac{n^{3}}{2 \sqrt{2 M}}-M$

Further improvement:

- $N_{A}=N_{A}^{\text {received }}+N_{A}^{\text {cached }}$
- $N_{A}^{\text {received }}+N_{B}^{\text {received }}+N_{C}^{\text {received }} \leq M$
- $N_{A}^{\text {cached }}+N_{B}^{\text {cached }}+N_{C}^{\text {cached }} \leq M$
- $N_{A}+N_{B}+N_{C} \leq 2 M$
- $\sqrt{N_{A} N_{B} N_{C}} \leq(2 M / 3)^{3 / 2}$
- number of transfers: $\geq \frac{27}{8} \frac{n^{3}}{\sqrt{M}}$

Matrix-product algorithm: parallel processing

Bounds on the number of transfers:

- For a processor computing W products:

$$
I / O_{W} \geq \frac{W}{2 \sqrt{2 M}}-M
$$

- If we use P processors, one of them computes at least n^{3} / P products

$$
I / O \geq \frac{n^{3}}{2 \sqrt{2 M P}}-M
$$

Example: 2D algorithms (Cannon, SUMMA, ...):

- 2D block distributions on a grid $\sqrt{P} \times \sqrt{P}$
- store A, B and $C: 3 n^{2} / P$ elements on each processor
- at each step, each processors receives a block of A and B
- storage per processor: $O\left(n^{2} / P\right)$
- communication volume per processor:

$$
(n / \sqrt{P})^{2} \times \sqrt{P}=n^{2} / \sqrt{P}
$$

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
Naïve and optimized algorithms for matrix product
Lower bound on the I/O volume
Extending lower bounds to other operations
Cache-oblivious algorithms

```
Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals
Complexity of parallel tree processing
Practical solutions for limited memory
```

Conclusion

Generalized expression and model

Generalized matrix computation:

$$
C(i, j)=f_{i, j}\left(g_{i, j, k}(A(i, k), B(k, j)) \text { for } k \in S_{i, j}, K\right)
$$

where

- $A(i, j), B(i, j), C(i, j)$ are any reordering of A, B, C
- K represents any other arguments
- $f_{i, j}, g_{i, j, k}$ depends non-trivially on their arguments
- A, B and C may overlap

Trivial application to matrix product:

- $g_{i, j, k}$: product
- $S_{i, j}=\{(i, j, k)$ for $k=1 \ldots n\}$
- $f_{i, j}$: sum

I/O analysis for extended model

- As previously, decompose into phases of M transfers
- consider operands (of A, B or C) in memory during a phase
- Root: how it came to be in memory?
- R1: already in memory at the beginning of the phase, or read during the phase (at most $2 M$)
- R2: created during the phase (not bounded)
- Destination: what happens when it disappears?
- D1: still in memory at the end of the phase, or written during the phase (at most $2 M$)
- D2: discarded (not bounded)
- Discard R2/D2 for now
- Using Loomis-Whitney inequality:
at most $\sqrt{(4 M)^{3}}$ computations in a phase

I/O analysis for extended model

- As previously, decompose into phases of M transfers
- consider operands (of A, B or C) in memory during a phase
- Root: how it came to be in memory?
- R1: already in memory at the beginning of the phase, or read during the phase (at most $2 M$)
- R2: created during the phase (not bounded)
- Destination: what happens when it disappears?
- D1: still in memory at the end of the phase, or written during the phase (at most $2 M$)
- D2: discarded (not bounded)
- Discard R2/D2 for now
- Alive values of A in a phase $\leq 4 M$ ($\left.=\mathrm{R} 1 /{ }^{*}+{ }^{*} / \mathrm{D} 1\right)$
- Using Loomis-Whitney inequality: at most $\sqrt{(4 M)^{3}}$ computations in a phase
- For a computation of size G : at least $G /(8 \sqrt{M})-M$ transfers

Extending to solving linear equations

- TRSM kernel $\left(C=A^{1} B\right)$ for A upper triangular (solve linear equations)

$$
C_{i, j}=\left(B_{i, j}-\sum_{k=i+1}^{n} A_{i, k} \cdot C_{k, j}\right) / A_{i, i}
$$

(any order of j, decreasing i)

- May be transformed to

$$
C(i, j)=f_{i, j}\left(g_{i, j, k}(A(i, k), B(k, j)) \text { for } k \in S_{i, j}, K\right)
$$

with:

- $C=B$
- $g_{i, j, k}$ multiplies $A_{i, k} \cdot C_{k, j}$
- $f_{i, j}$ performs the sum, subtracts from B_{i}, j divides by $A_{i, i}$
- Same bound as for matrix multiplication!
- Achieved by some algorithms

Extending to LU factorization

- Gaussian elimination: $A=L \cdot U$ where L is lower triangular, U is upper triangular

$$
\begin{aligned}
L_{i, j} & =\left(A_{i, j}-\sum_{k<j} L_{i, k} \cdot U_{k, j}\right) / U_{j, j} \text { for } i>j \\
U_{i, j} & =A_{i, j}-\sum_{k<i} L_{i, k} \cdot U_{k, j} \text { for } i \leq j
\end{aligned}
$$

- May be transformed to

$$
C(i, j)=f_{i, j}\left(g_{i, j, k}(A(i, k), B(k, j)) \text { for } k \in S_{i, j}, K\right)
$$

with:

- $A=B=C$
- $g_{i, j, k}$ multiplies $L_{i, k} \cdot U_{k, j}$
- $f_{i, j}$ performs the sum, subtracts from A_{i}, j (divides by $U_{j, j}$)
- Same bound
- Achieved by some algorithms

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
Naïve and optimized algorithms for matrix product
Lower bound on the I/O volume
Extending lower bounds to other operations
Cache-oblivious algorithms

```
Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals
Complexity of parallel tree processing
Practical solutions for limited memory
```

Conclusion

What if we don't know the memory size M ?

- Back to the matrix product (square matrix of size $n \times n$)

$$
C=\left(\begin{array}{ll}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}\right)=A \cdot B=\left(\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right) \cdot\left(\begin{array}{ll}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{array}\right)
$$

- Recursive matrix multiplication algorithm:
$\operatorname{RMM}(\mathrm{n}, \mathrm{A}, \mathrm{B})$
if $\mathrm{n}==1$ then $\mathrm{C}=\mathrm{A} * \mathrm{~B}$ else \{

$$
\mathrm{C}_{-} 11=\operatorname{RMM}\left(\mathrm{n} / 2, \mathrm{~A}_{-} 11, \mathrm{~B}_{-} 11\right)+\operatorname{RMM}\left(\mathrm{n} / 2, \mathrm{~A}_{-} 12, \mathrm{~B}_{-} 21\right)
$$

$$
\mathrm{C}_{-} 12=\operatorname{RMM}\left(\mathrm{n} / 2, \mathrm{~A}_{-} 11, \mathrm{~B}_{-} 12\right)+\operatorname{RMM}\left(\mathrm{n} / 2, \mathrm{~A}_{-} 12, \mathrm{~B}_{-} 22\right)
$$

$$
\mathrm{C}_{-} 21=\operatorname{RMM}\left(\mathrm{n} / 2, \mathrm{~A}_{-} 21, \mathrm{~B} _11\right)+\operatorname{RMM}\left(\mathrm{n} / 2, \mathrm{~A}_{-} 22, \mathrm{~B} _21\right)
$$

$$
\mathrm{C}_{-} 22=\operatorname{RMM}\left(\mathrm{n} / 2, \mathrm{~A}_{-} 21, \mathrm{~B}_{-} 12\right)+\mathrm{RMM}\left(\mathrm{n} / 2, \mathrm{~A}_{-} 22, \mathrm{~B} _22\right)
$$

return C

Analysis of the recursive algorithm

```
\(\operatorname{RMM}(\mathrm{n}, \mathrm{A}, \mathrm{B})\)
if \(\mathrm{n}=1\) then \(\mathrm{C}=\mathrm{A} * \mathrm{~B}\) else \{
    \(C_{-} 11=\operatorname{RMM}\left(n / 2, A_{-} 11, B_{-} 11\right)+\operatorname{RMM}\left(n / 2, A_{-} 12, B_{-} 21\right)\)
    \(C_{-} 12=\operatorname{RMM}\left(n / 2, A_{-} 11, B_{-} 12\right)+\operatorname{RMM}\left(n / 2, A_{-} 12, B_{-} 22\right)\)
    C_21 \(=\) RMM (n/2,A_21, B_11) + RMM (n/2, \(\left.A_{-} 22, B \_21\right)\)
    C_22 \(=\) RMM (n/2, \(\left.A_{-} 21, B_{\_} 12\right)+\operatorname{RMM}\left(n / 2, A_{-} 22, B \_22\right)\)
return C
```

- $C(n)$: Number of arithmetic operations in $\operatorname{RMM}(n, A, B)$

$$
\begin{aligned}
& C(n)=8 C(n / 2)+4(n / 2)^{2} \text { if } n>1 \text { otherwise } 1 \\
& C(n)=2 n^{3} \ldots \text { as usual, in different order }
\end{aligned}
$$

- $T(n)$: Number of transfers $\operatorname{RMM}(n, A, B)$ with memory M

Analysis of the recursive algorithm

```
\(\operatorname{RMM}(\mathrm{n}, \mathrm{A}, \mathrm{B})\)
if \(\mathrm{n}==1\) then \(\mathrm{C}=\mathrm{A} * \mathrm{~B}\) else \{
    \(C_{-} 11=\operatorname{RMM}\left(n / 2, A_{-} 11, B_{-} 11\right)+\operatorname{RMM}\left(n / 2, A_{-} 12, B_{-} 21\right)\)
    \(C_{-} 12=\operatorname{RMM}\left(n / 2, A_{-} 11, B_{-} 12\right)+\operatorname{RMM}\left(n / 2, A_{-} 12, B_{-} 22\right)\)
    C_21 \(=\) RMM (n/2, \(\left.A_{-} 21, B_{-} 11\right)+\operatorname{RMM}\left(n / 2, A_{-} 22, B \_21\right)\)
    \(C_{-} 22=\) RMM (n/2, \(\left.A_{-} 21, B_{\_} 12\right)+\operatorname{RMM}\left(n / 2, A_{-} 22, B_{-} 22\right)\)
return \(C\)
```

- $C(n)$: Number of arithmetic operations in $\operatorname{RMM}(n, A, B)$

$$
\begin{aligned}
& C(n)=8 C(n / 2)+4(n / 2)^{2} \text { if } n>1 \text { otherwise } 1 \\
& C(n)=2 n^{3} \ldots \text { as usual, in different order }
\end{aligned}
$$

- $T(n)$: Number of transfers $\operatorname{RMM}(n, A, B)$ with memory M

$$
\begin{aligned}
& T(n)=8 T(n / 2)+12(n / 2)^{2} \text { if } 3 n^{2}>M \text { otherwise } 3 n^{2} \\
& T(n)=O\left(n^{3} / \sqrt{M}+n^{2}\right) \ldots \text { same as blocked version }
\end{aligned}
$$

Summary on cache-oblivious algorithms

- Designed for unknown cache (or memory) size
- Works well for operations naturally expressed by divide-and-conquer algorithms (matrix multiplication, FFT, sorting, matrix transposition, ...)
- Asymptotically optimal algorithms
- Well adapted to memory/cache hierarchies: L3 (large, slow) \rightarrow L2 (avg. size, avg. speed) \rightarrow L1 (small, fast)
- Extensions exist for parallel machines: Parallel External Memory (PEM)
- In practice for matrix computations, usually outperformed by optimized blocked algorithms

References

- Foundation paper: Hong \& Kung: "I/0 Complexity: The Red-Blue Pebble Game" (STOC 1981)
- Communication lower bounds revisited by Irony, Toledo, Tiskin (JPDC 2004)
- Application to numerical linear algebra: Ballard, Demmel, Holtz (SIAM. J. Matrix Anal. \& Appl 2011)
- Development of communication-avoiding algorithms
- Cache-oblivious algorithms: Frigo, Leiserson, Prokop, Ramachandran (FOCS 1999), ...

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
Naïve and optimized algorithms for matrix product
Lower bound on the I/O volume
Extending lower bounds to other operations
Cache-oblivious algorithms
Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals Complexity of parallel tree processing Practical solutions for limited memory

Conclusion

Introduction

- Directed Acyclic Graphs: express task dependencies
- nodes: computational tasks
- edges: dependencies (data $=$ output of a task $=$ input of another task)
- Formalism proposed long ago in scheduling
- Back into fashion thanks to task based runtimes

Here, we focus on task trees:

- Arise in multifrontal sparse matrix factorization
- Assembly/Elimination tree: application task graph is a tree
- Large temporary data
- Memory usage becomes a bottleneck

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations Cache-oblivious algorithms

Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals Complexity of parallel tree processing Practical solutions for limited memory

Conclusion

Related Work: Register Allocation \& Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers ?

$$
7+(1+x)(5-z)-((u-t) /(2+z))+v
$$

- Inputs can be pebbled anytime

Related Work: Register Allocation \& Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers ?

$$
7+(1+x)(5-z)-((u-t) /(2+z))+v
$$

Pebble-game rules:

- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled - A pebble may be removed anytime

Related Work: Register Allocation \& Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers ?

$$
7+(1+x)(5-z)-((u-t) /(2+z))+v
$$

Pebble-game rules:

- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Related Work: Register Allocation \& Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers ?

$$
7+(1+x)(5-z)-((u-t) /(2+z))+v
$$

Pebble-game rules:

- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
\rightarrow A pebble may be removed anytime

Related Work: Register Allocation \& Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers ?

$$
7+(1+x)(5-z)-((u-t) /(2+z))+v
$$

Pebble-game rules:

- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles

Related Work: Register Allocation \& Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers ?

$$
7+(1+x)(5-z)-((u-t) /(2+z))+v
$$

Complexity results

Problem on trees:

- Polynomial algorithm [Sethi \& Ullman, 1970]

General problem on DAGs (common subexpressions):

- P-Space complete [Gilbert, Lengauer \& Tarjan, 1980]
- Without re-computation: NP-complete [Sethi, 1973]

Pebble-game rules:

- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations Cache-oblivious algorithms

Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals
Complexity of parallel tree processing
Practical solutions for limited memory
Conclusion

Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_{i}
- Execution data of size n_{i}
- Input data of leaf nodes have null size
- Memory for node $i: \operatorname{MemReq}(i)=\left(\sum_{j \in \operatorname{Children}(i)} f_{j}\right)+n_{i}+f_{i}$

Two existing sequential algorithms:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]

Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_{i}
- Execution data of size n_{i}
- Input data of leaf nodes have null size
- Memory for node $i: \operatorname{MemReq}(i)=\left(\sum_{j \in \operatorname{Children}(i)} f_{j}\right)+n_{i}+f_{i}$

Two existing sequential algorithms:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]

Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_{i}
- Execution data of size n_{i}
- Input data of leaf nodes have null size
- Memory for node i : $\operatorname{MemReq}(i)=\left(\sum_{j \in \operatorname{Children}(i)} f_{j}\right)+n_{i}+f_{i}$

Two existing sequential algorithms:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]

Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_{i}
- Execution data of size n_{i}
- Input data of leaf nodes have null size
- Memory for node $i: \operatorname{MemReq}(i)=\left(\sum_{j \in \operatorname{Children}(i)} f_{j}\right)+n_{i}+f_{i}$

Two existing sequential algorithms:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]

Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_{i}
- Execution data of size n_{i}
- Input data of leaf nodes have null size
- Memory for node $i: \operatorname{MemReq}(i)=\left(\sum_{j \in \operatorname{Children}(i)} f_{j}\right)+n_{i}+f_{i}$

Two existing sequential algorithms:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]

Liu's Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_{i} : peak memory P_{i}, residual memory f_{i}
- For a given processing order $1, \ldots, n$, the peak memory is:
$\max \left\{P_{1}\right.$,

Liu's Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_{i} : peak memory P_{i}, residual memory f_{i}
- For a given processing order $1, \ldots, n$, the peak memory is:
$\max \left\{P_{1}, f_{1}+P_{2}\right.$,

Liu's Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_{i} : peak memory P_{i}, residual memory f_{i}
- For a given processing order $1, \ldots, n$, the peak memory is:
$\max \left\{P_{1}, f_{1}+P_{2}, f_{1}+f_{2}+P_{3}\right.$, \square
\qquad

Liu's Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_{i} : peak memory P_{i}, residual memory f_{i}
- For a given processing order $1, \ldots, n$, the peak memory is:
$\max \left\{P_{1}, f_{1}+P_{2}, f_{1}+f_{2}+P_{3}, \ldots, \sum_{i<n} f_{i}+P_{n}\right.$, \qquad
- Optimal order:
- Post-Order traversals are dominant for unit-weight trees

Liu's Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_{i} : peak memory P_{i}, residual memory f_{i}
- For a given processing order $1, \ldots, n$, the peak memory is:
$\max \left\{P_{1}, f_{1}+P_{2}, f_{1}+f_{2}+P_{3}, \ldots, \sum_{i<n} f_{i}+P_{n}, \quad \sum f_{i}+n_{r}+f_{r}\right\}$
- Optimal order:
- Post-Order traversals are dominant for unit-weight trees

Liu's Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_{i} : peak memory P_{i}, residual memory f_{i}
- For a given processing order $1, \ldots, n$, the peak memory is:
$\max \left\{P_{1}, f_{1}+P_{2}, f_{1}+f_{2}+P_{3}, \ldots, \sum_{i<n} f_{i}+P_{n}, \quad \sum f_{i}+n_{r}+f_{r}\right\}$
- Optimal order: non-increasing $P_{i}-f_{i}$
- Post-Order traversals are dominant for unit-weight trees

Liu's Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_{i} : peak memory P_{i}, residual memory f_{i}
- For a given processing order $1, \ldots, n$, the peak memory is:
$\max \left\{P_{1}, f_{1}+P_{2}, f_{1}+f_{2}+P_{3}, \ldots, \sum_{i<n} f_{i}+P_{n}, \quad \sum f_{i}+n_{r}+f_{r}\right\}$
- Optimal order: non-increasing $P_{i}-f_{i}$
- Post-Order traversals are dominant for unit-weight trees

Proof for best post-order

Theorem (Best Post-Order).

The best post-order traversal is obtain by processing subtrees in non-increasing order $P_{i}-f_{i}$.

Proof:

- Consider an optimal traversal which does not respect the order:
- subtree j is processed right before subtree k
- $P_{k}-f_{k} \geq P_{j}-f_{j}$

	peak when j, then k	peak when k_{i} then j
during first subtree	mem_before $+P_{j}$	mem_before $+P_{k}$
during second subtree	mem_before $+f_{j}+P_{k}$	mem_before $+f_{k}+P_{j}$

- $f_{k}+P_{j} \leq f_{j}+P_{k}$
- Transform the schedule step by step without increasing the memory.

Proof for best post-order

Theorem (Best Post-Order).

The best post-order traversal is obtain by processing subtrees in non-increasing order $P_{i}-f_{i}$.

Proof:

- Consider an optimal traversal which does not respect the order:
- subtree j is processed right before subtree k
- $P_{k}-f_{k} \geq P_{j}-f_{j}$

	peak when j, then k	peak when k, then j
during first subtree	mem_before $+P_{j}$	mem_before $+P_{k}$
during second subtree	mem_before $+f_{j}+P_{k}$	mem_before $+f_{k}+P_{j}$

- $f_{k}+P_{j} \leq f_{j}+P_{k}$
- Transform the schedule step by step without increasing the memory.

Post-Order is not optimal...

Post-Order traversals are arbitrarily bad in the general case
There is no constant k such that the best post-order traversal is a k-approximation.

Post-Order is not optimal...

Post-Order traversals are arbitrarily bad in the general case
There is no constant k such that the best post-order traversal is a k-approximation.

- Minimum peak memory:

$$
M_{\min }=M+\epsilon+(b-1) \epsilon
$$

Post-Order is not optimal...

Post-Order traversals are arbitrarily bad in the general case
There is no constant k such that the best post-order traversal is a k-approximation.

- Minimum peak memory:

$$
M_{\min }=M+\epsilon+(b-1) \epsilon
$$

- Minimum post-order peak memory:

$$
\begin{aligned}
& M_{\min }= \\
& M+\epsilon+(b-1) M / b
\end{aligned}
$$

actual assembly trees \quad random trees

[^0]
Post-Order is not optimal...

Post-Order traversals are arbitrarily bad in the general case
There is no constant k such that the best post-order traversal is a k-approximation.

- Minimum peak memory:

$$
M_{\min }=M+\epsilon+2(b-1) \epsilon
$$

- Minimum post-order peak memory:

$$
\begin{aligned}
& M_{\min }= \\
& M+\epsilon+2(b-1) M / b
\end{aligned}
$$

actual assembly trees \quad random trees

$$
\begin{aligned}
& \text { Non optimal traversals } \\
& \text { Maximum increase compared to optimal } \\
& \text { Average increased compared to optimal }
\end{aligned}
$$

Post-Order is not optimal...but almost!

Post-Order traversals are arbitrarily bad in the general case
There is no constant k such that the best post-order traversal is a k-approximation.

- Minimum peak memory:

$$
M_{\min }=M+\epsilon+(b-1) \epsilon
$$

- Minimum post-order peak memory:

$$
\begin{aligned}
& M_{\min }= \\
& M+\epsilon+(b-1) M / b
\end{aligned}
$$

	actual assembly trees	random trees
Non optimal traversals	4.2%	61%
Maximum increase compared to optimal	18%	22%
Average increased compared to optimal	1%	12%

Liu's optimal traversal - sketch

- Recursive algorithm: at each step, merge the optimal ordering of each subtree (sequence)
- Sequence: divided into segments:
- H_{1} : maximum over the whole sequence (hill)
- V_{1} : minimum after H_{1} (valley)
- H_{2} : maximum after H_{1}
- V_{2} : minimum after H_{2}
- The valleys $V_{i} \mathrm{~s}$ are the boundaries of the segments
- Combine the sequences by non-increasing $H-V$
- Complex proof based on a partial order on the cost-sequences: $\left(H_{1}, V_{1}, H_{2}, V_{2}, \ldots, H_{r}, V_{r}\right) \prec\left(H_{1}^{\prime}, V_{1}^{\prime}, H_{2}^{\prime}, V_{2}^{\prime}, \ldots, H_{r^{\prime}}^{\prime}, V_{r^{\prime}}^{\prime}\right)$ if for each $1 \leq i \leq r$, there exists $1 \leq j \leq r^{\prime}$ with $H_{i} \leq H_{j}^{\prime}$ and $V_{i} \leq V_{j}^{\prime}$.

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations Cache-oblivious algorithms

Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals
Complexity of parallel tree processing
Practical solutions for limited memory

Conclusion

Model for Parallel Tree Processing

- p uniform processors
- Shared memory of size M
- Task i has execution times p_{i}
- Parallel processing of nodes \Rightarrow larger memory
- Trade-off time vs. memory

NP-Completeness in the Pebble Game Model

Background:

- Makespan minimization NP-complete for trees $\left(P \mid\right.$ trees $\left.\mid C_{\max }\right)$
- Polynomial when unit-weight tasks $\left(P \mid p_{i}=1\right.$, trees $\left.\mid C_{\max }\right)$
- Pebble game polynomial on trees

Pebble game model:

- Unit execution time: $p_{i}=1$
- Unit memory costs: $n_{i}=0, f_{i}=1$ (pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles in at most C steps is NP-complete.

NP-Completeness - Proof

Reduction from 3-Partition:

- $3 m$ integers a_{i} and B with $\sum a i=m B$,
- find m subsets S_{k} of 3 elements with $\sum_{i \in S_{k}} a_{i}=B$

Schedule the tree using:

- $p=3 \mathrm{mB}$ processors,
- at most $B=3 m \times B+3 m$ pebbles,
- at most $C=2 m+1$ steps.

Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α-approximation for makespan minimization and a β-approximation for memory peak minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan $C_{\max }$,

$$
M \times C_{\max } \geq 2(n-1)
$$

Proof: each edge stays in memory for at least 2 steps.

Space-Time Tradeoff - Proof

- With m^{2} processors: $C_{\max }^{*}=3$
- With 1 processor, sequentialize the a_{i} subtrees: $M^{*}=2 m$
- By contradiction, approximating both objectives: $C_{\max } \leq 3 \alpha$ and $M \leq 2 m \beta$
- But $M \times C_{\max } \geq 2(n-1)=2 m^{2}+2 m$
- $2 m^{2}+2 m \leq 6 m \alpha \beta$
- Contradiction for a sufficiently large value of m

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
Naïve and optimized algorithms for matrix product
Lower bound on the I/O volume
Extending lower bounds to other operations
Cache-oblivious algorithms
Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals Complexity of parallel tree processing
Practical solutions for limited memory
Conclusion

Practical solutions for limited memory

- In practice: physical bound on the memory
- How to cope with this bound, and guarantee completion?
- Two approaches:
- Sequential activation order
- Memory booking

Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_{i}+n_{i}$)
- schedule active (and ready) tasks using another order/priority When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

-) minimum memory requirement: memory peak of the activation traversal
-) no memory reuse

Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_{i}+n_{i}$)
- schedule active (and ready) tasks using another order/priority When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

-) minimum memory requirement: memory peak of the activation traversal
-) no memory reuse

Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_{i}+n_{i}$)
- schedule active (and ready) tasks using another order/priority When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

-) minimum memory requirement: memory peak of the activation traversal
-) no memory reuse

Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_{i}+n_{i}$)
- schedule active (and ready) tasks using another order/priority When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

-) minimum memory requirement: memory peak of the activation traversal
-) no memory reuse

Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_{i}+n_{i}$)
- schedule active (and ready) tasks using another order/priority When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

-) minimum memory requirement: memory peak of the activation traversal
-) no memory reuse

Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_{i}+n_{i}$)
- schedule active (and ready) tasks using another order/priority When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

-) minimum memory requirement: memory peak of the activation traversal
-) no memory reuse

Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_{i}+n_{i}$)
- schedule active (and ready) tasks using another order/priority When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

-) minimum memory requirement: memory peak of the activation traversal
-) no memory reuse

Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_{i}+n_{i}$)
- schedule active (and ready) tasks using another order/priority When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

-) minimum memory requirement: memory peak of the activation traversal
-) no memory reuse

Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_{i}+n_{i}$)
- schedule active (and ready) tasks using another order/priority When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

-) minimum memory requirement: memory peak of the activation traversal
-) no memory reuse

Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_{i}+n_{i}$)
- schedule active (and ready) tasks using another order/priority When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

-) minimum memory requirement: memory peak of the activation traversal
-) no memory reuse

Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_{i}+n_{i}$)
- schedule active (and ready) tasks using another order/priority When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

-) minimum memory requirement: memory peak of the activation traversal
- :) no memory reuse

Heuristic design: memory booking

- Design of scheduling heuristics with guaranteed peak memory
- Idea: re-use memory for parents, grand-parents, ...
- Book memory only when starting new leaves
- Stronger assumptions:
- Reduction tree:

$$
\sum_{j \in \text { Children(i) }} f_{j} \geq f_{i}
$$

- No extra memory cost for task execution
- For trees that do not respect these constraints, add fictitious nodes

- (-) memory reuse
- ... extra memory weights

Heuristic design: memory booking

- Design of scheduling heuristics with guaranteed peak memory
- Idea: re-use memory for parents, grand-parents, ...
- Book memory only when starting new leaves
- Stronger assumptions:
- Reduction tree:

$$
\sum_{j \in \text { Children(i) }} f_{j} \geq f_{i}
$$

- No extra memory cost for task execution
- For trees that do not respect these constraints, add fictitious nodes

- \because memory reuse
- \because extra memory weights

Heuristic design: memory booking

- Design of scheduling heuristics with guaranteed peak memory
- Idea: re-use memory for parents, grand-parents, .. .
- Book memory only when starting new leaves
- Stronger assumptions:
- Reduction tree:

$$
\sum_{j \in \operatorname{Children}(i)} f_{j} \geq f_{i}
$$

- No extra memory cost for task execution
- For trees that do not respect these constraints, add fictitious nodes

- \because memory reuse
- \because extra memory weights

Heuristic design: memory booking

- Design of scheduling heuristics with guaranteed peak memory
- Idea: re-use memory for parents, grand-parents, ...
- Book memory only when starting new leaves
- Stronger assumptions:
- Reduction tree:

$$
\sum_{j \in \text { Children (i) }} f_{j} \geq f_{i}
$$

- No extra memory cost for task execution
- For trees that do not respect these constraints, add fictitious nodes

- () memory reuse
- $)$ extra memory weights

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
Naïve and optimized algorithms for matrix product
Lower bound on the I/O volume
Extending lower bounds to other operations
Cache-oblivious algorithms
Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals Complexity of parallel tree processing Practical solutions for limited memory

Conclusion

Conclusion

- Memory, I/O and cache impact performance
- Avoid data movement, re-use data as much as possible
- Many different approaches, depending on the target application model:
- Cache-oblivious algorithms (recursive computations)
- Communication-avoiding algorithms (numerical algebra)
- Memory-Aware scheduling (task graphs)

[^0]: Non optimal traversals
 Maximum increase compared to optimal
 Average increased compared to optimal

