Computing with limited memory

Loris Marchal (CNRS, Lyon, France)
loris.marchal@ens-lyon.fr

November 19, 2013

<u>Outline</u>

Introduction and motivation

Minimize I/O in out-of-core matrix computations

Naïve and optimized algorithms for matrix product Lower bound on the I/O volume Extending lower bounds to other operations Cache-oblivious algorithms

Memory-Aware DAGs scheduling

Pebble game Optimal depth-first and general traversals Complexity of parallel tree processing Practical solutions for limited memory

Conclusion

<u>Outline</u>

Introduction and motivation

Minimize I/O in out-of-core matrix computations

Naïve and optimized algorithms for matrix product

Lower bound on the I/O volume

Extending lower bounds to other operations

Cache-oblivious algorithms

Memory-Aware DAGs scheduling

Pebble game
Optimal depth-first and general traversals
Complexity of parallel tree processing
Practical solutions for limited memory

Conclusion

Introduction

Usual performance metric: makespan (or other time-related metric)

Today: focus on memory

Workflows with large temporary data

▶ Bad evolution of perf. for computation vs. communication: 1/Flops ≪ 1/bandwidth ≪ latency

Gap between processing power and communication cost

mem. latency	

- ► Avoid communications (I/O)
- Restrict to in-core memory (out-of-core is expensive)

Introduction

Usual performance metric: makespan (or other time-related metric)

Today: focus on memory

Workflows with large temporary data

▶ Bad evolution of perf. for computation vs. communication: $1/\text{Flops} \ll 1/\text{bandwidth} \ll \text{latency}$

 Gap between processing power and communication cost increasing exponentially

	annual improvements
Flops rate	59%
mem. bandwidth	26%
mem. latency	5%

- ► Avoid communications (I/O)
- ▶ Restrict to in-core memory (out-of-core is expensive)

Introduction

Usual performance metric: makespan (or other time-related metric)

Today: focus on memory

- Workflows with large temporary data
- ▶ Bad evolution of perf. for computation vs. communication: $1/\text{Flops} \ll 1/\text{bandwidth} \ll \text{latency}$
- Gap between processing power and communication cost increasing exponentially

	annual improvements
Flops rate	59%
mem. bandwidth	26%
mem. latency	5%

- ► Avoid communications (I/O)
- ► Restrict to in-core memory (out-of-core is expensive)

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations

Naïve and optimized algorithms for matrix product

Lower bound on the I/O volume

Extending lower bounds to other operations

Cache-oblivious algorithms

Pebble game
Optimal depth-first and general traversa
Complexity of parallel tree processing

Conclusion

Model

Out-of-core execution:

- ► Fast memory of size *M*
- ▶ M is to small to accomodate all data
- Unlimited disk space
- ▶ Disk access are slow: minimize read/write (I/O)

Applies to other two-level systems:

- ► Fast but limited cache / Large and slower memory
- ► Fast but limited L1 cache / Large and slower L2/L3 cache

Model

Out-of-core execution:

- ► Fast memory of size M
- ▶ M is to small to accomodate all data
- Unlimited disk space
- ▶ Disk access are slow: minimize read/write (I/O)

Applies to other two-level systems:

- ► Fast but limited cache / Large and slower memory
- ▶ Fast but limited L1 cache / Large and slower L2/L3 cache

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations Naïve and optimized algorithms for matrix product

Lower bound on the I/O volume Extending lower bounds to other operations Cache-oblivious algorithms

Memory-Aware DAGs scheduling

Optimal depth-first and general traversa

Complexity of parallel tree processing

Practical solutions for limited memory

Conclusion

```
naive-matrix-multiply(n,C,A,B)
for i = 1 to n
  for j = 1 to n C[i,j] = 0
    for k = 1 to n
        C[i,j] = C[i,j] + A[i,k] * B[k,j]
    end for
  end for
end for
```

- ▶ how many I/O operations with a memory of size M
- assumption: $M < n^2/2$
- \blacktriangleright all B elements accessed during outer loop: at least $n^2/2$ reads
- ▶ total: at least $n^3/2$ read (at most $4n^3$ read/write)

```
naive-matrix-multiply(n,C,A,B)
for i = 1 to n
  for j = 1 to n C[i,j] = 0
    for k = 1 to n
        C[i,j] = C[i,j] + A[i,k] * B[k,j]
    end for
  end for
end for
```

- ▶ how many I/O operations with a memory of size M
- assumption: $M < n^2/2$
- \blacktriangleright all B elements accessed during outer loop: at least $n^2/2$ reads
- ▶ total: at least $n^3/2$ read (at most $4n^3$ read/write)

```
naive-matrix-multiply(n,C,A,B)
for i = 1 to n
  for j = 1 to n C[i,j] = 0
    for k = 1 to n
        C[i,j] = C[i,j] + A[i,k] * B[k,j]
    end for
  end for
end for
```

- lacktriangle how many I/O operations with a memory of size M
- assumption: $M < n^2/2$
- ▶ all B elements accessed during outer loop: at least $n^2/2$ reads
- ▶ total: at least $n^3/2$ read (at most $4n^3$ read/write)

```
naive-matrix-multiply(n,C,A,B)
for i = 1 to n
  for j = 1 to n C[i,j] = 0
    for k = 1 to n
       C[i,j] = C[i,j] + A[i,k] * B[k,j]
    end for
  end for
end for
```

- lacktriangle how many I/O operations with a memory of size M
- assumption: $M < n^2/2$
- ▶ all B elements accessed during outer loop: at least $n^2/2$ reads
- ▶ total: at least $n^3/2$ read (at most $4n^3$ read/write)

Matrix-product algorithm: how to do better?

```
Idea: use blocks of size \sqrt{M/3}
blocked-matrix-multiply(n,C,A,B)
b = square root of (memory size/3)
for i = 1 to n step b
  for j = 1 to n step b
    fill C[i:i+b-1,j:j+b-1] with zeros
    for k = 1 to n step b
      naive-matrix-multiply(b,C[i:i+b-1,j:j+b-1],
                               A[i:i+b-1.k:k+b-1].
                               B[k:k+b-1,j:j+b-1])
    end for
  end for
end for
```

- each iteration of the inner loop accesses only $3b^2=M$ data: each data is read/written only once
- bound on the number of transfers: $(n/b)^3 \times 2M = (n/\sqrt{M/3})^3 \times 2M = O(n^3/\sqrt{M})$

Matrix-product algorithm: how to do better?

```
Idea: use blocks of size \sqrt{M/3}
blocked-matrix-multiply(n,C,A,B)
b = square root of (memory size/3)
for i = 1 to n step b
  for j = 1 to n step b
    fill C[i:i+b-1,j:j+b-1] with zeros
    for k = 1 to n step b
      naive-matrix-multiply(b,C[i:i+b-1,j:j+b-1],
                               A[i:i+b-1.k:k+b-1].
                               B[k:k+b-1,j:j+b-1])
    end for
  end for
end for
```

- each iteration of the inner loop accesses only $3b^2=M$ data: each data is read/written only once
- ▶ bound on the number of transfers:

$$(n/b)^3 \times 2M = (n/\sqrt{M/3})^3 \times 2M = O(n^3/\sqrt{M})$$

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations

Naïve and optimized algorithms for matrix product

Lower bound on the I/O volume

Extending lower bounds to other operations

Cache-oblivious algorithms

Memory-Aware DAGs scheduling

Pebble game

Optimal depth-first and general traversals

Complexity of parallel tree processing

Practical solutions for limited memory

Conclusion

- ► Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $ightharpoonup c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- ightharpoonup alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p)
- ▶ S_p^1 : set of rows of A with \sqrt{M} or more elements in A_p ($|S_p^1| \le 2\sqrt{M}$)
 - = cach low used in at inost $|B_p| \le 2M$ products
- \triangleright S_p^2 : set of rows of A with fewer elements in A_p
 - \triangleright each row used for a different *alive* c_i
 - lacktriangle at most $\sqrt{M} imes 2M$ multiplications with elements from S^2_p
- ▶ total: at most $6M^{3/2}$ per phase
- ▶ number of full phases = $|n^3/6M^{3/2}| \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

- ► Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $ightharpoonup c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- ▶ alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p
- ▶ S_p^1 : set of rows of A with \sqrt{M} or more elements in A_p ($|S_p^1| \le 2\sqrt{M}$)
 - ► at most 4 M^{3/2} multiplications with elements from
- \triangleright S^2 : set of rows of A with fewer elements in A_m
 - ► each row used for a different *alive c*;
 - lacktriangle at most $\sqrt{M} imes 2M$ multiplications with elements from S^2_p
- ▶ total: at most $6M^{3/2}$ per phase
- ▶ number of full phases = $\lfloor n^3/6M^{3/2} \rfloor \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

- ► Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $ightharpoonup c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- ▶ alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p)
- ▶ S_p^1 : set of rows of A with \sqrt{M} or more elements in A_p $(|S_p^1| \le 2\sqrt{M})$
 - \blacktriangleright at most $4M^{3/2}$ multiplications with elements from S^1_p
- $ightharpoonup S_p^2$: set of rows of A with fewer elements in A_p
 - each row used for a different alive c_i
 - lacktriangle at most $\sqrt{M} imes 2M$ multiplications with elements from S_p^2
- ▶ total: at most $6M^{3/2}$ per phase
- ▶ number of full phases = $\lfloor n^3/6M^{3/2} \rfloor \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

- ► Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $ightharpoonup c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- lacktriangle alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p
- ▶ S_p^1 : set of rows of A with \sqrt{M} or more elements in A_p ($|S_p^1| \le 2\sqrt{M}$)
 - ightharpoonup at most $4M^{3/2}$ multiplications with elements from S^1_p
- ▶ S_p^2 : set of rows of A with fewer elements in A_p
 - ▶ each row used for a different alive c
 - lacksquare at most $\sqrt{M} imes 2M$ multiplications with elements from S_p^2
- ▶ total: at most $6M^{3/2}$ per phase
- ▶ number of full phases = $\lfloor n^3/6M^{3/2} \rfloor \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

- ► Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $ightharpoonup c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- ▶ alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p)
- ▶ S_p^1 : set of rows of A with \sqrt{M} or more elements in A_p $(|S_p^1| \le 2\sqrt{M})$
- ightharpoonup at most $4M^{3/2}$ multiplications with elements from S^1_p
- \triangleright S_p^2 : set of rows of A with fewer elements in A_p
 - lacktriangle at most $\sqrt{M} imes 2M$ multiplications with elements from S^2_p
- ▶ total: at most $6M^{3/2}$ per phase
- ▶ number of full phases = $\lfloor n^3/6M^{3/2} \rfloor \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6./M} M$

- ► Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $ightharpoonup c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- lacktriangle alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p)
- ▶ S_p^1 : set of rows of A with \sqrt{M} or more elements in A_p $(|S_p^1| \le 2\sqrt{M})$
 - each row used in at most $|B_p| \leq 2M$ products
 - lacktriangle at most $4M^{3/2}$ multiplications with elements from S^1_p
- \triangleright S_p^2 : set of rows of A with fewer elements in A_p
 - each row used for a different alive c_{i...}
 - lacktriangle at most $\sqrt{M} imes 2M$ multiplications with elements from S^2_p
- ▶ total: at most $6M^{3/2}$ per phase
- ▶ number of full phases = $\lfloor n^3/6M^{3/2} \rfloor \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

- Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $ightharpoonup c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- ▶ alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p)
- ▶ S_p^1 : set of rows of A with \sqrt{M} or more elements in A_p $(|S_p^1| \le 2\sqrt{M})$
 - each row used in at most $|B_p| \leq 2M$ products
 - lacktriangle at most $4M^{3/2}$ multiplications with elements from S^1_p
- $ightharpoonup S_p^2$: set of rows of A with fewer elements in A_p
 - each row used for a different alive c_i.
 - lacktriangle at most $\sqrt{M} imes 2M$ multiplications with elements from S_p^2
- ▶ total: at most $6M^{3/2}$ per phase
- ▶ number of full phases = $\lfloor n^3/6M^{3/2} \rfloor \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

- Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- ▶ alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p)
- S^1_p : set of rows of A with \sqrt{M} or more elements in A_p $(|S^1_p| \le 2\sqrt{M})$
 - each row used in at most $|B_p| \leq 2M$ products
 - $\,\blacktriangleright\,$ at most $4M^{3/2}$ multiplications with elements from S^1_p
- \triangleright S_p^2 : set of rows of A with fewer elements in A_p
 - lacktriangle each row used for a different *alive* $c_{i,\cdot}$
 - lacktriangle at most $\sqrt{M imes 2M}$ multiplications with elements from S^2_p
- ▶ total: at most $6M^{3/2}$ per phase
- ▶ number of full phases = $|n^3/6M^{3/2}| \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

- Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- lacktriangle alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p)
- $lacksquare S_p^1$: set of rows of A with \sqrt{M} or more elements in A_p $(|S_p^1| \leq 2\sqrt{M})$
 - each row used in at most $|B_p| \leq 2M$ products
 - $\,\blacktriangleright\,$ at most $4M^{3/2}$ multiplications with elements from S^1_p
- ▶ S_p^2 : set of rows of A with fewer elements in A_p
 - \triangleright each row used for a different alive $c_{i,j}$
 - lacktriangle at most $\sqrt{M} imes 2M$ multiplications with elements from S^2_p
- ▶ total: at most $6M^{3/2}$ per phase
- ▶ number of full phases = $\lfloor n^3/6M^{3/2} \rfloor \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

- Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $ightharpoonup c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- lacktriangle alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p)
- S^1_p : set of rows of A with \sqrt{M} or more elements in A_p $(|S^1_p| \le 2\sqrt{M})$
 - each row used in at most $|B_p| \leq 2M$ products
 - \blacktriangleright at most $4M^{3/2}$ multiplications with elements from S^1_p
- ▶ S_p^2 : set of rows of A with fewer elements in A_p
 - ightharpoonup each row used for a different *alive* $c_{i,j}$
 - lacktriangle at most $\sqrt{M} imes 2M$ multiplications with elements from S^2_p
- ▶ total: at most $6M^{3/2}$ per phase
- ▶ number of full phases = $\lfloor n^3/6M^{3/2} \rfloor \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

- Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- ▶ alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p)
- ▶ S_p^1 : set of rows of A with \sqrt{M} or more elements in A_p $(|S_p^1| \le 2\sqrt{M})$
 - each row used in at most $|B_p| \leq 2M$ products
 - \blacktriangleright at most $4M^{3/2}$ multiplications with elements from S^1_p
- ▶ S_p^2 : set of rows of A with fewer elements in A_p
 - ightharpoonup each row used for a different *alive* $c_{i,j}$
 - \blacktriangleright at most $\sqrt{M}\times 2M$ multiplications with elements from S^2_p
- ▶ total: at most $6M^{3/2}$ per phase
- ▶ number of full phases = $\lfloor n^3/6M^{3/2} \rfloor \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

- Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $ightharpoonup c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- lacktriangle alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p)
- ▶ S_p^1 : set of rows of A with \sqrt{M} or more elements in A_p $(|S_p^1| \le 2\sqrt{M})$
 - each row used in at most $|B_p| \leq 2M$ products
 - \blacktriangleright at most $4M^{3/2}$ multiplications with elements from S^1_p
- ▶ S_p^2 : set of rows of A with fewer elements in A_p
 - ightharpoonup each row used for a different alive $c_{i,j}$
 - ▶ at most $\sqrt{M} \times 2M$ multiplications with elements from S_p^2
- ▶ total: at most $6M^{3/2}$ per phase
- ▶ number of full phases = $\lfloor n^3/6M^{3/2} \rfloor \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

- Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- lacktriangle alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p)
- ▶ S_p^1 : set of rows of A with \sqrt{M} or more elements in A_p $(|S_p^1| \le 2\sqrt{M})$
 - each row used in at most $|B_p| \leq 2M$ products
 - \blacktriangleright at most $4M^{3/2}$ multiplications with elements from S^1_p
- ▶ S_p^2 : set of rows of A with fewer elements in A_p
 - ightharpoonup each row used for a different alive $c_{i,j}$
 - ▶ at most $\sqrt{M} \times 2M$ multiplications with elements from S_p^2
- ▶ total: at most $6M^{3/2}$ per phase
- number of full phases = $|n^3/6M^{3/2}| \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

- ► Consider a "normal" matrix-product algorithm (not Strassen)
- lacktriangle Decompose a schedule into *phases* that transfer exactly M data
- $ightharpoonup c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- ▶ alive $c_{i,j}$ either in memory or written: at most 2M alive $c_{i,j}$ in a phase
- ▶ at most 2M elements of A (B) in memory during phase p: A_p (B_p)
- S_p^1 : set of rows of A with \sqrt{M} or more elements in A_p $(|S_p^1| \leq 2\sqrt{M})$
 - each row used in at most $|B_p| \leq 2M$ products
 - lacktriangle at most $4M^{3/2}$ multiplications with elements from S^1_p
- ▶ S_p^2 : set of rows of A with fewer elements in A_p
 - ightharpoonup each row used for a different alive $c_{i,j}$
 - lacktriangleright at most $\sqrt{M} imes 2M$ multiplications with elements from S_n^2
- ▶ total: at most $6M^{3/2}$ per phase
- number of full phases = $|n^3/6M^{3/2}| \ge n^3/6M^{3/2} 1$
- ▶ number of transfers $\geq \frac{n^3}{6\sqrt{M}} M$

Matrix-product algorithm: better bound

Lemma (Loomis-Whitney inequality).

With N_A, N_B, N_C elements of A, B, C, we can perform at most $\sqrt{N_A N_B N_C}$ elementary multiplications.

- ▶ in each phase of the previous proof: $N_A, N_B, N_C \leq 2M$
- ▶ at most $2\sqrt{2}M^{3/2}$ products
- ▶ number of transfers: $\geq \frac{n^3}{2\sqrt{2M}} M$

Further improvement:

- $N_A = N_A^{\rm received} + N_A^{\rm cached}$
- $\hspace{0.2in} \blacktriangleright \hspace{0.2in} N_{A}^{\rm received} + N_{B}^{\rm received} + N_{C}^{\rm received} \leq M$
- $\qquad \qquad N_A^{\rm cached} + N_B^{\rm cached} + N_C^{\rm cached} \leq M$
- $N_A + N_B + N_C \le 2M$
- $ightharpoonup \sqrt{N_A N_B N_C} \le (2M/3)^{3/2}$
- ▶ number of transfers: $\geq \frac{27}{8} \frac{n^3}{\sqrt{M}} \frac{M}{2}$

Matrix-product algorithm: better bound

Lemma (Loomis-Whitney inequality).

With N_A, N_B, N_C elements of A, B, C, we can perform at most $\sqrt{N_A N_B N_C}$ elementary multiplications.

- ▶ in each phase of the previous proof: $N_A, N_B, N_C \leq 2M$
- ▶ at most $2\sqrt{2}M^{3/2}$ products
- ▶ number of transfers: $\geq \frac{n^3}{2\sqrt{2M}} M$

Further improvement:

- $N_A = N_A^{\rm received} + N_A^{\rm cached}$
- $\hspace{0.2in} \blacktriangleright \hspace{0.2in} N_A^{\rm received} + N_B^{\rm received} + N_C^{\rm received} \leq M$
- $\hspace{0.2in} \blacktriangleright \hspace{0.2in} N_A^{\rm cached} + N_B^{\rm cached} + N_C^{\rm cached} \leq M$
- $N_A + N_B + N_C \le 2M$
- $ightharpoonup \sqrt{N_A N_B N_C} \le (2M/3)^{3/2}$
- ▶ number of transfers: $\geq \frac{27}{8} \frac{n^3}{\sqrt{M}} \frac{M}{2. \text{ Min}}$

Matrix-product algorithm: better bound

Lemma (Loomis-Whitney inequality).

With N_A, N_B, N_C elements of A, B, C, we can perform at most $\sqrt{N_A N_B N_C}$ elementary multiplications.

- ▶ in each phase of the previous proof: $N_A, N_B, N_C \leq 2M$
- ▶ at most $2\sqrt{2}M^{3/2}$ products
- ▶ number of transfers: $\geq \frac{n^3}{2\sqrt{2M}} M$

Further improvement:

- $N_A = N_A^{\text{received}} + N_A^{\text{cached}}$
- $\qquad \qquad N_A^{\rm received} + N_B^{\rm received} + N_C^{\rm received} \leq M$
- $\qquad \qquad N_A^{\rm cached} + N_B^{\rm cached} + N_C^{\rm cached} \leq M$
- $N_A + N_B + N_C \le 2M$
- $\sim \sqrt{N_A N_B N_C} < (2M/3)^{3/2}$
- ▶ number of transfers: $\geq \frac{27}{8} \frac{n^3}{\sqrt{M}} \underbrace{M}_{\substack{\text{Lower bound on the I/O wolume} \\ \text{Lower bound on the I/O volume}}}_{\text{Lower bound on the I/O volume}}$

Matrix-product algorithm: parallel processing

Bounds on the number of transfers:

 \blacktriangleright For a processor computing W products:

$$I/O_W \ge \frac{W}{2\sqrt{2M}} - M$$

▶ If we use P processors, one of them computes at least n^3/P products

$$I/O \ge \frac{n^3}{2\sqrt{2M}P} - M$$

Example: 2D algorithms (Cannon, SUMMA, ...):

- ▶ 2D block distributions on a grid $\sqrt{P} \times \sqrt{P}$
- ▶ store A, B and C: $3n^2/P$ elements on each processor
- ightharpoonup at each step, each processors receives a block of A and B
- storage per processor: $O(n^2/P)$
- ▶ communication volume per processor:

$$(n/\sqrt{P})^2 \times \sqrt{P} = n^2/\sqrt{P}$$

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations

Naïve and optimized algorithms for matrix product Lower bound on the I/O volume

Extending lower bounds to other operations

Cache-oblivious algorithms

Memory-Aware DAGs scheduling

Pebble game

Optimal depth-first and general traversals

Complexity of parallel tree processing

Practical solutions for limited memory

Conclusion

Generalized expression and model

Generalized matrix computation:

$$C(i,j) = f_{i,j}(g_{i,j,k}(A(i,k),B(k,j)) \text{ for } k \in S_{i,j},K)$$

where

- ▶ A(i,j), B(i,j), C(i,j) are any reordering of A,B,C
- lacktriangleright K represents any other arguments
- $ightharpoonup f_{i,j}$, $g_{i,j,k}$ depends non-trivially on their arguments
- ► A, B and C may overlap

Trivial application to matrix product:

- ▶ $g_{i,j,k}$: product
- $ightharpoonup S_{i,j} = \{(i,j,k) \text{ for } k = 1 \dots n\}$
- $ightharpoonup f_{i,j}$: sum

I/O analysis for extended model

- lacktriangle As previously, decompose into phases of M transfers
- \blacktriangleright consider operands (of A, B or C) in memory during a phase
- Root: how it came to be in memory?
 - R1: already in memory at the beginning of the phase, or read during the phase (at most 2M)
 - ▶ R2: created during the phase (not bounded)
- Destination: what happens when it disappears?
 - ▶ D1: still in memory at the end of the phase, or written during the phase (at most 2M)
 - ▶ D2: discarded (not bounded)
- ▶ Discard R2/D2 for now
- ▶ Alive values of A in a phase $\leq 4M$ (= R1/* + */D1)
- ▶ Using Loomis-Whitney inequality: at most $\sqrt{(4M)^3}$ computations in a phase
- For a computation of size G: at least $G/(8\sqrt{M}) M$ transfers

I/O analysis for extended model

- lacktriangle As previously, decompose into phases of M transfers
- ► consider operands (of A, B or C) in memory during a phase
- Root: how it came to be in memory?
 - R1: already in memory at the beginning of the phase, or read during the phase (at most 2M)
 - ▶ R2: created during the phase (not bounded)
- Destination: what happens when it disappears?
 - ▶ D1: still in memory at the end of the phase, or written during the phase (at most 2M)
 - ► D2: discarded (not bounded)
- ▶ Discard R2/D2 for now
- ▶ Alive values of A in a phase $\leq 4M$ (= R1/* + */D1)
- ▶ Using Loomis-Whitney inequality: at most $\sqrt{(4M)^3}$ computations in a phase
- ► For a computation of size G: at least $G/(8\sqrt{M}) M$ transfers

Extending to solving linear equations

▶ TRSM kernel $(C = A^1B)$ for A upper triangular (solve linear equations)

$$C_{i,j} = (B_{i,j} - \sum_{k=i+1}^{n} A_{i,k} \cdot C_{k,j}) / A_{i,i}$$

(any order of j, decreasing i)

May be transformed to

$$C(i,j) = f_{i,j}(g_{i,j,k}(A(i,k),B(k,j)) \text{ for } k \in S_{i,j},K)$$

with:

- ightharpoonup C = B
- $g_{i,j,k}$ multiplies $A_{i,k} \cdot C_{k,j}$
- $f_{i,j}$ performs the sum, subtracts from B_i, j divides by $A_{i,i}$
- Same bound as for matrix multiplication!
- Achieved by some algorithms

Extending to LU factorization

 \blacktriangleright Gaussian elimination: $A=L\cdot U$ where L is lower triangular, U is upper triangular

$$\begin{array}{lcl} L_{i,j} & = & (A_{i,j} - \sum_{k < j} L_{i,k} \cdot U_{k,j}) / U_{j,j} \text{ for } i > j \\ \\ U_{i,j} & = & A_{i,j} - \sum_{k < i} L_{i,k} \cdot U_{k,j} \text{ for } i \leq j \end{array}$$

May be transformed to

$$C(i,j) = f_{i,j}(g_{i,j,k}(A(i,k),B(k,j))) \text{ for } k \in S_{i,j},K)$$

with:

- A = B = C
- ▶ $g_{i,j,k}$ multiplies $L_{i,k} \cdot U_{k,j}$
- $f_{i,j}$ performs the sum, subtracts from A_i, j (divides by $U_{j,j}$)
- Same bound
- Achieved by some algorithms

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations

Naïve and optimized algorithms for matrix product Lower bound on the I/O volume Extending lower bounds to other operations

Cache-oblivious algorithms

Memory-Aware DAGs scheduling

Pebble game

Optimal depth-first and general traversals

Complexity of parallel tree processing

Practical solutions for limited memory

Conclusion

What if we don't know the memory size M?

▶ Back to the matrix product (square matrix of size $n \times n$)

$$C = \left(\begin{array}{cc} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{array} \right) = A \cdot B = \left(\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array} \right) \cdot \left(\begin{array}{cc} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{array} \right)$$

Recursive matrix multiplication algorithm:

Analysis of the recursive algorithm

▶ C(n): Number of arithmetic operations in RMM(n,A,B)

$$C(n) = 8 C(n/2) + 4 (n/2)^2$$
 if $n > 1$ otherwise 1 $C(n) = 2n^3 \dots$ as usual, in different order

▶ T(n): Number of transfers RMM(n,A,B) with memory M

$$T(n)=8$$
 $T(n/2)+12$ $(n/2)^2$ if $3n^2>M$ otherwise $3n^2$ $T(n)=O(n^3/\sqrt{M}+n^2)\ldots$ same as blocked version

Analysis of the recursive algorithm

▶ C(n): Number of arithmetic operations in RMM(n,A,B)

$$C(n) = 8 C(n/2) + 4 (n/2)^2$$
 if $n > 1$ otherwise 1 $C(n) = 2n^3 \dots$ as usual, in different order

▶ T(n): Number of transfers RMM(n,A,B) with memory M

$$T(n)=8$$
 $T(n/2)+12$ $(n/2)^2$ if $3n^2>M$ otherwise $3n^2$ $T(n)=O(n^3/\sqrt{M}+n^2)\ldots$ same as blocked version

Summary on cache-oblivious algorithms

- Designed for unknown cache (or memory) size
- Works well for operations naturally expressed by divide-and-conquer algorithms (matrix multiplication, FFT, sorting, matrix transposition, . . .)
- Asymptotically optimal algorithms
- Well adapted to memory/cache hierarchies:
 L3 (large, slow) → L2 (avg. size, avg. speed) → L1 (small, fast)
- Extensions exist for parallel machines: Parallel External Memory (PEM)
- ► In practice for matrix computations, usually outperformed by optimized blocked algorithms

References

- ► Foundation paper: Hong & Kung: "I/0 Complexity: The Red-Blue Pebble Game" (STOC 1981)
- Communication lower bounds revisited by Irony, Toledo, Tiskin (JPDC 2004)
- ► Application to numerical linear algebra: Ballard, Demmel, Holtz (SIAM. J. Matrix Anal. & Appl 2011)
 - ▶ Development of communication-avoiding algorithms
- Cache-oblivious algorithms: Frigo, Leiserson, Prokop, Ramachandran (FOCS 1999), . . .

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations

Naïve and optimized algorithms for matrix product

Lower bound on the I/O volume

Extending lower bounds to other operations

Cache-oblivious algorithms

Memory-Aware DAGs scheduling

Pebble game
Optimal depth-first and general traversals
Complexity of parallel tree processing
Practical solutions for limited memory

Conclusion

Introduction

- Directed Acyclic Graphs: express task dependencies
 - nodes: computational tasks
 - edges: dependencies (data = output of a task = input of another task)
- Formalism proposed long ago in scheduling
- Back into fashion thanks to task based runtimes

Here, we focus on task trees:

- Arise in multifrontal sparse matrix factorization
- Assembly/Elimination tree: application task graph is a tree
- Large temporary data
- Memory usage becomes a bottleneck

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations

Naïve and optimized algorithms for matrix product

Lower bound on the I/O volume

Extending lower bounds to other operations

Cache-oblivious algorithms

Memory-Aware DAGs scheduling Pebble game

Optimal depth-first and general traversals Complexity of parallel tree processing Practical solutions for limited memory

Conclusion

How to efficiently compute the following arithmetic expression with the minimum number of registers ?

$$7 + (1+x)(5-z) - ((u-t)/(2+z)) + v$$

Pebble-game rules

- ► Inputs can be pebbled anytime
- ▶ If all ancestors are pebbled, a node can be pebbled
- ► A pebble may be removed anytime

How to efficiently compute the following arithmetic expression with the minimum number of registers ?

Pebble-game rules:

- ► Inputs can be pebbled anytime
- ▶ If all ancestors are pebbled, a node can be pebbled
- ► A pebble may be removed anytime

How to efficiently compute the following arithmetic expression with the minimum number of registers ?

Pebble-game rules:

- ► Inputs can be pebbled anytime
- ▶ If all ancestors are pebbled, a node can be pebbled
- ► A pebble may be removed anytime

How to efficiently compute the following arithmetic expression with the minimum number of registers ?

$$7 + (1+x)(5-z) - ((u-t)/(2+z)) + v$$

$$(1+x)(5-z) - ((u-t)/(2+z)) + v$$

Pebble-game rules:

- ► Inputs can be pebbled anytime
- ▶ If all ancestors are pebbled, a node can be pebbled
- ► A pebble may be removed anytime

How to efficiently compute the following arithmetic expression with the minimum number of registers ?

$$7 + (1+x)(5-z) - ((u-t)/(2+z)) + v$$

Pebble-game rules:

- ► Inputs can be pebbled anytime
- ▶ If all ancestors are pebbled, a node can be pebbled
- ▶ A pebble may be removed anytime

How to efficiently compute the following arithmetic expression with the minimum number of registers ?

$$7 + (1+x)(5-z) - ((u-t)/(2+z)) + v$$

Complexity results

Problem on trees:

▶ Polynomial algorithm [Sethi & Ullman, 1970]

General problem on DAGs (common subexpressions):

- ► P-Space complete [Gilbert, Lengauer & Tarjan, 1980]
- ▶ Without re-computation: NP-complete [Sethi, 1973]

Pebble-game rules:

- ▶ Inputs can be pebbled anytime
- ▶ If all ancestors are pebbled, a node can be pebbled
- ► A pebble may be removed anytime

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations

Naïve and optimized algorithms for matrix product

Lower bound on the I/O volume

Extending lower bounds to other operations

Cache-oblivious algorithms

Memory-Aware DAGs scheduling

Pebble game

Optimal depth-first and general traversals

Complexity of parallel tree processing Practical solutions for limited memory

Conclusion

- In-tree of n nodes
- ightharpoonup Output data of size f_i
- ightharpoonup Execution data of size n_i
- Input data of leaf nodes have null size

▶ Memory for node
$$i$$
: $MemReq(i) = \left(\sum_{j \in Children(i)} f_j\right) + n_i + f_i$

- ▶ Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]

- In-tree of n nodes
- ightharpoonup Output data of size f_i
- ightharpoonup Execution data of size n_i
- Input data of leaf nodes have null size

$$lacktriangleq ext{Memory for node } i: ext{MemReq}(i) = \left(\sum_{j \in Children(i)} f_j
ight) + n_i + f_i$$

- ▶ Best traversal [J. Liu, 1987]
- ▶ Best post-order traversal [J. Liu, 1986]

- In-tree of n nodes
- ightharpoonup Output data of size f_i
- ightharpoonup Execution data of size n_i
- Input data of leaf nodes have null size

$$lacktriangleq ext{Memory for node } i: ext{MemReq}(i) = \left(\sum_{j \in Children(i)} f_j
ight) + n_i + f_i$$

- ▶ Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]

- In-tree of n nodes
- ightharpoonup Output data of size f_i
- ightharpoonup Execution data of size n_i
- Input data of leaf nodes have null size

$$lacktriangleq ext{Memory for node } i: ext{MemReq}(i) = \left(\sum_{j \in Children(i)} f_j
ight) + n_i + f_i$$

- ▶ Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]

- In-tree of n nodes
- ightharpoonup Output data of size f_i
- ightharpoonup Execution data of size n_i
- ► Input data of leaf nodes have null size

$$lacktriangleright$$
 Memory for node i : $MemReq(i) = \left(\sum_{j \in Children(i)} f_j\right) + n_i + f_i$

- ▶ Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]

- ▶ For each subtree T_i : peak memory P_i , residual memory f_i
- ▶ For a given processing order 1, ..., n, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \dots, \sum_{i < n} f_i + P_n, \sum_{i < n} f_i + n_r + f_r\}$$

- ▶ Optimal order:
- ▶ Post-Order traversals are dominant for unit-weight trees

- ▶ For each subtree T_i : peak memory P_i , residual memory f_i
- ▶ For a given processing order 1, ..., n, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \dots, \sum_{i < n} f_i + P_n, \sum_{i < n} f_i + n_r + f_r\}$$

- Optimal order:
- ▶ Post-Order traversals are dominant for unit-weight trees

- ▶ For each subtree T_i : peak memory P_i , residual memory f_i
- ▶ For a given processing order 1, ..., n, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \dots, \sum_{i < n} f_i + P_n, \sum_{i < n} f_i + n_r + f_r\}$$

- ▶ Optimal order:
- ► Post-Order traversals are dominant for unit-weight trees

- ▶ For each subtree T_i : peak memory P_i , residual memory f_i
- ▶ For a given processing order 1, ..., n, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \dots, \sum_{i < n} f_i + P_n, \sum_{i < n} f_i + n_r + f_r\}$$

- ► Optimal order:
- ▶ Post-Order traversals are dominant for unit-weight trees

- ▶ For each subtree T_i : peak memory P_i , residual memory f_i
- ▶ For a given processing order 1, ..., n, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \dots, \sum_{i < n} f_i + P_n, \sum_{i < n} f_i + n_r + f_r\}$$

- ► Optimal order:
- ▶ Post-Order traversals are dominant for unit-weight trees

- ▶ For each subtree T_i : peak memory P_i , residual memory f_i
- ▶ For a given processing order 1, ..., n, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \dots, \sum_{i < n} f_i + P_n, \sum_{i < n} f_i + n_r + f_r\}$$

- ▶ Optimal order: non-increasing $P_i f_i$
- ▶ Post-Order traversals are dominant for unit-weight trees

- ▶ For each subtree T_i : peak memory P_i , residual memory f_i
- ▶ For a given processing order 1, ..., n, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \dots, \sum_{i < n} f_i + P_n, \sum_{i < n} f_i + n_r + f_r\}$$

- ▶ Optimal order: non-increasing $P_i f_i$
- ▶ Post-Order traversals are dominant for unit-weight trees

Proof for best post-order

Theorem (Best Post-Order).

The best post-order traversal is obtain by processing subtrees in non-increasing order $P_i - f_i$.

Proof:

- Consider an optimal traversal which does not respect the order:
 - lacktriangle subtree j is processed right before subtree k
 - $P_k f_k \ge P_j f_j$

	peak when j , then k	peak when k , then j
during first subtree	$mem_before + P_j$	$mem_before + P_k$
during second subtree	$mem_before + f_j + P_k$	$mem_before + f_k + P_j$

- $f_k + P_j \le f_j + P_k$
- ► Transform the schedule step by step without increasing the memory.

Proof for best post-order

Theorem (Best Post-Order).

The best post-order traversal is obtain by processing subtrees in non-increasing order P_i-f_i .

Proof:

- Consider an optimal traversal which does not respect the order:
 - lacktriangle subtree j is processed right before subtree k
 - $P_k f_k \ge P_j f_j$

	peak when j , then k	peak when k , then j
during first subtree	$mem_before + P_j$	$mem_before + P_k$
during second subtree	$mem_before + f_j + P_k$	$mem_before + f_k + P_j$

- $f_k + P_j \le f_j + P_k$
- ► Transform the schedule step by step without increasing the memory.

Post-Order is not optimal...

Post-Order traversals are arbitrarily bad in the general case There is no constant k such that the best post-order traversal is a k-approximation.

- Minimum peak memory: $M_{\min} = M + \epsilon + (b-1)\epsilon$
- Minimum post-order peak memory:

$$M_{\min} = M + \epsilon + (b-1)M/b$$

Post-Order is not optimal...

Post-Order traversals are arbitrarily bad in the general case There is no constant k such that the best post-order traversal is a k-approximation.

► Minimum peak memory: $M_{\min} = M + \epsilon + (b-1)\epsilon$

Minimum post-order peak memory:

$$M_{\min} =$$

$$M + \epsilon + (b-1)M/b$$

Post-Order is not optimal...

Post-Order traversals are arbitrarily bad in the general case There is no constant k such that the best post-order traversal is a k-approximation.

- Minimum peak memory: $M_{\min} = M + \epsilon + (b-1)\epsilon$
- Minimum post-order peak memory:

$$M_{\min} = M + \epsilon + (b-1)M/b$$

	4.2%	
Maximum increase compared to optimal	18%	
Average increased compared to optimal	1%	12%

Post-Order is not optimal...

Post-Order traversals are arbitrarily bad in the general case There is no constant k such that the best post-order traversal is a k-approximation.

- Minimum peak memory: $M_{\min} = M + \epsilon + 2(b-1)\epsilon$
- Minimum post-order peak memory:

$$M_{\min} = M + \epsilon + \frac{2(b-1)M/b}$$

	4.2%	
Maximum increase compared to optimal	18%	
Average increased compared to optimal	1%	12%

Post-Order is not optimal...but almost!

Post-Order traversals are arbitrarily bad in the general case There is no constant k such that the best post-order traversal is a k-approximation.

- ► Minimum peak memory: $M_{\min} = M + \epsilon + (b-1)\epsilon$
- Minimum post-order peak memory:

$$M_{\min} = M + \epsilon + (b-1)M/b$$

	actual assembly trees	random trees	
Non optimal traversals	4.2%	61%	
Maximum increase compared to optimal	18%	22%	
Average increased compared to optimal	1%	12%	

Liu's optimal traversal – sketch

- Recursive algorithm: at each step, merge the optimal ordering of each subtree (sequence)
- Sequence: divided into segments:
 - $ightharpoonup H_1$: maximum over the whole sequence (hill)
 - ▶ V_1 : minimum after H_1 (valley)
 - H_2 : maximum after H_1
 - V_2 : minimum after H_2
 - **.**...
 - ightharpoonup The valleys V_i s are the boundaries of the segments
- ightharpoonup Combine the sequences by non-increasing H-V
- ▶ Complex proof based on a partial order on the cost-sequences: $(H_1, V_1, H_2, V_2, \ldots, H_r, V_r) \prec (H'_1, V'_1, H'_2, V'_2, \ldots, H'_{r'}, V'_{r'})$ if for each $1 \leq i \leq r$, there exists $1 \leq j \leq r'$ with $H_i \leq H'_j$ and $V_i \leq V'_i$.

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations

Naïve and optimized algorithms for matrix product

Lower bound on the I/O volume

Extending lower bounds to other operations

Cache-oblivious algorithms

Memory-Aware DAGs scheduling

Pebble game

Optimal depth-first and general traversals

Complexity of parallel tree processing

Practical solutions for limited memory

Conclusion

Model for Parallel Tree Processing

- ▶ *p* uniform processors
- ightharpoonup Shared memory of size M
- ▶ Task i has execution times p_i
- ► Parallel processing of nodes ⇒ larger memory
- ► Trade-off time vs. memory

NP-Completeness in the Pebble Game Model

Background:

- lacktriangle Makespan minimization NP-complete for trees $(P|trees|C_{\max})$
- ▶ Polynomial when unit-weight tasks $(P|p_i = 1, trees|C_{\max})$
- ► Pebble game polynomial on trees

Pebble game model:

- ▶ Unit execution time: $p_i = 1$
- ▶ Unit memory costs: $n_i = 0, f_i = 1$ (pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles in at most C steps is NP-complete.

NP-Completeness – Proof

Reduction from 3-Partition:

- ▶ 3m integers a_i and B with $\sum ai = mB$,
- ▶ find m subsets S_k of 3 elements with $\sum_{i \in S_k} a_i = B$

Schedule the tree using:

- ▶ p = 3mB processors,
- ▶ at most $B = 3m \times B + 3m$ pebbles,
- ightharpoonup at most C=2m+1 steps.

Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α -approximation for makespan minimization and a β -approximation for memory peak minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan C_{\max} , $M \times C_{\max} > 2(n-1)$

Proof: each edge stays in memory for at least 2 steps.

Space-Time Tradeoff – Proof

- With m^2 processors: $C^*_{\max} = 3$
- ▶ With 1 processor, sequentialize the a_i subtrees: $M^* = 2m$
- \blacktriangleright By contradiction, approximating both objectives: $C_{\rm max} \leq 3\alpha$ and $M \leq 2m\beta$
- ▶ But $M \times C_{\text{max}} \ge 2(n-1) = 2m^2 + 2m$
- $2m^2 + 2m \le 6m\alpha\beta$
- ightharpoonup Contradiction for a sufficiently large value of m

<u>Outline</u>

Introduction and motivation

Minimize I/O in out-of-core matrix computations

Naïve and optimized algorithms for matrix product

Lower bound on the I/O volume

Extending lower bounds to other operations

Cache-oblivious algorithms

Memory-Aware DAGs scheduling

Pebble game

Optimal depth-first and general traversals

Complexity of parallel tree processing

Practical solutions for limited memory

Conclusion

Practical solutions for limited memory

- In practice: physical bound on the memory
- ▶ How to cope with this bound, and guarantee completion?
- ▶ Two approaches:
 - Sequential activation order
 - Memory booking

Idea (Sequential Task Flow model):

- ▶ activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- iii minimum memory requirement: memory peak of the activation traversal
- in the second secon

Idea (Sequential Task Flow model):

- ▶ activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- iii minimum memory requirement: memory peak of the activation traversal
- in the second secon

Idea (Sequential Task Flow model):

- ▶ activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- iii minimum memory requirement: memory peak of the activation traversal
- in the second of the secon

Idea (Sequential Task Flow model):

- ▶ activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

- Allocate as many tasks as possible
- ► Then, start processing allocated tasks

- iii minimum memory requirement: memory peak of the activation traversal
- in the second secon

Idea (Sequential Task Flow model):

- ▶ activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

- Allocate as many tasks as possible
- ▶ Then, start processing allocated tasks

- © minimum memory requirement: memory peak of the activation traversal
- in the second secon

Idea (Sequential Task Flow model):

- ▶ activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- iii minimum memory requirement: memory peak of the activation traversal
- in the second secon

Idea (Sequential Task Flow model):

- ▶ activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- ► schedule active (and ready) tasks using another order/priority

- Allocate as many tasks as possible
- ▶ Then, start processing allocated tasks

- minimum memory requirement: memory peak of the activation traversal
- in the second secon

Idea (Sequential Task Flow model):

- ▶ activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- ► schedule active (and ready) tasks using another order/priority

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- iii minimum memory requirement: memory peak of the activation traversal
- in the second secon

Idea (Sequential Task Flow model):

- ▶ activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- iii minimum memory requirement: memory peak of the activation traversal
- in the second secon

Idea (Sequential Task Flow model):

- ▶ activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

- Allocate as many tasks as possible
- ► Then, start processing allocated tasks

- iii minimum memory requirement: memory peak of the activation traversal
- in the second secon

Idea (Sequential Task Flow model):

- ▶ activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

- Allocate as many tasks as possible
- ▶ Then, start processing allocated tasks

- iii minimum memory requirement: memory peak of the activation traversal
- in the second secon

- Design of scheduling heuristics with guaranteed peak memory
- ▶ Idea: re-use memory for parents, grand-parents, . . .
- Book memory only when starting new leaves
- Stronger assumptions:
 - ▶ Reduction tree: $\sum_{j \in Children(i)} f_j \ge f_i$
 - ► No extra memory cost for task execution
- For trees that do not respect these constraints, add fictitious nodes

- memory reuse
- ▶ ② extra memory weights

- Design of scheduling heuristics with guaranteed peak memory
- ▶ Idea: re-use memory for parents, grand-parents, . . .
- Book memory only when starting new leaves
- Stronger assumptions:
 - ▶ Reduction tree: $\sum_{j \in Children(i)} f_j \ge f_i$
 - ► No extra memory cost for task execution
- For trees that do not respect these constraints, add fictitious nodes

- ▶ [©] memory reuse
- extra memory weights

- Design of scheduling heuristics with guaranteed peak memory
- ▶ Idea: re-use memory for parents, grand-parents, . . .
- ▶ Book memory only when starting new leaves
- ► Stronger assumptions:
 - ► Reduction tree: $\sum_{j \in Children(i)} f_j \ge f_i$
 - ▶ No extra memory cost for task execution
- For trees that do not respect these constraints, add fictitious nodes

- memory reuse
- ▶ ⓒ extra memory weights

- Design of scheduling heuristics with guaranteed peak memory
- ▶ Idea: re-use memory for parents, grand-parents, . . .
- ▶ Book memory only when starting new leaves
- Stronger assumptions:
 - ▶ Reduction tree: $\sum_{j \in Children(i)} f_j \ge f_i$
 - ▶ No extra memory cost for task execution
- For trees that do not respect these constraints, add fictitious nodes

- extra memory weights

Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
Naïve and optimized algorithms for matrix product
Lower bound on the I/O volume
Extending lower bounds to other operations
Cache-oblivious algorithms

Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals
Complexity of parallel tree processing
Practical solutions for limited memory

Conclusion

Conclusion

- ▶ Memory, I/O and cache impact performance
- ▶ Avoid data movement, re-use data as much as possible
- Many different approaches, depending on the target application model:
 - ► Cache-oblivious algorithms (recursive computations)
 - ► Communication-avoiding algorithms (numerical algebra)
 - Memory-Aware scheduling (task graphs)