Unified Model for Assessing Checkpointing

Protocols at Extreme-Scale

George BosiLCA®, Aurélien BOUTEILLER!,
Elisabeth BRUNET?, Franck CAPPELLO?,
Jack DONGARRA!, Amina GUERMOUCHE?,
Thomas HERAULT!, Yves ROBERT!,
Frédéric Vivien?, and Dounia ZAIDOUNI*

1. University of Tennessee Knoxville, USA
2. Telecom SudParis, France
3. INRIA & University of lllinois at Urbana Champaign, USA
4. Ecole Normale Supérieure de Lyon & INRIA, France

May 30, 2012

Motivation

Framework

o Very very large number of processing elements (e.g., 2°0)
e Failure-prone platform (like any realistic platform)

@ Large application to be executed on the whole platform

— Failure(s) will certainly occur before completion!

@ Resilience provided through checkpointing

Outline

0 Checkpointing protocols

© Coordinated checkpointing

© Hierarchical checkpointing

@ Accounting for message logging

@ Instanciating the model
@ Applications

Outline

0 Checkpointing protocols

Which checkpointing protocol to use?

Coordinated checkpointing

© No risk of cascading rollbacks
© No need to log messages

@ All processors need to rollback

® Rumor: does not scale to very large platforms

Hierarchical checkpointing

® Need to log inter-groups messages
e Slowdowns failure-free execution
e Increases checkpoint size/time

Only processors from failed group need to rollback

Faster re-execution with logged messages

© O O

Rumor: scales well to very large platforms

Framework

Periodic checkpointing policies (of period T)
Independent and identically distributed failures

Platform failure inter-arrival time: p

Tightly-coupled application: progress < all processors
available

First-order approximation: at most one failure within a period

Waste: fraction of time not spent for useful computations)

Checkpointing cost

Time

Checkpointing cost

Time spent working

Time spent checkpointing

Time

Checkpointing cost

Time spent working

Time spent checkpointing

Time

Computing the first chunk

Checkpointing cost

Time spent working

Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk

Checkpointing cost

Time spent working

Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk

Checkpointing cost

Time spent working

Time spent checkpointing

Computing the first chunk

(Checkpointing
fthe first chunk

Time

Processing the first chunk

Processing the second chunk

Checkpointing cost

Time spent working

Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk Processing the second chunk

Blocking model: while a checkpoint is taken, no computation can
be performed

Checkpointing cost

Time spent working

Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk

Non-blocking model: while a checkpoint is taken, computations
are not impacted (e.g., first copy state to RAM, then copy RAM to
disk)

Checkpointing cost

Time spent working

Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk

Non-blocking model: while a checkpoint is taken, computations
are not impacted (e.g., first copy state to RAM, then copy RAM to
disk)

Checkpointing cost

Time spent working

Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk

Processing the second chunk

Non-blocking model: while a checkpoint is taken, computations
are not impacted (e.g., first copy state to RAM, then copy RAM to
disk)

Checkpointing cost

Time spent working

Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk

General model: while a checkpoint is taken, computations are
slowed-down: during a checkpoint of duration C, the same amount
of computation is done as during a time aC without checkpointing
(0<a<1l).

Checkpointing cost

Time spent working

Time spent checkpointing

= === ==== Time spent working with slowdown Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk

General model: while a checkpoint is taken, computations are
slowed-down: during a checkpoint of duration C, the same amount
of computation is done as during a time aC without checkpointing
(0<a<1l).

Checkpointing cost

Time spent working

Time spent checkpointing

= === ==== Time spent working with slowdown Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk

General model: while a checkpoint is taken, computations are
slowed-down: during a checkpoint of duration C, the same amount
of computation is done as during a time aC without checkpointing
(0<a<1l).

Checkpointing cost

Time spent working

Time spent checkpointing

= === ==== Time spent working with slowdown Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk

General model: while a checkpoint is taken, computations are
slowed-down: during a checkpoint of duration C, the same amount
of computation is done as during a time aC without checkpointing
(0<a<1l).

Checkpointing cost

Time spent working

Time spent checkpointing

= === ==== Time spent working with slowdown Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk

Processing the second chunk

General model: while a checkpoint is taken, computations are
slowed-down: during a checkpoint of duration C, the same amount

of computation is done as during a time aC without checkpointing
(0<a<1l).

Outline

© Coordinated checkpointing

Waste in absence of failures

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Time

Po
Py
P2
Py

Waste in absence of failures

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Time

Po
Py
P,
Py

Waste in absence of failures

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Time

Po
Py
P,
Py

Waste in absence of failures

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Time

Py o = = = = = = Sf—— -

Pl e = = = = = = Sf— = =

Py —— e — -

Pi ——— e — e e eaaad

T-C C
T

Time elapsed since last checkpoint: T

Amount of computation saved: (T — C) + aC
T-(T-C)4aC) _ (1-o)C
T =T

WASTEcoord— nofailure —

Woaste due to failures

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Time

Po
Py
P,
Py

Failure can happen
© During computation phase
@ During checkpointing phase

Waste due to failures in computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Time

P e—
Pl e— -
P2 e————amew
Pi e—

Waste due to failures in computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Time

S]

Pl e— -
P2 e————amew
Pi e—

Waste due to failures in computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Time

P e—
Pl e— -
P2 e————amew
Pi e—

Tightly-coupled model: when one processor is victim of a failure,
all processors lose their work and must roll-back to last checkpoint

Waste due to failures in computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Time

=== Downtime

Po
Py
P,
Py

Waste due to failures in computation phase

—— Time spent working === Time spent checkpointing === Time spent working with slowdown
=—— Downtime = Recovery time Time

O | H

Pl e— -
P2 e————amew
Pi e—

Tightly-coupled model: All processors must recover from last

checkpoint

Waste due to failures in computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
T g it ¥ g

—— Downtime = Recovery time = Re-executing slowed-down work Time
P e—
P f
P2 e————amew
Pi e—
]
C aC

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation

Waste due to failures in computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

—— Downtime = Recovery time — Re-executing slowed-down work Time
P ————
A — /
P2 e————amew
Pi e—
T-C

Re-execute the computation phase

Waste due to failures in computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
= Recovery time = Re-executing slowed-down work ime
Y 8 Time

=== Downtime

Po
Py
P,
Py

Finally, the checkpointing phase is executed

First-order approximation: we assume that no other failure occurs

during the re-execution

Waste due to failures in computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
=—— Downtime = Recovery time = Re-executing slowed-down work Time

P e—
Pl e— -
P2 e————amew
Pi e—

Tlost D R aC

RE-EXEC: A — T =Tjost + D+ R+ aC

First-order: Tjosr = %(T - Q)

T-C
RE-EXEC coord— fail—in—work = Ty +D+R+aC

Waste due to failures in checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
= Recovery time = Re-executing slowed-down work Time

=== Downtime

Po
Py
P2
Py

Waste due to failures in checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
= Recovery time = Re-executing slowed-down work Time

=== Downtime

Po
Py
P,
Py

Waste due to failures in checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
= Recovery time = Re-executing slowed-down work Time

=== Downtime

Po
Py
P,
Py

Waste due to failures in checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
=—— Downtime = Recovery time = Re-executing slowed-down work Time

P e—
Pl e— -
P2 e————amew
Pi e—

Tightly-coupled model: when one processor is victim of a failure,
all processors lose their work and must roll-back to last checkpoint

Waste due to failures in checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
= Recovery time = Re-executing slowed-down work Time

=== Downtime

Po
Py
P,
Py

Waste due to failures in checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

—— Downtime = Recovery time = Re-executing slowed-down work Time
: ==
Py gy
P -
Py -
R

Tightly-coupled model: All processors must recover from last

checkpoint

Waste due to failures in checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
— Downtime —— Recovery time —— Re-executing slowed-down work Time
S roepepepnpeye - .é
Pp oo gy
Py — e -
LT vpup——— -
—
c oC

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation

Waste due to failures in checkpointing phase

= Time spent working

=== Downtime

= Time spent checkpointing

= Recovery time

=== Time spent working with slowdown

= Re-executing slowed-down work

Time

P e liiees ._..é
Pl o Loneens e
S e .-
o S v -

Re-execute the computation phase

Waste due to failures in checkpointing phase

= Time spent working

= Time spent checkpointing

=== Time spent working with slowdown

— Downtime —— Recovery time —— Re-executing slowed-down work Time

S rovpepepepepe e .é

Pp o Tioie e

Py — e [Y vsy——

LT vpup——— e ———— e
c

Finally, the checkpointing phase is executed

Waste due to failures in checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
T g it ¥ g

=—— Downtime = Recovery time = Re-executing slowed-down work Time
Py e—— e e S ey
Pl e = = = = e e e
Py — -] f————— e
P3 ——————] ——— e
T-C Tes D R aC T-C c
T

A

RE-EXEC: A= T =(T—=C)+ Tiost + D+ R+ aC
First-order approximation: Tjs = %C

I%E'EXECcoord—Fail—in—checkpoint = (T - C) + % + D + R + aC
=T-$+D+R+aC

Woaste due to failures

e Failure in the computation phase (probability: T;TC)

T-C

RE’EXECcoordffailfinfwork = +D+R+aC

e Failure in the checkpointing phase (probability: %)

C
1{E‘EXECcoord—Fail—in—checkpoint =T- 2 +D+R+aC
T—-C/(/T-C C C
D+ R —(T—-—=+D+R
v (> +D+ —i—aC)—i—T(2—|— + +aC>

T

Overall waste

1
WASTEcoord = VVASTEcoord—nofaiIure + ;RE‘EXECcoord—faiIure

1- 1 T
:(O‘)C+<D+R+ac+>
T I 2

Minimize WASTEo0rg Subject to:
@ C < T (by construction)
Q@ 7T<0lu(= Proba(Poisson(%) > 2) < 0.05)

If 1 large enough, optimal period is T = /2uC(1 — «)

(remember Young's approximation)

Outline

© Hierarchical checkpointing

Hierarchical checkpointing

Processors partitioned into G groups
Each group includes g processors
Inside each group: coordinated checkpointing in time C(q)

Inter-group messages are logged

Impact of checkpointing

= Time spent working === Time spent checkpointing
Downtime == Recovery time

=== Time spent working with slowdown

m—— Re-executing slowed-down work Time

Impact of checkpointing

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m—— Re-executing slowed-down work Time

Gy
G
Gs
Gy
Gs

When a group checkpoints, its own computation speed is
slowed-down

Impact of checkpointing

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m— Re-executing slowed-down work

Downtime == Recovery time

Time
Gy

G
Gs
Gy
Gs

When a group checkpoints, its own computation speed is
slowed-down

This holds for all groups because of the tightly-coupled assumption

Impact of checkpointing

= Time spent working === Time spent checkpointing

=== Time spent working with slowdown
Downtime == Recovery time

m— Re-executing slowed-down work

Time

Gy
G
Gs
Gy
Gs

When a group checkpoints, its own computation speed is
slowed-down

This holds for all groups because of the tightly-coupled assumption

WASTE = T=Y0ORE \where WORK = T — (1 — &) GC(q)

Failure during computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m—— Re-executing slowed-down work Time

Gy
G
Gs
Gy
Gs

Failure during computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m—— Re-executing slowed-down work Time

Gy
G
Gs
Gy
Gs

Failure during computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m— Re-executing slowed-down work Time

Gy
G
Gs
Gy
Gs

Tightly-coupled model: while one group is in downtime, none can
work

Failure during computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m— Re-executing slowed-down work Time

Gy
G
Gs
Gy
Gs

Tightly-coupled model: while one group is in recovery, none can
work

Failure during computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time m— Re-executing slowed-down work Time

Gl ------------ —

GQ ------------ —

G3 ------------

Gi mmpmmmmmmmn---- —

G5 e mmmmmmman - —

Groups must have completed the same amount of work in between
two consecutive checkpoints, independently of the fact that a
failure may or may not have happened on the platform in between

these checkpoints. Hence, no checkpointing is possible during the
rollback.

Failure during computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m—— Re-executing slowed-down work

Downtime == Recovery time

Time

Redo work done during previous checkpointing phase and that was
destroyed by the failure

Failure during computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
== Downtime == Recovery time m—— Re-executing slowed-down work Time

Gy
G
Gg
Gy
Gs

Redo work done during previous checkpointing phase and that was
destroyed by the failure

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation

Failure during computation phase

= Time spent working

== Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time m— Re-executing slowed-down work

Time

Tiost Tiost

Redo work done in computation phase and that was destroyed by
the failure

Failure during computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime === Recovery time = Re-executing slowed-down work Time

Gl ------------ p—

[N ey AP _é

G emmpmmmmmmmm===

[—

GS ------------ p—

Tost
T—G.C—Tiost

Failing group has reached the point where it previously failed, all
groups now resume execution in parallel and complete the
computation phase

Failure during computation phase

= Time spent working === Time spent checkpointing

=== Time spent working with slowdown
Downtime == Recovery time

m— Re-executing slowed-down work Time

Finally, perform checkpointing phase

Failure during computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

= Downtime == Recovery time m—— Re-executing slowed-down work Time
G emhescssssannsd— | | (————-— -
G empesssssssnns— | | e—— ..o
G cnmpaasenesenen ————
64 -----------------------
G eempasesssssenm— | | |e———-eesaseees
Tew D R x Tiow ‘(G.C
a(G—g+1)C T—G.C—Tpst

T

RE-EXEC: Tjost + D+ R+ (G —g+1)C
First-order: Tjosr = %(T - G.C)

Approximated RE-EXEC: T*TGC +D+R+a(G—-g+1)C

Failure during computation phase

= Time spent working

== Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time m—— Re-executing slowed-down work

Time

G efmeammmmma== I
G epmmmmmmmmemed—]) | | | |——- memmmmmand
Gy empmmmmmemmemed—— ... e memmed
Gf epmmmmmmmmemed— | | | |———pammmm=a mmead
G emmmmmmmmmmmn e mmmmmmmmmnnd
Tow D R T Tiost G.C
a(G-g+1)C T—G.C—Tiost
=

Approximated RE-EXEC: T_TGC +D+R+a(G—-g+1)C

Average approximated RE-EXEC:

G
éz [T_ic(q) + D(q) + R(q) + (G — g + 1)C(q)

= T2 b(g) + R(g) + a2

C

Failure during checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m—— Re-executing slowed-down work Time

Gy
G
Gs
Gy
Gs

Failure during checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m—— Re-executing slowed-down work Time

Gy
G
Gs
Gf emmpmmssmmmm==s=
Gs e

Failure during checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m— Re-executing slowed-down work

Downtime == Recovery time

Time
Gy

G

Gs

Gy

Gs !

When does the failing group fail?
© Before starting its own checkpoint
@ While taking its own checkpoint
© After completing its own checkpoint

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing

=== Time spent working with slowdown
Downtime == Recovery time

m—— Re-executing slowed-down work

Time

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m— Re-executing slowed-down work Time
Gy e e mmm e e —
GQ - ——
G3 - ——
Gy e e —
Gs e

The checkpoint taken while the failure struck is that of another
group; it is not affected and completes

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m—— Re-executing slowed-down work

== Downtime == Recovery time

Time

Gy
G

Tiost

s: number of groups that have successfully completed their
checkpoints before the failure

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time = Re-executing slowed-down work Time

Gy

G,

G

Ge

Gs

Tightly-coupled model: while one group is in downtime, none can
work

Groups must have completed the same amount of work in between
two consecutive checkpoints, independently of the fact that a
failure may or may not have happened on the platform in between

these checkpoints. Hence, no checkpointing is possible during the
rollback.

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m—— Re-executing slowed-down work Time

Gl ------------
GQ ------------
G3 ------------
Gy emmpmmmmmmmmm==

G empmasananas -

D
TIOS[
C = Tiost

Tightly-coupled model: while one group is in recovery, none can
work

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time m—— Re-executing slowed-down work Time

G e

G ey

Gy -

. o

Gs amma

(G-g+1)C

a(G-g+1)C

Redo work done during previous checkpointing phase and that was
destroyed by the failure

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
== Downtime == Recovery time m—— Re-executing slowed-down work Time

Gy

G

Redo work done in computation phase and that was destroyed by
the failure

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing

=== Time spent working with slowdown
== Downtime == Recovery time

m—— Re-executing slowed-down work

Time

Gy
G

)

a(s.C + Tiost)

Tiost

Redo work done in checkpointing phase and that was destroyed by
the failure

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time = Re-executing slowed-down work Time

Gy

G,

G

Ge

Gs

a(C = Tiost)

Failing group has reached the point where it previously failed, all
groups now resume execution in parallel and complete the
computation phase

Groups first complete work that was to be done during the
checkpoint during which the failure occurred

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing

=== Time spent working with slowdown
== Downtime == Recovery time

m—— Re-executing slowed-down work Time

G efmreeecnann (I
G ebmsmemmmmann [
G ehmmmmmmmm=s= [e,
Gy emmmmmmmmmee s o —— e .. e
G5 mmmmmmmmmmm. - [
| (6-s-1)C
Tlost a(C — Tiost)

Checkpointing phase completed

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m—— Re-executing slowed-down work Time
G epassssssgma=a S ———
[S e S
[S S e
Gpf emmmfnmmmm e e —] f—————————————————
[O [
(G—g+1)C T-G.C (G—s-1)C
a(C = Tiost)
5.C + Tiost)

RE-EXEC=A - T

A= (T-G.CO)+sC+ Tt +C—Tiost + D+ R+ a(G—g+1)C
H(T—-G.C)+ afs.C+ Tiost) + (C—Tiost)+(G—5—1).C

= 2T—GC+D+R+a(G—g+s5+2)C

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time m—— Re-executing slowed-down work Time

G emhesesasduasns S ——
[S e S
[S S e
Gpf emmmfnmmmm e e —] f—————————————————
[O [
(G-g+1)C| T-6.C D R ‘ T-6G.C (G—s-1)C

a(G-g+1)C (C = Tost)

C— Thost a(s.C + Tiost)
A

RE-EXEC=A - T

A= 2T - GC+D+R+a(G—g+s+2)C

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time m—— Re-executing slowed-down work Time

G emhesesasduasns S ——
[S e S
[S S e
Gpf emmmfnmmmm e e —] f—————————————————
[O [
(G-g+1)C| T-6.C D R ‘ T-6G.C (G—s-1)C

a(G-g+1)C (C = Tost)

C— Thost a(s.C + Tiost)
A

RE-EXEC=A - T

A= 2T - GC+D+R+a(G—g+s+2)C

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time m—— Re-executing slowed-down work Time

G epassssssgma=a S ———
[S e S
[S S e
Gpf emmmfnmmmm e e —] f—————————————————
[O [
(G—g+1)C T-G.C (G—s-1)C

a(C = Tiost)

5.C + Tost)

RE-EXEC=A - T
A= 2T -GC+D+R+a(G—g+s5+2)C

RE-EXEC= T+D+R+((a—1)G + a(—g+s+2)).C

Failure during checkpointing phase:

failure before checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time = Re-executing slowed-down work Time
Gl ---------- — ... -
GQ ---------- — ... -
G3 ---------- —: -----
G ebmmmmmedocme —— e .. eyl
G5 emmpmmmmmmd== ! I
(G-g+1)C| T-6C } (G—s—1)C
a(C = Tiost)
5.C+ Tiost)
RE-ExEc= T+D+R+((a—1)G + a(—g+5+2)).C
Average RE-EXEC for group g (for 2 < g < G):
-2
1 g
g1 (T+D(g9) + R(q) + ((a« = 1)G + a(—g + s+ 2)).C(q))
s=0

= T+ D(q) + R(q) + <(a —1)G - ag2—2> aC)

Failure during checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m— Re-executing slowed-down work

Downtime == Recovery time

Time
Gy

G

Gs

Gy

Gs !

When does the failing group fail?
© Before starting its own checkpoint
@ While taking its own checkpoint
© After completing its own checkpoint

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m—— Re-executing slowed-down work Time
G e
G, [y
Gs et .4
Gf emmpmmmmmeeee e o — -4
[e ——————————

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing

=== Time spent working with slowdown
Downtime == Recovery time

m—— Re-executing slowed-down work

Time

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time = Re-executing slowed-down work Time

Gl ------------ T -----

GQ -------------- : ---

G b ——— -

[

G5 e mmmmmmman e — e

Tightly-coupled model: while one group is in downtime, none can
work

Groups must have completed the same amount of work in between
two consecutive checkpoints, independently of the fact that a
failure may or may not have happened on the platform in between

these checkpoints. Hence, no checkpointing is possible during the
rollback.

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing

=== Time spent working with slowdown
Downtime == Recovery time

m—— Re-executing slowed-down work

Time

Tightly-coupled model: while one group is in recovery, none can
work

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time m— Re-executing slowed-down work Time

Gy

G,

G

Ge

Gs

a(G-g+1)C

Redo work done during previous checkpointing phase and that was
destroyed by the failure

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

== Downtime == Recovery time m—— Re-executing slowed-down work Time
Gl ----------- T ------

GQ ------------- : -—---

G e ... - .4

Gf emmpmmmmmmseese o ————aeaa L

Gs e

Redo work done in computation phase and that was destroyed by
the failure

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time = Re-executing slowed-down work Time

S

G emmpmmmmmmmmmm.

G mpmmmmmmmmm=.

G emmpmmmmmmmmm==

G5 emmmmmmmmmmm===

a(g—1)C

Redo work done in checkpointing phase that was destroyed by the
failure and that preceded the beginning of the killed checkpoint

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time m—— Re-executing slowed-down work Time

Gy

G,

G

Ge

Gs

Tiost

The failing group has now reached the point where it can retry
taking its checkpoint

Redo work done during the checkpoint and that was destroyed by
the failure

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing

=== Time spent working with slowdown
== Downtime == Recovery time

m—— Re-executing slowed-down work Time

Gy
G

Tiost

C — Tiost

Failing group has reached the point where it previously failed, all
groups now resume execution in parallel and complete the
computation phase

Failing group completes its checkpoint

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m—— Re-executing slowed-down work Time

Gl -------------------
GQ -------------------
G —]

3 —— e — -%
Gf emmpmmmmmmseese o ————aeaa L
GS -------------------

(6-g)C

Checkpointing phase completed

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m—— Re-executing slowed-down work

Downtime == Recovery time

Time

[o -
G heiteadana-
T st ’

U
Gy mhmmmmmedooes
G5 mmmmmmmmmde= !

(G-g+1)C| T-6C (g-1)C |DR | T-6C Tio| L 1(G_g)C
Tiost (G—g+1)C
(g —1)C — C— Tiost

A

RE-EXEC=A - T

A= (T-GCO)+(g—-1)C+ Tiost + D+ R+a(G—g+1)C

(T = G.C)+a(g —1)C+ Tiost + (C — Tiost) + (G — g)C

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m—— Re-executing slowed-down work

Downtime == Recovery time

Time

[o -
G heiteadana-
T st ’

U
Gy mhmmmmmedooes
G5 mmmmmmmmmde= !

(G-g+1)C| T-6C (g-1)C |DR | T-6C Tio| L 1(G_g)C
Tiost (G—g+1)C
(g —1)C — C— Tiost

A

RE-EXEC=A - T

A= (T-GCO)+(g—-1)C+ Tiost + D+ R+a(G—g+1)C

HT—-G.C)+alg—1)C+ Tiost + (C — Tiost) + (G — g)C
T+(a—-1)G.C+Tpst+D+R+T

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing

=== Time spent working with slowdown
Downtime == Recovery time

= Re-executing slowed-down work

Time

6 Tmreeeidaans e
G emmpmmmmmmdmm=. -
G eheemdeao. J
b
G —hemeedTT
G5 emmpmmmmmmda= e
(6G-g+1)C| T-6C (@-DC DR | T-6cC Tio| L 1(G_g)C
Tiost a(G—g+1)C

A

RE-EXEC=A - T

A= (T-GC)+(g—1)C+ Tiost + D+ R+ (G —g+1)C
(T = G.C)+a(g —1)C+ Tiost + (C — Tiost) + (G — g)C
= T+(a—l)G.C+ Tiost +D+R+T

RE-ExEc= T+ (a« —1)G.C+ Tjost + D+ R

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time m—— Re-executing slowed-down work Time
G emhesesasduasns
G, emmessssssma=a
G emhammeeedeaan ’
U
Gy emmpmmmmmmdmmmn
G5 eemmesammnsman=
(6G-g+1)C| T-6C (@-DC DR | T-6cC Tio| L 1(G_g)C
Tiost a(G—g+1)C
(g —1)C — C— Tiost

A

RE-ExEc= T+ (a« —1)G.C+ Tjost + D+ R

Failure during checkpointing phase:

failure during checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m—— Re-executing slowed-down work

Downtime == Recovery time

Time

[o -
G heiteadana-
T st ’

U
Gy mhmmmmmedooes
G5 mmmmmmmmmde= !

(G-g+1)C| T-6C (g-1)C |DR | T-6C Tio| L 1(G_g)C
Tiost (G—g+1)C
(g —1)C — C— Tiost

A

RE-ExEC= T + (0 —1)G.C+ Tjost + D+ R
Approximation: Tjos = %

Approximated RE-EXEC

T+ (a—-1)G.C(q)+ C(2q) + D(q) + R(q)

Failure during checkpointing phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m— Re-executing slowed-down work

Downtime == Recovery time

Time
Gy

G

Gs

Gy

Gs !

When does the failing group fail?
© Before starting its own checkpoint
@ While taking its own checkpoint
© After completing its own checkpoint

Failure during checkpointing phase:

failure after checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m— Re-executing slowed-down work Time

Failure during checkpointing phase:

failure after checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m— Re-executing slowed-down work

Downtime == Recovery time

Time

The checkpoint taken while the failure struck is that of another
group; it is not affected and completes

Failure during checkpointing phase:

failure after checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m— Re-executing slowed-down work

Downtime == Recovery time

Time

s: number of groups that have successfully completed their
checkpoints before the failure, among groups that are after the
failing group (including the failing group)

Failure during checkpointing phase:

failure after checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Downtime == Recovery time

= Re-executing slowed-down work Time

C = Tost

Tightly-coupled model: while one group is in downtime, none can
work

Groups must have completed the same amount of work in between
two consecutive checkpoints, independently of the fact that a
failure may or may not have happened on the platform in between

these checkpoints. Hence, no checkpointing is possible during the
rollback.

Failure during checkpointing phase:

failure after checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m— Re-executing slowed-down work

Downtime == Recovery time

Time

Tightly-coupled model: while one group is in recovery, none can
work

Failure during checkpointing phase:

failure after checkpoint

= Time spent working === Time spent checkpointing

=== Time spent working with slowdown
== Downtime == Recovery time

m—— Re-executing slowed-down work Time

5.C Tiost

a(s.C+ Tpst)
Redo work done in checkpointing phase and that was destroyed by
the failure

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation

Failure during checkpointing phase:

failure after checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

e Downtime == Recovery time = Re-executing slowed-down work Time
Gy

Ge

G

Gy

Gs

C— T/ost « ([Tlost)

Failing group has reached the point where it previously failed, all
groups now resume execution in parallel

Groups first complete work that was to be done during the
checkpoint during which the failure occurred

But no checkpoint is taken in parallel, hence this re-computation is

frnctmnr Flhamm FlhAa AridcimAal ~ArmA T F At A~

Failure during checkpointing phase:

failure after checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

m—— Re-executing slowed-down work

Downtime == Recovery time

Time

Checkpointing phase completed

Failure during checkpointing phase:

failure after checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m—— Re-executing slowed-down work Time
S [
[-
- e =
S

5.C Twst\D R L (G-s-g)C
C— T/ost *O(C* Tlost)

a(s.C+ Tpst)

RE-EXEC=A - T

A= (T_ G.C)+(g—1)C+s.C+ Tlost"‘ C - Tlost+D
+R+ a(s.C+ Tiost) + a(C — Tiost) + (G — s — g)C

= T+D+R+a(s+1).C
RE-ExEC= D+ R+ a(s+1)C

Failure during checkpointing phase:

failure after checkpoint

= Time spent working === Time spent checkpointing === Time spent working with slowdown

Downtime == Recovery time m—— Re-executing slowed-down work Time
Gy e =
Gy -
G e o
Gy e o
Gs gy

5.C Twst\D R L (G-s-g)C
C — Tlost = a(C— Thost)
a(s.C + Tiost)

RE-ExECc= D+ R+ a(s+1)C
Average RE-EXEC for group g (for 1 < g < G —1):

G—g
Gig Z (D(q) + R(q) + a(s + 1)C(q))

=1 G—g+3
— D(q) + R(q) + a—5 12

Average waste for failures during checkpointing phase

Average RE-EXEC when the failing-group g fails
@ Before its checkpoint (for 2 < g < G):

-2
RE-EXECpefore.ckpt = T-+D(q)+R(q)+((a—1)G—as

)-C(q)

@ During its checkpoint

C
RE-EXECquring ckpt = T+(a—1)G. C(q)—i—(zq) +D(q)+R(q)

@ After its checkpoint (for 1 < g < G —1): c
—g+3
1:{E‘EXEC;)I"ter,ckpt = D(q) + R(q) + Oéfgc((n

Overall average RE-EXEC: RE-EXECcpr =

1
E((g_ 1)-RE'EXECbefore,ckpt + 1-RE'EXECduring,ckpt
+ (G _g)~RE‘EXECafter,ckpt)

Average waste for failures during checkpointing phase

Average RE-EXEC when the failing-group g fails
Overall average RE-EXEC: RE-EXECp: =

1
E((g_ 1)-RE'EXECbefore,ckpt + 1-RE'EXECduring,ckpt

+ (G _g)~RE‘EXECafter,ckpt)

Average over all groups:

AVG_RE-EXEC¢kpt =

D(q)+R(q)+ Gzz-l T+aC(q)(26 +3), C(q)(216 2a) C(q)(zG +1)

Average waste

WASTEhierach = w + : (D(q) + R(q) + RE_EXEC)
T2
1 +GC(q)[(1 — @)(2up — T) + (2a — 1)C(q)]

" 2,7 | +T[2(D(9) + R(q)) + (@ +1)C(q)]
+(1 - 204)(,‘(q)2

Minimize WASTEpjerarch Subject to:
@ GC(q) < T (by construction)
Q@ 7T <0lu(= Proba(Poisson(%) > 2) <0.05)

Outline

@ Accounting for message logging

Impact on work

o ® Logging messages slows down execution:
= WORK becomes AWORK, where 0 < A < 1
Typical value: A ~ 0.98

o © Re-execution after a failure is faster:
= RE-EXEC becomes @, where p € [1..2]
Typical value: p~ 1.5

T — A\WORK 1

WASTEhierarch =+ — (D(q) + R(q) +

RE—EXEC)
T Hp

Impact on checkpoint size

@ Inter-groups messages logged continuously

@ Checkpoint size increases with amount of work executed
before a checkpoint

C(q) — Go(q)

C(q) = Go(q)(1 + SWORK) & f§ = Co(q)WORK

WORK = A(T — (1 — a)GC(q))

(@) — @)1+ AT)
YT 14 GCo(q)BA1 — a)

e Constraint GC(q) < T translates into

GGo(q)
1 - GGo(q)BAa

GG(q)BAa<land T >

Outline

© Instanciating the model

Three case studies

Coord-10
Coordinated approach: C = Cyem = 'Vl')em
where Mem is the memory footprint of the application

Hierarch-10
Several (large) groups, I/O-saturated
= groups checkpoint sequentially

CMem Mem

©l9)="¢" = b,

Hierarch-Port

Very large number of smaller groups, port-saturated
= some groups checkpoint in parallel

Omin as the smallest value such that q,,;,bport > bio
Groups of q,,;, processors

© Instanciating the model
@ Applications

Three applications: 1) 2D-stencil

e Real matrix of size n x n partitioned across a p x p processor grid
e Each processor holds a matrix block of size b= n/p
e At each iteration:

- average each matrix element with its 8 closest neighbors

- exchange rows and columns that lie at partition boundary

- each processor sends four messages of size b

. . . 2
e (Parallel) work for one iteration is WORK = %

Computing [for 2D-Stencil

C(q) = Co(q) + Logged Msg = Co(q)(1 + SWORK)

Real n x nzmatrix and p x p grid
Work =22, b=n/p

Each procgss sends a block to its 4 neighbors

HIERARCH-IO:

@ 1 group = 1 grid row

@ 2 out of the 4 messages are logged

°o B= Logged Msg __ 2pb _ 2sp
q)WORK — pb?(9b%/sp) — 9b3

HIERARCH- PORT:

@ (3 doubles

Three applications: 2) 3D-stencil

e Real matrix of size n X n x n partitioned acrossa p X p X p
processor grid
e Each processor holds a cube of size b= n/p
e At each iteration:
- average each matrix element with its 27 closest neighbors
- exchange the six faces of its cube

. . . 3
o (Parallel) work for one iteration is WORK = 272

Sp

Three hierarchical variants

@ HIERARCH-IO-PLANE: group = horizontal plane of size p?:

_ 25
B =75
@ HIERARCH-IO-LINE: group = horizontal line of size p:
_ A4sp
B = 275

© HIERARCH-PORT: groups of size gmin : 8 = %’,’3

Three applications: 3) Matrix product

e 3 real matrices of size n X n partitioned across a p X p processor
grid
e Mem = 24n? (in bytes)
e Each processor holds three matrix blocks of size b= n/p
e At each iteration (Cannon'’s algorithm):
- shift one block vertically and one horizontally
- perform a matrix product

. . . 3
e (Parallel) work for one iteration is WORK = 22°

Sp

@ HIERARCH-IO: one group per grid row: 5 = 6%

@ HIERARCH-PORT: groups of size gmin: 8 = 3%

Four platforms: basic characteristics

Name Number of Number of Number of cores Memory 1/0 Network Bandwidth (bjo) 1/0 Bandwidth (bport)
cores Processors proras | per processor | per processor | Read Write Read /Write per processor
Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s
Exascale-Slim | 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s
Name Scenario G (C(q)) 3 for 3 for
2D-STENCIL | MATRIX-PRODUCT
COORD-10 1 (2,048s)
Titan HIERARCH-1O 136 (15s) 0.0001098 0.0004280
HIERARCH-PORT 1,246 (1.6s) 0.0002196 0.0008561
COORD-10 1 (14,688s) 7 7
K-Computer HIERARCH-IO 296 (50s) 0.0002858 0.001113
HIERARCH-PORT | 17,626 (0.83s) 0.0005716 0.002227
COORD-10 1 (64,000s) / /
Exascale-Slim HIERARCH-IO 1,000 (64s) 0.0002599 0.001013
HIERARCH-PORT | 200,0000 (0.32s) 0.0005199 0.002026
COORD-10 1 (64,000s) /
Exascale-Fat HIERARCH-1O 316 (217s) 0.00008220 0.0003203
HiERARCH-PORT | 33,3333 (1.92s) | 0.00016440 0.0006407

Checkpoint time

Name C
K-Computer | 14,688s
Exascale-Slim | 64,000
Exascale-Fat | 64,000

Large time to dump the memory

Using 1%C

Comparing with 0.1%C for exascale platforms
a=03, A=09and p=1.5

Plotting formulas — Platform: Titan

Stencil 2D

Matrix product

Stencil 3D

09 0. 09 SaEEEEE =
—
o 0.5 o0 —
07 0.7 07
0.6 0.6 06
o o o
0.4 0.4 0.4
03 0.3 03
o 0.2 02
01 01 01
T (R S0 oo T 3 T ™ 20 So T Tho T 3 T [S 10

Waste as a function of processor MTBF pjng

Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

xxxxx

Waste as a function of processor MTBF pjng

Plotting formulas — Platform: Exascale

WASTE = 1 for all scenarios!!!)

Plotting formulas — Platform: Exascale

Goodbye Exascale?!

Plotting formulas — Platform: Exascale with C = 1,000

Stencil 2D Matrix product Stencil 3D

Exascale-Slim

Too T 3 N 1" o Tho T 3 B ™ 20 s0 i

Exascale-Fat

Too T 3 3 o 20 S0 oo o 3 3 T 20 | so ioo

Waste as a function of processor MTBF pjnq, C = 1,000

Plotting formulas — Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D
\ . .

Exascale-Slim

(((((

Exascale-Fat

100 1 2 3 o 20 S0 oo 1 2 5 20 | so ioo

Waste as a function of processor MTBF pjnq, C = 100

Simulations —

Platform: Titan

Stencil 2D

Coordinated
Coordinated BestPer

Matrix product

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

0 T L T 90 T T T
Coordinated — Coordinsied ——

0 Coonled Besier 8 Cooned BesPer

b Hiniol — " Hiatil —

: Hiruchical BstPer ---- : Hieruchical BestPer -~
) Hircticl Pt —) Hiacticl Pt —
z Hieruchiva Port BestPer -~~~] Hierarcivl Port BestPr -~
b] s
i
H 4
i H

0p

)

0 T R R R R N TR 0 TS S T S S R T

1 ? KIS A (R) ¥ o005 1 1 K R A (R A) FARE R I (1]

Makespan

MTBE)

(in days) as a function

MTBF)

of processor MTBF g

Simulations — Platform: Exascale with C = 1,000

Stencil 2D Matrix product

Coordinated ——— Hierarchical Hierarchical Port
Coordinated BestPer -------- Hierarchical BestPer -------- Hierarchical Port BestPer --------
(9p] ,
1 E: T — T —T T T T T T T T T T
<@ Conoatihs 4
IS e !
O ettt ——
A bl P B
o]
X
L
9 9
0 S i = T
| Y 3 45 mow I3)
B e B)
)
o]
L
1 50
(] - Confned — h Coninsed —
— Gl B Cotet Bshe
il — el —
HeaolPo —— T P —
(%] Hierahica Por BesPe HierciclPor BesPer
2
im
L H
o 2
| T 3 45 mw s » ® % Bom I
B e B ()

Makespan (in days) as a function of processor MTBF ppg, C = 1,000

Simulations — Platform: Exascale with C = 100

Exascale-Slim

Exascale-Fat

Stencil 2D

Coordinated ———
Coordinated BestPer

Hiracic
Hiersicd Pt ——
Hiaehial P Besier

)

MIBE ()

5om

B

Matrix product

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Corinse
Cooniaed BesPer
Hiracicd —
Hicarica B
i Por ——
Hieracicd ot BesPer

)
»
2] RS
MTBE (e
s
L Cooniaed Dly —
Corniaed Beser
5 Hiracicd
0 Hirrcicd BesPer
: ercic ot ——
i Hierurcical Port BesPer
0
9
§
6
5

5o
MIBF ear)

5 oM

R

Makespan (in days) as a function of processor MTBF pjnqy, C = 100

	Checkpointing protocols
	Coordinated checkpointing
	Hierarchical checkpointing
	Accounting for message logging
	Instanciating the model
	Applications

