
Unified Model for Assessing Checkpointing
Protocols at Extreme-Scale

George Bosilca1, Aurélien Bouteiller1,
Elisabeth Brunet2, Franck Cappello3,

Jack Dongarra1, Amina Guermouche4,
Thomas Hérault1, Yves Robert1,4,

Frédéric Vivien4, and Dounia Zaidouni4

1. University of Tennessee Knoxville, USA
2. Telecom SudParis, France

3. INRIA & University of Illinois at Urbana Champaign, USA
4. Ecole Normale Supérieure de Lyon & INRIA, France

May 30, 2012



Motivation

Framework

Very very large number of processing elements (e.g., 220)

Failure-prone platform (like any realistic platform)

Large application to be executed on the whole platform

=⇒ Failure(s) will certainly occur before completion!

Resilience provided through checkpointing



Outline

1 Checkpointing protocols

2 Coordinated checkpointing

3 Hierarchical checkpointing

4 Accounting for message logging

5 Instanciating the model
Applications



Outline

1 Checkpointing protocols

2 Coordinated checkpointing

3 Hierarchical checkpointing

4 Accounting for message logging

5 Instanciating the model



Which checkpointing protocol to use?

Coordinated checkpointing

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to rollback

/ Rumor: does not scale to very large platforms

Hierarchical checkpointing

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Only processors from failed group need to rollback

, Faster re-execution with logged messages

, Rumor: scales well to very large platforms



Framework

Periodic checkpointing policies (of period T )

Independent and identically distributed failures

Platform failure inter-arrival time: µ

Tightly-coupled application: progress ⇔ all processors
available

First-order approximation: at most one failure within a period

Waste: fraction of time not spent for useful computations



Checkpointing cost

Time



Checkpointing cost

Time

Time spent checkpointing

Time spent working



Checkpointing cost

Computing the first chunk

Time

Time spent working

Time spent checkpointing



Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Time

Time spent working

Time spent checkpointing



Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working



Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working



Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed



Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

Non-blocking model: while a checkpoint is taken, computations
are not impacted (e.g., first copy state to RAM, then copy RAM to
disk)



Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

Non-blocking model: while a checkpoint is taken, computations
are not impacted (e.g., first copy state to RAM, then copy RAM to
disk)



Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

Non-blocking model: while a checkpoint is taken, computations
are not impacted (e.g., first copy state to RAM, then copy RAM to
disk)



Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

General model: while a checkpoint is taken, computations are
slowed-down: during a checkpoint of duration C , the same amount
of computation is done as during a time αC without checkpointing
(0 ≤ α ≤ 1).



Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: while a checkpoint is taken, computations are
slowed-down: during a checkpoint of duration C , the same amount
of computation is done as during a time αC without checkpointing
(0 ≤ α ≤ 1).



Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: while a checkpoint is taken, computations are
slowed-down: during a checkpoint of duration C , the same amount
of computation is done as during a time αC without checkpointing
(0 ≤ α ≤ 1).



Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: while a checkpoint is taken, computations are
slowed-down: during a checkpoint of duration C , the same amount
of computation is done as during a time αC without checkpointing
(0 ≤ α ≤ 1).



Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

Processing the second chunk

Time spent working with slowdown

General model: while a checkpoint is taken, computations are
slowed-down: during a checkpoint of duration C , the same amount
of computation is done as during a time αC without checkpointing
(0 ≤ α ≤ 1).



Outline

1 Checkpointing protocols

2 Coordinated checkpointing

3 Hierarchical checkpointing

4 Accounting for message logging

5 Instanciating the model



Waste in absence of failures

P2

P3

P0

P1

Time spent working Time spent checkpointing Time spent working with slowdown

Time



Waste in absence of failures

T − C

P2

P3

P1

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time



Waste in absence of failures

C

P0

P1

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time



Waste in absence of failures

T

CT − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Time elapsed since last checkpoint: T

Amount of computation saved: (T − C ) + αC

Wastecoord−nofailure = T−((T−C)+αC)
T = (1−α)C

T



Waste due to failures

P2

P3

P0

P1

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Failure can happen

1 During computation phase

2 During checkpointing phase



Waste due to failures in computation phase

P2

P3

P0

P1

Time spent working Time spent checkpointing Time spent working with slowdown

Time



Waste due to failures in computation phase

P2

P3

P0

P1

Time spent working Time spent checkpointing Time spent working with slowdown

Time



Waste due to failures in computation phase

Tlost

P1

P3

P0

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Tightly-coupled model: when one processor is victim of a failure,
all processors lose their work and must roll-back to last checkpoint



Waste due to failures in computation phase

D

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Downtime Time



Waste due to failures in computation phase

R

P1

P2

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Recovery timeDowntime Time

Tightly-coupled model: All processors must recover from last
checkpoint



Waste due to failures in computation phase

C αC

P3

P2

P1

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation



Waste due to failures in computation phase

T − C

P1

P2

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Re-execute the computation phase



Waste due to failures in computation phase

C

P1

P2

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Finally, the checkpointing phase is executed

First-order approximation: we assume that no other failure occurs
during the re-execution



Waste due to failures in computation phase

∆

αC CT − CRDTlost

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime

T

Time

Re-Exec: ∆− T = Tlost + D + R + αC

First-order: Tlost = 1
2(T − C )

Re-Execcoord−fail−in−work =
T − C

2
+ D + R + αC



Waste due to failures in checkpointing phase

P2

P1

P0

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time



Waste due to failures in checkpointing phase

T − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time



Waste due to failures in checkpointing phase

P1

P3

P2

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time



Waste due to failures in checkpointing phase

Tlost

P2

P0

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Tightly-coupled model: when one processor is victim of a failure,
all processors lose their work and must roll-back to last checkpoint



Waste due to failures in checkpointing phase

D

P3

P0

P2

P1

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time



Waste due to failures in checkpointing phase

R

P2

P0

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Tightly-coupled model: All processors must recover from last
checkpoint



Waste due to failures in checkpointing phase

αCC

P1

P3

P0

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation



Waste due to failures in checkpointing phase

T − C

P3

P0

P1

P2

Time spent checkpointingTime spent working Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Re-execute the computation phase



Waste due to failures in checkpointing phase

C

P3

P2

P1

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Finally, the checkpointing phase is executed



Waste due to failures in checkpointing phase

∆

CT − CαCRDTlostT − C

T

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Re-Exec: ∆− T = (T − C ) + Tlost + D + R + αC

First-order approximation: Tlost = 1
2C

Re-Execcoord−fail−in−checkpoint = (T − C ) + C
2 + D + R + αC

= T − C
2 + D + R + αC



Waste due to failures

Failure in the computation phase (probability: T−C
T )

Re-Execcoord−fail−in−work =
T − C

2
+ D + R + αC

Failure in the checkpointing phase (probability: C
T )

Re-Execcoord−fail−in−checkpoint = T − C

2
+ D + R + αC

T − C

T

(
T − C

2
+ D + R + αC

)
+

C

T

(
T − C

2
+ D + R + αC

)

= D + R + αC +
T

2



Overall waste

Wastecoord = Wastecoord−nofailure +
1

µ
Re-Execcoord−failure

=
(1− α)C

T
+

1

µ

(
D + R + αC +

T

2

)
Minimize Wastecoord subject to:

1 C ≤ T (by construction)

2 T ≤ 0.1µ (⇒ Proba(Poisson(Tµ ) ≥ 2) ≤ 0.05)

If µ large enough, optimal period is T =
√

2µC (1− α)
(remember Young’s approximation)



Outline

1 Checkpointing protocols

2 Coordinated checkpointing

3 Hierarchical checkpointing

4 Accounting for message logging

5 Instanciating the model



Hierarchical checkpointing

Processors partitioned into G groups

Each group includes q processors

Inside each group: coordinated checkpointing in time C (q)

Inter-group messages are logged



Impact of checkpointing

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time



Impact of checkpointing

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

When a group checkpoints, its own computation speed is
slowed-down



Impact of checkpointing

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent checkpointing Time spent working with slowdownTime spent working

Time

When a group checkpoints, its own computation speed is
slowed-down

This holds for all groups because of the tightly-coupled assumption



Impact of checkpointing

G .C

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

When a group checkpoints, its own computation speed is
slowed-down

This holds for all groups because of the tightly-coupled assumption

Waste = T−Work
T where Work = T − (1− α)GC (q)



Failure during computation phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time



Failure during computation phase

G2

G4

G3

G5

G1

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time



Failure during computation phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Tightly-coupled model: while one group is in downtime, none can
work



Failure during computation phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Tightly-coupled model: while one group is in recovery, none can
work



Failure during computation phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Groups must have completed the same amount of work in between
two consecutive checkpoints, independently of the fact that a
failure may or may not have happened on the platform in between
these checkpoints. Hence, no checkpointing is possible during the
rollback.



Failure during computation phase

(G − g + 1)C

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Redo work done during previous checkpointing phase and that was
destroyed by the failure



Failure during computation phase

α(G−g+1)C(G − g + 1)C

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Redo work done during previous checkpointing phase and that was
destroyed by the failure

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation



Failure during computation phase

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Redo work done in computation phase and that was destroyed by
the failure



Failure during computation phase

T−G .C−Tlost

Tlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Failing group has reached the point where it previously failed, all
groups now resume execution in parallel and complete the
computation phase



Failure during computation phase

G .C

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Finally, perform checkpointing phase



Failure during computation phase

T

α(G−g+1)C

RD G .C

T−G .C−Tlost

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Re-Exec: Tlost + D + R + α(G − g + 1)C

First-order: Tlost = 1
2(T − G .C )

Approximated Re-Exec: T−G .C
2 + D + R + α(G − g + 1)C



Failure during computation phase

T

α(G−g+1)C

RD G .C

T−G .C−Tlost

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Approximated Re-Exec: T−G .C
2 + D + R + α(G − g + 1)C

Average approximated Re-Exec:

1

G

G∑
g=1

[
T − G .C (q)

2
+ D(q) + R(q) + α(G − g + 1)C (q)

]
=

T − G .C (q)

2
+ D(q) + R(q) + α

G + 1

2
C



Failure during checkpointing phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time



Failure during checkpointing phase

T − G .C

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time



Failure during checkpointing phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

When does the failing group fail?

1 Before starting its own checkpoint

2 While taking its own checkpoint

3 After completing its own checkpoint



Failure during checkpointing phase:
failure before checkpoint

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time



Failure during checkpointing phase:
failure before checkpoint

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

The checkpoint taken while the failure struck is that of another
group; it is not affected and completes



Failure during checkpointing phase:
failure before checkpoint

Tlost

s.C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

s: number of groups that have successfully completed their
checkpoints before the failure



Failure during checkpointing phase:
failure before checkpoint

D

C − Tlost

Tlost

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Tightly-coupled model: while one group is in downtime, none can
work

Groups must have completed the same amount of work in between
two consecutive checkpoints, independently of the fact that a
failure may or may not have happened on the platform in between
these checkpoints. Hence, no checkpointing is possible during the
rollback.



Failure during checkpointing phase:
failure before checkpoint

D

C − Tlost

Tlost

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Tightly-coupled model: while one group is in recovery, none can
work



Failure during checkpointing phase:
failure before checkpoint

(G−g+1)C

α(G−g+1)C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Redo work done during previous checkpointing phase and that was
destroyed by the failure

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation



Failure during checkpointing phase:
failure before checkpoint

T − G .CT − G .C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Redo work done in computation phase and that was destroyed by
the failure



Failure during checkpointing phase:
failure before checkpoint

α(s.C + Tlost)

Tlost

s.C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Redo work done in checkpointing phase and that was destroyed by
the failure

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation



Failure during checkpointing phase:
failure before checkpoint

α(C − Tlost)

C − Tlost

Tlost

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Failing group has reached the point where it previously failed, all
groups now resume execution in parallel and complete the
computation phase

Groups first complete work that was to be done during the
checkpoint during which the failure occurred



Failure during checkpointing phase:
failure before checkpoint

(G−s−1)C

α(C − Tlost)Tlost

s.C

G2

Gg

G3

G5

G1

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent working Time spent checkpointing

Time

Checkpointing phase completed



Failure during checkpointing phase:
failure before checkpoint

∆

α(s.C + Tlost)

R (G−s−1)C

α(C − Tlost)

T − G .C(G−g+1)C

α(G−g+1)C

D

C − Tlost

Tlost

s.CT − G .C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Re-Exec= ∆− T

∆ = (T−G .C ) + s.C + Tlost + C−Tlost + D + R + α(G−g+1)C
+(T−G .C ) + α(s.C + Tlost) + α(C−Tlost)+(G−s−1).C

= 2T − GC + D + R + α(G−g+s+2)C



Failure during checkpointing phase:
failure before checkpoint

∆

α(s.C + Tlost)

R (G−s−1)C

α(C − Tlost)

T − G .C(G−g+1)C

α(G−g+1)C

D

C − Tlost

Tlost

s.CT − G .C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Re-Exec= ∆− T

∆ = 2T − GC + D + R + α(G−g+s+2)C



Failure during checkpointing phase:
failure before checkpoint

∆

α(s.C + Tlost)

R (G−s−1)C

α(C − Tlost)

T − G .C(G−g+1)C

α(G−g+1)C

D

C − Tlost

Tlost

s.CT − G .C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Re-Exec= ∆− T

∆ = 2T − GC + D + R + α(G−g+s+2)C



Failure during checkpointing phase:
failure before checkpoint

∆

α(s.C + Tlost)

R (G−s−1)C

α(C − Tlost)

T − G .C(G−g+1)C

α(G−g+1)C

D

C − Tlost

Tlost

s.CT − G .C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Re-Exec= ∆− T

∆ = 2T − GC + D + R + α(G−g+s+2)C

Re-Exec= T +D+R+((α−1)G + α(−g+s+2)).C



Failure during checkpointing phase:
failure before checkpoint

∆

α(s.C + Tlost)

R (G−s−1)C

α(C − Tlost)

T − G .C(G−g+1)C

α(G−g+1)C

D

C − Tlost

Tlost

s.CT − G .C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Re-Exec= T +D+R+((α−1)G + α(−g+s+2)).C

Average Re-Exec for group g (for 2 ≤ g ≤ G ):

1

g − 1

g−2∑
s=0

(T + D(q) + R(q) + ((α− 1)G + α(−g + s + 2)).C (q))

= T + D(q) + R(q) +

(
(α− 1)G − αg − 2

2

)
.C (q)



Failure during checkpointing phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

When does the failing group fail?

1 Before starting its own checkpoint

2 While taking its own checkpoint

3 After completing its own checkpoint



Failure during checkpointing phase:
failure during checkpoint

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time



Failure during checkpointing phase:
failure during checkpoint

Tlost

(g − 1)C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time



Failure during checkpointing phase:
failure during checkpoint

D

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Tightly-coupled model: while one group is in downtime, none can
work

Groups must have completed the same amount of work in between
two consecutive checkpoints, independently of the fact that a
failure may or may not have happened on the platform in between
these checkpoints. Hence, no checkpointing is possible during the
rollback.



Failure during checkpointing phase:
failure during checkpoint

R

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Tightly-coupled model: while one group is in recovery, none can
work



Failure during checkpointing phase:
failure during checkpoint

α(G−g+1)C
(G−g+1)C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Redo work done during previous checkpointing phase and that was
destroyed by the failure

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation



Failure during checkpointing phase:
failure during checkpoint

T − G .CT − G .C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Redo work done in computation phase and that was destroyed by
the failure



Failure during checkpointing phase:
failure during checkpoint

α(g − 1)C(g − 1)C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Redo work done in checkpointing phase that was destroyed by the
failure and that preceded the beginning of the killed checkpoint

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation



Failure during checkpointing phase:
failure during checkpoint

Tlost

Tlost

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

The failing group has now reached the point where it can retry
taking its checkpoint

Redo work done during the checkpoint and that was destroyed by
the failure



Failure during checkpointing phase:
failure during checkpoint

C − Tlost

Tlost

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Failing group has reached the point where it previously failed, all
groups now resume execution in parallel and complete the
computation phase

Failing group completes its checkpoint



Failure during checkpointing phase:
failure during checkpoint

(G−g)C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Checkpointing phase completed



Failure during checkpointing phase:
failure during checkpoint

∆

α(g − 1)C

(G−g)C

C − Tlost

TlostT − G .C
α(G−g+1)C
RD

Tlost

(g − 1)C(G−g+1)C T − G .C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Re-Exec= ∆− T

∆ = (T − G .C ) + (g − 1)C + Tlost + D + R + α(G − g + 1)C
+(T − G .C ) + α(g − 1)C + Tlost + (C − Tlost) + (G − g)C



Failure during checkpointing phase:
failure during checkpoint

∆

α(g − 1)C

(G−g)C

C − Tlost

TlostT − G .C
α(G−g+1)C
RD

Tlost

(g − 1)C(G−g+1)C T − G .C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Re-Exec= ∆− T

∆ = (T − G .C ) + (g − 1)C + Tlost + D + R + α(G − g + 1)C
+(T − G .C ) + α(g − 1)C + Tlost + (C − Tlost) + (G − g)C

= T + (α− 1)G .C + Tlost + D + R + T



Failure during checkpointing phase:
failure during checkpoint

∆

α(g − 1)C

(G−g)C

C − Tlost

TlostT − G .C
α(G−g+1)C
RD

Tlost

(g − 1)C(G−g+1)C T − G .C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Re-Exec= ∆− T

∆ = (T − G .C ) + (g − 1)C + Tlost + D + R + α(G − g + 1)C
+(T − G .C ) + α(g − 1)C + Tlost + (C − Tlost) + (G − g)C

= T + (α− 1)G .C + Tlost + D + R + T

Re-Exec= T + (α− 1)G .C + Tlost + D + R



Failure during checkpointing phase:
failure during checkpoint

∆

α(g − 1)C

(G−g)C

C − Tlost

TlostT − G .C
α(G−g+1)C
RD

Tlost

(g − 1)C(G−g+1)C T − G .C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Re-Exec= T + (α− 1)G .C + Tlost + D + R



Failure during checkpointing phase:
failure during checkpoint

∆

α(g − 1)C

(G−g)C

C − Tlost

TlostT − G .C
α(G−g+1)C
RD

Tlost

(g − 1)C(G−g+1)C T − G .C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Re-Exec= T + (α− 1)G .C + Tlost + D + R

Approximation: Tlost = C
2

Approximated Re-Exec

T + (α− 1)G .C (q) +
C (q)

2
+ D(q) + R(q)



Failure during checkpointing phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

When does the failing group fail?

1 Before starting its own checkpoint

2 While taking its own checkpoint

3 After completing its own checkpoint



Failure during checkpointing phase:
failure after checkpoint

Gg

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time



Failure during checkpointing phase:
failure after checkpoint

Gg

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

The checkpoint taken while the failure struck is that of another
group; it is not affected and completes



Failure during checkpointing phase:
failure after checkpoint

s.C

Gg

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

s: number of groups that have successfully completed their
checkpoints before the failure, among groups that are after the
failing group (including the failing group)



Failure during checkpointing phase:
failure after checkpoint

D

C − Tlost

Tlost

Gg

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Tightly-coupled model: while one group is in downtime, none can
work

Groups must have completed the same amount of work in between
two consecutive checkpoints, independently of the fact that a
failure may or may not have happened on the platform in between
these checkpoints. Hence, no checkpointing is possible during the
rollback.



Failure during checkpointing phase:
failure after checkpoint

R

Gg

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Tightly-coupled model: while one group is in recovery, none can
work



Failure during checkpointing phase:
failure after checkpoint

α(s.C + Tlost)

s.C Tlost

Gg

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Redo work done in checkpointing phase and that was destroyed by
the failure

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation



Failure during checkpointing phase:
failure after checkpoint

α(C−Tlost)C − Tlost

Gg

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Failing group has reached the point where it previously failed, all
groups now resume execution in parallel

Groups first complete work that was to be done during the
checkpoint during which the failure occurred

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation



Failure during checkpointing phase:
failure after checkpoint

(g − 1)C

(G − s − g)Cs.C

Gg

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Checkpointing phase completed



Failure during checkpointing phase:
failure after checkpoint

∆

(g − 1)C

(G − s − g)C

α(C−Tlost)
α(s.C + Tlost)

RD

C − Tlost

s.C TlostT − G .C

Gg

G4

G3

G5

G1

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent working Time spent checkpointing

Time

Re-Exec= ∆− T

∆ = (T − G .C ) + (g − 1)C + s.C + Tlost + C − Tlost + D
+R + α(s.C + Tlost) + α(C − Tlost) + (G − s − g)C

= T + D + R + α(s + 1).C

Re-Exec= D + R + α(s + 1)C



Failure during checkpointing phase:
failure after checkpoint

∆

(g − 1)C

(G − s − g)C

α(C−Tlost)
α(s.C + Tlost)

RD

C − Tlost

s.C TlostT − G .C

Gg

G4

G3

G5

G1

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent working Time spent checkpointing

Time

Re-Exec= D + R + α(s + 1)C

Average Re-Exec for group g (for 1 ≤ g ≤ G − 1):

1

G − g

G−g∑
s=1

(D(q) + R(q) + α(s + 1)C (q))

= D(q) + R(q) + α
G − g + 3

2
C (q)



Average waste for failures during checkpointing phase

Average Re-Exec when the failing-group g fails

1 Before its checkpoint (for 2 ≤ g ≤ G ):

Re-Execbefore ckpt = T+D(q)+R(q)+((α−1)G−αg − 2

2
).C (q)

2 During its checkpoint

Re-Execduring ckpt = T+(α−1)G .C (q)+
C (q)

2
+D(q)+R(q)

3 After its checkpoint (for 1 ≤ g ≤ G − 1):

Re-Execafter ckpt = D(q) + R(q) + α
G − g + 3

2
C (q)

Overall average Re-Exec: Re-Execckpt =
1

G
((g−1).Re-Execbefore ckpt + 1.Re-Execduring ckpt

+ (G−g).Re-Execafter ckpt)



Average waste for failures during checkpointing phase

Average Re-Exec when the failing-group g fails
Overall average Re-Exec: Re-Execckpt =

1

G
((g−1).Re-Execbefore ckpt + 1.Re-Execduring ckpt

+ (G−g).Re-Execafter ckpt)

Average over all groups:

avg Re-Execckpt =

D(q)+R(q)+
G + 1

2G
T+

αC (q)(G + 3)

2
+
C (q)(1− 2α)

2G
−C (q)(G + 1)

2



Average waste

Wastehierach =
T −Work

T
+

1

µp

(
D(q) + R(q) + Re-Exec

)

=
1

2µpT
×


T 2

+GC (q)
[
(1− α)(2µp − T ) + (2α− 1)C (q)

]
+T

[
2(D(q) + R(q)) + (α + 1)C (q)

]
+(1− 2α)C (q)2



Minimize Wastehierarch subject to:

1 GC (q) ≤ T (by construction)

2 T ≤ 0.1µ (⇒ Proba(Poisson(Tµ ) ≥ 2) ≤ 0.05)



Outline

1 Checkpointing protocols

2 Coordinated checkpointing

3 Hierarchical checkpointing

4 Accounting for message logging

5 Instanciating the model



Impact on work

/ Logging messages slows down execution:
⇒ Work becomes λWork, where 0 < λ < 1
Typical value: λ ≈ 0.98

, Re-execution after a failure is faster:
⇒ Re-Exec becomes Re-Exec

ρ , where ρ ∈ [1..2]
Typical value: ρ ≈ 1.5

Wastehierarch =
T − λWork

T
+

1

µp

(
D(q) + R(q) +

Re-Exec

ρ

)



Impact on checkpoint size

Inter-groups messages logged continuously

Checkpoint size increases with amount of work executed
before a checkpoint

C (q) = C0(q)(1 + βWork)⇔ β =
C (q)− C0(q)

C0(q)Work

Work = λ(T − (1− α)GC (q))

C (q) =
C0(q)(1 + βλT )

1 + GC0(q)βλ(1− α)

Constraint GC (q) ≤ T translates into

GC0(q)βλα ≤ 1 and T ≥ GC0(q)

1− GC0(q)βλα



Outline

1 Checkpointing protocols

2 Coordinated checkpointing

3 Hierarchical checkpointing

4 Accounting for message logging

5 Instanciating the model



Three case studies

Coord-IO
Coordinated approach: C = CMem = Mem

bio
where Mem is the memory footprint of the application

Hierarch-IO
Several (large) groups, I/O-saturated
⇒ groups checkpoint sequentially

C0(q) =
CMem

G
=

Mem

Gbio

Hierarch-Port
Very large number of smaller groups, port-saturated
⇒ some groups checkpoint in parallel
qmin as the smallest value such that qminbport ≥ bio

Groups of qmin processors



1 Checkpointing protocols

2 Coordinated checkpointing

3 Hierarchical checkpointing

4 Accounting for message logging

5 Instanciating the model
Applications



Three applications: 1) 2D-stencil

• Real matrix of size n× n partitioned across a p× p processor grid
• Each processor holds a matrix block of size b = n/p
• At each iteration:

- average each matrix element with its 8 closest neighbors
- exchange rows and columns that lie at partition boundary
- each processor sends four messages of size b

• (Parallel) work for one iteration is Work = 9b2

sp



Computing β for 2D-Stencil

C (q) = C0(q) + Logged Msg = C0(q)(1 + βWork)

Real n × n matrix and p × p grid
Work = 9b2

sp
, b = n/p

Each process sends a block to its 4 neighbors

Hierarch-IO:

1 group = 1 grid row

2 out of the 4 messages are logged

β = Logged Msg
C0(q)Work = 2pb

pb2(9b2/sp)
=

2sp
9b3

Hierarch-Port:

β doubles



Three applications: 2) 3D-stencil

• Real matrix of size n × n × n partitioned across a p × p × p
processor grid
• Each processor holds a cube of size b = n/p
• At each iteration:

- average each matrix element with its 27 closest neighbors
- exchange the six faces of its cube

• (Parallel) work for one iteration is Work = 27b3

sp

Three hierarchical variants

1 Hierarch-IO-Plane: group = horizontal plane of size p2:
β =

2sp
27b3

2 Hierarch-IO-Line: group = horizontal line of size p:
β =

4sp
27b3

3 Hierarch-Port: groups of size qmin : β =
6sp
27b3



Three applications: 3) Matrix product

• 3 real matrices of size n × n partitioned across a p × p processor
grid
• Mem = 24n2 (in bytes)
• Each processor holds three matrix blocks of size b = n/p
• At each iteration (Cannon’s algorithm):

- shift one block vertically and one horizontally
- perform a matrix product

• (Parallel) work for one iteration is Work = 2b3

sp

1 Hierarch-IO: one group per grid row: β =
sp
6b3

2 Hierarch-Port: groups of size qmin: β =
sp
3b3



Four platforms: basic characteristics

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth (bport)
cores processors ptotal per processor per processor Read Write Read/Write per processor

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s
Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s

Name Scenario G (C (q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407



Checkpoint time

Name C

K-Computer 14,688s

Exascale-Slim 64,000

Exascale-Fat 64,000

Large time to dump the memory

Using 1%C

Comparing with 0.1%C for exascale platforms

α = 0.3, λ = 0.98 and ρ = 1.5



Plotting formulas – Platform: Titan

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind



Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind



Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!



Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Goodbye Exascale?!



Plotting formulas – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product Stencil 3D

E
xa

sc
al

e-
S

lim
E

xa
sc

al
e-

F
at

Waste as a function of processor MTBF µind , C = 1, 000



Plotting formulas – Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D

E
xa

sc
al

e-
S

lim
E

xa
sc

al
e-

F
at

Waste as a function of processor MTBF µind , C = 100



Simulations – Platform: Titan

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 
(
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 
(
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind



Simulations – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p

an
 (

d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
S

lim

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
F

at

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind , C = 1, 000



Simulations – Platform: Exascale with C = 100

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p

an
 (

d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
S

lim

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
F

at

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated Daly
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind , C = 100


	Checkpointing protocols
	Coordinated checkpointing
	Hierarchical checkpointing
	Accounting for message logging
	Instanciating the model
	Applications


