
App. Specific FT

An overview of fault-tolerant techniques for HPC

Thomas Hérault1 & Yves Robert1,2

1 – University of Tennessee Knoxville
2 – ENS Lyon & Institut Universitaire de France

herault@icl.utk.edu | yves.robert@ens-lyon.fr

http://graal.ens-lyon.fr/~yrobert/sc13tutorial.pdf

SC’2013 Tutorial

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 1/ 56

herault@icl.utk.edu
yves.robert@ens-lyon.fr
http://graal.ens-lyon.fr/~yrobert/sc13tutorial.pdf

App. Specific FT

Thanks

INRIA & ENS Lyon

Anne Benoit

Frédéric Vivien

PhD students (Guillaume Aupy, Dounia Zaidouni)

UT Knoxville

George Bosilca

Aurélien Bouteiller

Jack Dongarra

Others

Franck Cappello, Argonne and UIUC-Inria joint lab

Henri Casanova, Univ. Hawai‘i

Amina Guermouche, UIUC-Inria joint lab

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 2/ 56

App. Specific FT

Outline

1 Application-specific fault-tolerance techniques (45mn)
Fault-Tolerant Middleware
Bags of tasks
Iterative algorithms and fixed-point convergence
ABFT for Linear Algebra applications
Composite approach: ABFT & Checkpointing

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 3/ 56

App. Specific FT

Outline

1 Application-specific fault-tolerance techniques (45mn)
Fault-Tolerant Middleware
Bags of tasks
Iterative algorithms and fixed-point convergence
ABFT for Linear Algebra applications
Composite approach: ABFT & Checkpointing

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 4/ 56

App. Specific FT

Fault Tolerance Software Stack

Application

Lib1 Lib2

Comm. Middleware (MPI)

OS

Network

Runtime
Helpers

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 5/ 56

App. Specific FT

Fault Tolerance Software Stack

Application

Lib1 Lib2

Comm. Middleware (MPI)

OS

Network

Runtime
Helpers

Network
Transient
Failures

(inc. msg corruption)
Fault Tolerance

Automatic
Permanent

Crash
Fault Tolerance

Application-Based
Permanent

Crash
Fault Tolerance

Permanent
Crash

Detection

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 5/ 56

App. Specific FT

Motivation

Motivation

Generality can prevent Efficiency

Specific solutions exploit more capability, have more
opportunity to extract efficiency

Naturally Fault Tolerant Applications

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 6/ 56

App. Specific FT

Outline

1 Application-specific fault-tolerance techniques (45mn)
Fault-Tolerant Middleware
Bags of tasks
Iterative algorithms and fixed-point convergence
ABFT for Linear Algebra applications
Composite approach: ABFT & Checkpointing

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 7/ 56

App. Specific FT

HPC – MPI

HPC

Most popular middleware for multi-node programming in
HPC: Message Passing Interface (+Open MP +pthread +...)

Fault Tolerance in MPI:

[...] it is the job of the implementor of the MPI
subsystem to insulate the user from this unreliability,
or to reflect unrecoverable errors as failures.
Whenever possible, such failures will be reflected as
errors in the relevant communication call. Similarly,
MPI itself provides no mechanisms for handling
processor failures.

– MPI Standard 3.0, p. 20, l. 36:39

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 8/ 56

App. Specific FT

HPC – MPI

HPC

Most popular middleware for multi-node programming in
HPC: Message Passing Interface (+Open MP +pthread +...)

Fault Tolerance in MPI:
This document does not specify the state of a
computation after an erroneous MPI call has
occurred.

– MPI Standard 3.0, p. 21, l. 24:25

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 8/ 56

App. Specific FT

HPC – MPI

MPI Implementations

Open MPI (http://www.open-mpi.org)

On failure detection, the runtime system kills all processes
trunk: error is never reported to the MPI processes.
ft-branch: the error is reported, MPI might be partly usable.

MPICH (http://www.mcs.anl.gov/mpi/mpich/)

Default: on failure detection, the runtime kills all processes.
Can be de-activated by a runtime switch
Errors might be reported to MPI processes in that case. MPI
might be partly usable.

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 9/ 56

http://www.open-mpi.org
http://www.mcs.anl.gov/mpi/mpich/

App. Specific FT

FT Middleware in HPC

Not MPI. Sockets, PVM... CCI?
http://www.olcf.ornl.gov/center-projects/

common-communication-interface/ UCCS?

FT-MPI: http://icl.cs.utk.edu/harness/, 2003

MPI-Next-FT proposal (Open MPI, MPICH): ULFM

User-Level Failure Mitigation
http://fault-tolerance.org/ulfm/

Checkpoint on Failures: the rejuvenation in HPC

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 10/ 56

http://www.olcf.ornl.gov/center-projects/common-communication-interface/
http://www.olcf.ornl.gov/center-projects/common-communication-interface/
http://icl.cs.utk.edu/harness/
http://fault-tolerance.org/ulfm/

App. Specific FT

MPI-Next-FT proposal: ULFM

Goal

Resume Communication Capability for MPI (and nothing more)

Failure Reporting

Failure notification propagation / Distributed State
reconciliation

=⇒ In the past, these operations have often been merged
=⇒ this incurs high failure free overheads

ULFM splits these steps and gives control to the user

Recovery

Termination

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 11/ 56

App. Specific FT

MPI-Next-FT proposal: ULFM

Goal

Resume Communication Capability for MPI (and nothing more)

Error reporting indicates impossibility to carry an operation

State of MPI is unchanged for operations that can continue
(i.e. if they do not involve a dead process)

Errors are non uniformly returned

(Otherwise, synchronizing semantic is altered drastically with
high performance impact)

New APIs

REVOKE allows to resolve non-uniform error status

SHRINK allows to rebuild error-free communicators

AGREE allows to quit a communication pattern knowing it is
fully complete

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 12/ 56

App. Specific FT

MPI-Next-FT proposal: ULFM

Errors are visible only for operations that
cannot complete

Error Reporting

Operations that cannot complete return

ERR PROC FAILED, or ERR PENDING if
appropriate
State of MPI Objects is unchanged
(communicators etc.)
Repeating the same operation has the
same outcome

Operations that can be completed return
MPI SUCCESS

point to point operations between
non-failed ranks can continue

Errors are visible only for
operations that can’t complete
•  Operations that can’t complete return

ERR_PROC_FAILED
•  State of MPI objects unchanged

(communicators, etc)
•  Repeating the same operation has the same

outcome
•  Operations that can be completed

return MPI_SUCCESS
•  Pt-2-pt operations between non failed ranks

can continue

S(1)
PF

tim
e

R(2)
R(1)

R(2)

S(2)

S(3)

S
R(0)
S

PF

S(0)
S

S
S(2)

R(3)
S

S

S
S

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 13/ 56

App. Specific FT

MPI-Next-FT proposal: ULFM

Inconsistent Global State and Resolution

Error Reporting

Operations that can’t complete return

ERR PROC FAILED, or ERR PENDING if
appropriate

Operations that can be completed return
MPI SUCCESS

Local semantic is respected (buffer
content is defined), this does not
indicate success at other ranks.
New constructs
MPI Comm Revoke/MPI Comm shrink

are a base to resolve inconsistencies
introduced by failure

Incoherent global state and
resolution
•  Operations that can’t complete return

ERR_PROC_FAILED
•  Operations that can be completed

return MPI_SUCCESS
•  local semantic is respected (that is buffer

content is defined), it does not indicate
success at other ranks!

•  New constructs Comm_Revoke resolves
inconsistencies introduced by failures

Bcast
S S PF

Bcast
Revoke

R R

Shrink

Bcast
S S S

tim
e

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 14/ 56

App. Specific FT

MPI-Next-FT proposal: ULFM

Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex
communication pattern that employs both point-to-point and collective
operations. Its failure free performance is unchanged whether it is deployed
with ULFM or normal Open MPI.

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators.
Point-to-point operations can continue undisturbed between
non-faulty processes. ULFM imposes no recovery cost on simple
communication patterns that can proceed despite failures.

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable
performance penalty. In ULFM, errors are raised only at ranks where
an operation is disrupted; other ranks may still complete their
operations. A process can use MPI_[Comm,Win,File]_revoke to
propagate an error notification on the entire group, and could, for
example, interrupt other ranks to join a coordinated recovery.

COLLECTIVE OPERATIONS

Allowing collective operations to operate on damaged MPI objects
(Communicators, RMA windows or Files) would incur unacceptable
overhead. The MPI_Comm_shrink routine builds a replacement
communicator, excluding failed processes, which can be used to
resume collective communications, spawn replacement processes,
and rebuild RMA Windows and Files.

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

P1

P2

P3

Pn

Bcast

Bcast

Shrink

Bcast

B
A

N
D

W
ID

T
H

 (
G

b
it

/s
)

MESSAGE SIZE (Bytes)

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

Open MPI
FT Open MPI (w/failure at rank 3)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

L
A

T
E

N
C

Y
 (

u
s
)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 4 16 64 256 1K

-1%

-0.5%

+0%

+0.5%

+1%

8 16 32 64 128 256 512

D
IF

F
E

R
E

N
C

E
 I
N

 R
U

N
N

IN
G

 T
IM

E

NUMBER OF PROCESSES

Sequoia AMG Performance with Fault Tolerance

N
o

n
-F

T
 i
s

 f
a

s
te

r
U

L
F

M
 i
s

 f
a

s
te

r

OPEN MPI ULFM IMPLEMENTATION PERFORMANCE

Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex
communication pattern that employs both point-to-point and collective
operations. Its failure free performance is unchanged whether it is deployed
with ULFM or normal Open MPI.

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators.
Point-to-point operations can continue undisturbed between
non-faulty processes. ULFM imposes no recovery cost on simple
communication patterns that can proceed despite failures.

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable
performance penalty. In ULFM, errors are raised only at ranks where
an operation is disrupted; other ranks may still complete their
operations. A process can use MPI_[Comm,Win,File]_revoke to
propagate an error notification on the entire group, and could, for
example, interrupt other ranks to join a coordinated recovery.

COLLECTIVE OPERATIONS

Allowing collective operations to operate on damaged MPI objects
(Communicators, RMA windows or Files) would incur unacceptable
overhead. The MPI_Comm_shrink routine builds a replacement
communicator, excluding failed processes, which can be used to
resume collective communications, spawn replacement processes,
and rebuild RMA Windows and Files.

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

P1

P2

P3

Pn

Bcast

Bcast

Shrink

Bcast

B
A

N
D

W
ID

T
H

 (
G

b
it

/s
)

MESSAGE SIZE (Bytes)

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

Open MPI
FT Open MPI (w/failure at rank 3)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

L
A

T
E

N
C

Y
 (

u
s
)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 4 16 64 256 1K

-1%

-0.5%

+0%

+0.5%

+1%

8 16 32 64 128 256 512

D
IF

F
E

R
E

N
C

E
 I
N

 R
U

N
N

IN
G

 T
IM

E

NUMBER OF PROCESSES

Sequoia AMG Performance with Fault Tolerance

N
o

n
-F

T
 i
s
 f

a
s
te

r
U

L
F

M
 i
s
 f

a
s
te

r

OPEN MPI ULFM IMPLEMENTATION PERFORMANCE

Open MPI - ULFM support

Branch of Open MPI (www.open-mpi.org)

Maintained on bitbucket:
https://bitbucket.org/icldistcomp/ulfm

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 15/ 56

www.open-mpi.org
https://bitbucket.org/icldistcomp/ulfm

App. Specific FT

Outline

1 Application-specific fault-tolerance techniques (45mn)
Fault-Tolerant Middleware
Bags of tasks
Iterative algorithms and fixed-point convergence
ABFT for Linear Algebra applications
Composite approach: ABFT & Checkpointing

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 16/ 56

App. Specific FT

Master/Worker
Example: Master-worker

MPI_Irecv_init(comm, ANY_SOURCE, work_done)

While(more_work && workers) {
 submit_work(worker[i++ % workers])
 rc = MPI_Test(work_done)
 if(MPI_SUCCESS != RC)
 {
 MPI_COMM_FAILURE_ACK(comm)
 MPI_COMM_FAILURE_GET_ACKED(comm, i)
 worker[i] = worker[workers--]
 resubmit_work(worker[i], i)
 }
}

a
b

c

d

b

e

Master

Worker0
Worker1
Worker2

Worker

while(1) {

MPI_Recv(master, &work);

if(work == STOP_CMD)

break;

process_work(work, &result);

MPI_Send(master, result);

}

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 17/ 56

App. Specific FT

Master/Worker

Master

for(i = 0; i < active_workers; i++) {

new_work = select_work();

MPI_Send(i, new_work);

}

while(active_workers > 0) {

MPI_Wait(MPI_ANY_SOURCE, &worker);

MPI_Recv(worker, &work);

work_completed(work);

if(work_tocomplete() == 0) break;

new_work = select_work();

if(new_work) MPI_Send(worker, new_work);

}

for(i = 0; i < active_workers; i++) {

MPI_Send(i, STOP_CMD);

}

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 18/ 56

App. Specific FT

FT Master

Fault Tolerant Master

/* Non-FT preamble */

for(i = 0; i < active_workers; i++) {

new_work = select_work();

rc = MPI_Send(i, new_work);

if(MPI_SUCCESS != rc) MPI_Abort(MPI_COMM_WORLD);

}

/* FT Section */

<...>

/* Non-FT epilogue */

for(i = 0; i < active_workers; i++) {

rc = MPI_Send(i, STOP_CMD);

if(MPI_SUCCESS != rc) MPI_Abort(MPI_COMM_WORLD);

}

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 19/ 56

App. Specific FT

FT Master

Fault Tolerant Master

while(active_workers > 0) { /* FT Section */

rc = MPI_Wait(MPI_ANY_SOURCE, &worker);

switch(rc) {

case MPI_SUCCESS: /* Received a result */

break;

case MPI_ERR_PENDING:

case MPI_ERR_PROC_FAILED: /* Worker died */

<...>

continue;

break;

default:

/* Unknown error, not related to failure */

MPI_Abort(MPI_COMM_WORLD);

}

<...>

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 20/ 56

App. Specific FT

FT Master

Fault Tolerant Master

case MPI_ERR_PENDING:

case MPI_ERR_PROC_FAILED:

/* A worker died */

MPI_Comm_failure_ack(comm);

MPI_Comm_failure_get_acked(comm, &group);

MPI_Group_difference(group, failed,

&newfailed);

MPI_Group_size(newfailed, &ns);

active_workers -= ns;

/* Iterate on newfailed to mark the work

* as not submitted */

failed = group;

continue;

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 21/ 56

App. Specific FT

FT Master

Fault Tolerant Master

rc = MPI_Recv(worker, &work);

switch(rc) {

/* Code similar to the MPI_Wait code */

<...>

}

work_completed(work);

if(work_tocomplete() == 0) break;

new_work = select_work();

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 22/ 56

App. Specific FT

FT Master

Fault Tolerant Master

if(new_work) {

rc = MPI_Send(worker, new_work);

switch(rc) {

/* Code similar to the MPI_Wait code */

/* Re-submit the work somewhere */

<...>

}

}

} /* End of while(active_workers > 0) */

MPI_Group_difference(comm, failed, &living);

/* Iterate on living */

for(i = 0; i < active_workers; i++) {

MPI_Send(rank_of(comm, living, i), STOP_CMD);

}

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 23/ 56

App. Specific FT

Outline

1 Application-specific fault-tolerance techniques (45mn)
Fault-Tolerant Middleware
Bags of tasks
Iterative algorithms and fixed-point convergence
ABFT for Linear Algebra applications
Composite approach: ABFT & Checkpointing

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 24/ 56

App. Specific FT

Iterative Algorithm

while(gnorm > epsilon) {

iterate();

compute_norm(&lnorm);

rc = MPI_Allreduce(&lnorm, &gnorm, 1,

MPI_DOUBLE, MPI_MAX, comm);

if((MPI_ERR_PROC_FAILED == rc) ||

(MPI_ERR_COMM_REVOKED == rc) ||

(gnorm <= epsilon)) {

if(MPI_ERR_PROC_FAILED == rc)

MPI_Comm_revoke(comm);

allsuceeded = (rc == MPI_SUCCESS);

MPI_Comm_agree(comm, &allsuceeded);

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 25/ 56

App. Specific FT

Iterative Algorithm

if(!allsucceeded) {

MPI_Comm_revoke(comm);

MPI_Comm_shrink(comm, &comm2);

MPI_Comm_free(comm);

comm = comm2;

gnorm = epsilon + 1.0;

}

}

}

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 26/ 56

App. Specific FT

Outline

1 Application-specific fault-tolerance techniques (45mn)
Fault-Tolerant Middleware
Bags of tasks
Iterative algorithms and fixed-point convergence
ABFT for Linear Algebra applications
Composite approach: ABFT & Checkpointing

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 27/ 56

App. Specific FT

Example: block LU/QR factorization

A A'

U

L

U

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = b, then U · x = y

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 28/ 56

App. Specific FT

Example: block LU/QR factorization

A A'

U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = b, then U · x = y

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 28/ 56

App. Specific FT

Example: block LU/QR factorization

L

U U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

L

U

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = b, then U · x = y

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 28/ 56

App. Specific FT

Example: block LU/QR factorization

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2
1 3
0 2
1 3
0 2
1 3
0 2
1 3

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2
1 3
0 2
1 3
0 2
1 3
0 2
1 3

Failure of rank 2

2D Block Cyclic Distribution (here 2× 3)

A single failure ⇒ many data lost

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 28/ 56

App. Specific FT

Algorithm Based Fault Tolerant LU decomposition

M

P
mb

nb
Q

N
< 2N/Q + nb

+
+
+

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

Checksum: invertible operation on the data of the row /
column

Checksum blocks are doubled, to allow recovery when data
and checksum are lost together

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 29/ 56

App. Specific FT

Algorithm Based Fault Tolerant LU decomposition

M

P mb

nb
Q

N
N/Q

+
+
+

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

Checksum: invertible operation on the data of the row /
column

Checksum replication can be avoided by dedicating computing
resources to checksum storage

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 29/ 56

App. Specific FT

Algorithm Based Fault Tolerant LU decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

GETF2 GEMM

TRSM

Checksum: invertible operation on the data of the row /
column

Idea of ABFT: applying the operation on data and checksum
preserves the checksum properties

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 29/ 56

App. Specific FT

Algorithm Based Fault Tolerant LU decomposition

+

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

Checksum: invertible operation on the data of the row /
column

For the part of the data that is not updated this way, the
checksum must be re-calculated

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 29/ 56

App. Specific FT

Algorithm Based Fault Tolerant LU decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

GETF2 GEMM

TRSM

Checksum: invertible operation on the data of the row /
column

To avoid slowing down all processors and panel operation,
group checksum updates every q block columns

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 29/ 56

App. Specific FT

Algorithm Based Fault Tolerant LU decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

GETF2 GEMM

TRSM

Checksum: invertible operation on the data of the row /
column

To avoid slowing down all processors and panel operation,
group checksum updates every q block columns

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 29/ 56

App. Specific FT

Algorithm Based Fault Tolerant LU decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

GETF2 GEMM

TRSM

Checksum: invertible operation on the data of the row /
column

To avoid slowing down all processors and panel operation,
group checksum updates every q block columns

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 29/ 56

App. Specific FT

Algorithm Based Fault Tolerant LU decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

+

Checksum: invertible operation on the data of the row /
column

Then, update the missing coverage. Keep checkpoint block
column to cover failures during that time

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 29/ 56

App. Specific FT

Algorithm Based Fault Tolerant LU decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

-
-
-

In case of failure, conclude the operation, then

Missing Data = Checksum - Sum(Existing Data) s

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 30/ 56

App. Specific FT

Algorithm Based Fault Tolerant LU decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

+
+
+

In case of failure, conclude the operation, then

Missing Checksum = Sum(Existing Data)s

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 30/ 56

App. Specific FT

ABFT LU decomposition: implementation

MPI Implementation

PBLAS-based: need to provide “Fault-Aware” version of the
library

Cannot enter recovery state at any point in time: need to
complete ongoing operations despite failures

Recovery starts by defining the position of each process in the
factorization and bring them all in a consistent state
(checksum property holds)

Need to test the return code of each and every MPI-related
call

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 31/ 56

App. Specific FT

ABFT LU decomposition: performance

As supercomputers grow ever larger in scale, the Mean Time to Failure becomes shorter and shorter, making the complete and
successful execution of complex applications more and more difficult. FT-LA delivers a new approach, utilizing Algorithm-Based
Fault Tolerance (ABFT), to help factorization algorithms survive fail-stop failures. The FT-LA software package extends
ScaLAPACK with ABFT routines, and in sharp contrast with legacy checkpoint-based approaches, ABFT does not incur I/O overhead,
and promises a much more scalable protection scheme.

ABFT THE IDEA

Cost of ABFT comes only from
extra flops (to update checksums)
and extra storage

Cost decreases with machine
scale (divided by Q when using
PxQ processes)

PROTECTION

Matrix protected by block row checksum

The algorithm updates both the
trailing matrix AND the checksums

RECOVERY

Missing blocks reconstructed by inverting
the checksum operation

FUNCTIONALITY COVERAGE

Linear Systems of Equations

Least Squares

Cholesky, LU

QR (with protection of the upper and lower factors)

FEATURES

WORK IN PROGRESS

Covering four precisions: double complex, single complex, double real, single real (ZCDS)

Deploys on MPI FT draft (ULFM), or with “Checkpoint-on-failure”

Allows toleration of permanent crashes

Hessenber Reduction, Soft (silent) Errors

Process grid: p x q
F: simultaneous failures tolerated

Protection against 2 faults on
192x192 processes => 1% overhead

Usually F << q;
Overheads in F/q

Protection cost is inversely
proportional to machine scale!

Computation

Memory

Flops for the checksum update

Matrix is extended with
2F columns every q columns

FIND OUT MORE AT http://icl.cs.utk.edu/ft-la

 0

 7

 14

 21

 28

 35

6x6; 20k
12x12; 40k

24x24; 80k
48x48; 160k

96x96; 320k
192x192; 640k 0

 10

 20

 30

 40

 50

Re
la

tiv
e

Ov
er

he
ad

 (%
)

Pe
rfo

rm
an

ce
 (T

Fl
op

/s
)

#Processors (PxQ grid); Matrix size (N)

ScaLAPACK PDGETRF
FT-PDGETRF (no error)

FT-PDGETRF (w/1 recovery)
Overhead: FT-PDGETRF (no error)

Overhead: FT-PDGETRF (w/1 recovery)

U

L

C’

GETF2 GEMM

TRSM

A’

L

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

C

PERFORMANCE ON KRAKEN

MPI-Next ULFM Performance

Open MPI with ULFM; Kraken supercomputer;

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 32/ 56

App. Specific FT

ABFT LU decomposition: implementation

?

ABFT
Recovery

Checkpoint on Failure - MPI Implementation

FT-MPI / MPI-Next FT: not easily available on large
machines

Checkpoint on Failure = workaround

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 33/ 56

App. Specific FT

ABFT QR decomposition: performance

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

20k 40k 60k 80k 100k

P
e

rf
o

rm
a

n
c

e
 (

T
fl

o
p

s
/s

)

Matrix Size (N)

ScaLAPACK QR
CoF-QR (w/o failure)
CoF-QR (w/1 failure)

Fig. 2. ABFT QR and
one CoF recovery on
Kraken (Lustre).

 0

 100

 200

 300

 400

 500

 600

 700

 800

10k 20k 30k 40k 50k

P
e

rf
o

rm
a

n
c

e
 (

G
fl

o
p

s
/s

)

Matrix Size (N)

ScaLAPACK QR
CoF-QR (w/o failure)
CoF-QR (w/1 failure)

Fig. 3. ABFT QR and
one CoF recovery on
Dancer (local SSD).

 0

 1

 2

 3

 4

 5

 6

 7

20k 25k 30k 35k 40k 45k 50k

A
p

p
li

c
a

ti
o

n
 T

im
e

 S
h

a
re

 (
%

)

Matrix Size (N)

Load Checkpoint
Dump Checkpoint

ABFT Recovery

Fig. 4. Time breakdown
of one CoF recovery on
Dancer (local SSD).

5.3 Checkpoint-on-Failure QR Performance

Supercomputer Performance: Figure 2 presents the performance on the Kraken
supercomputer. The process grid is 24⇥24 and the block size is 100. The CoF-QR
(no failure) presents the performance of the CoF QR implementation, in a fault-
free execution; it is noteworthy, that when there are no failures, the performance
is exactly identical to the performance of the unmodified FT-QR implementa-
tion. The CoF-QR (with failure) curves present the performance when a failure
is injected after the first step of the PDLARFB kernel. The performance of the
non-fault tolerant ScaLAPACK QR is also presented for reference.

Without failures, the performance overhead compared to the regular ScaLA-
PACK is caused by the extra computation to maintain the checksums inherent
to the ABFT algorithm [12]; this extra computation is unchanged between CoF-
QR and FT-QR. Only on runs where a failure happened do the CoF protocols
undergoe the supplementary overhead of storing and reloading checkpoints. How-
ever, the performance of the CoF-QR remains very close to the no-failure case.
For instance, at matrix size N=100,000, CoF-QR still achieves 2.86 Tflop/s after
recovering from a failure, which is 90% of the performance of the non-fault toler-
ant ScaLAPACK QR. This demonstrates that the CoF protocol enables e�cient,
practical recovery schemes on supercomputers.

Impact of Local Checkpoint Storage: Figure 3 presents the performance of the
CoF-QR implementation on the Dancer cluster with a 8 ⇥ 16 process grid. Al-
though a smaller test platform, the Dancer cluster features local storage on nodes
and a variety of performance analysis tools unavailable on Kraken. As expected
(see [12]), the ABFT method has a higher relative cost on this smaller machine.
Compared to the Kraken platform, the relative cost of CoF failure recovery is
smaller on Dancer. The CoF protocol incurs disk accesses to store and load
checkpoints when a failure hits, hence the recovery overhead depends on I/O
performance. By breaking down the relative cost of each recovery step in CoF,
Figure 4 shows that checkpoint saving and loading only take a small percentage
of the total run-time, thanks to the availability of solid state disks on every node.
Since checkpoint reloading immediately follows checkpointing, the OS cache sat-
isfy most disk access, resulting in high I/O performance. For matrices larger than

Checkpoint on Failure - MPI Performance

Open MPI; Kraken supercomputer;

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 34/ 56

App. Specific FT

Outline

1 Application-specific fault-tolerance techniques (45mn)
Fault-Tolerant Middleware
Bags of tasks
Iterative algorithms and fixed-point convergence
ABFT for Linear Algebra applications
Composite approach: ABFT & Checkpointing

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 35/ 56

App. Specific FT

Fault Tolerance Techniques

General Techniques

Replication

Rollback Recovery

Coordinated Checkpointing
Uncoordinated Checkpointing &
Message Logging
Hierarchical Checkpointing

Application-Specific Techniques

Algorithm Based Fault Tolerance
(ABFT)

Iterative Convergence

Approximated Computation

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 36/ 56

App. Specific FT

Application

Typical Application

f o r (an insanenumber) {
/∗ E x t r a c t data from
∗ s i m u l a t i o n , f i l l up
∗ m a t r i x ∗/

sim2mat () ;

/∗ F a c t o r i z e matr ix ,
∗ S o l v e ∗/

d g e q r f () ;
d s o l v e () ;

/∗ Update s i m u l a t i o n
∗ w i t h r e s u l t v e c t o r ∗/

vec2s im () ;
}

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Characteristics

, Large part of (total)
computation spent in
factorization/solve

Between LA operations:

/ use resulting vector / matrix
with operations that do not
preserve the checksums on
the data

/ modify data not covered by
ABFT algorithms

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 37/ 56

App. Specific FT

Application

Typical Application

f o r (an insanenumber) {
/∗ E x t r a c t data from
∗ s i m u l a t i o n , f i l l up
∗ m a t r i x ∗/

sim2mat () ;

/∗ F a c t o r i z e matr ix ,
∗ S o l v e ∗/

d g e q r f () ;
d s o l v e () ;

/∗ Update s i m u l a t i o n
∗ w i t h r e s u l t v e c t o r ∗/

vec2s im () ;
}

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Characteristics

, Large part of (total)
computation spent in
factorization/solve

Between LA operations:

/ use resulting vector / matrix
with operations that do not
preserve the checksums on
the data

/ modify data not covered by
ABFT algorithms

Goodbye ABFT?!

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 37/ 56

App. Specific FT

Application

Typical Application

f o r (an insanenumber) {
/∗ E x t r a c t data from
∗ s i m u l a t i o n , f i l l up
∗ m a t r i x ∗/

sim2mat () ;

/∗ F a c t o r i z e matr ix ,
∗ S o l v e ∗/

d g e q r f () ;
d s o l v e () ;

/∗ Update s i m u l a t i o n
∗ w i t h r e s u l t v e c t o r ∗/

vec2s im () ;
}

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Characteristics

, Large part of (total)
computation spent in
factorization/solve

Between LA operations:

/ use resulting vector / matrix
with operations that do not
preserve the checksums on
the data

/ modify data not covered by
ABFT algorithms

Problem Statement

How to use fault tolerant operations(∗) within a
non-fault tolerant(∗∗) application?(∗∗∗)

(*) ABFT, or other application-specific FT
(**) Or within an application that does not have the same kind of FT

(***) And keep the application globally fault tolerant...

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 37/ 56

App. Specific FT

ABFT&PeriodicCkpt

ABFT&PeriodicCkpt: no failure

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Periodic
Checkpoint

Split
Forced

Checkpoints

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 38/ 56

App. Specific FT

ABFT&PeriodicCkpt

ABFT&PeriodicCkpt: failure during Library phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during LIBRARY)

Rollback
(partial)

Recovery

ABFT
Recovery

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 39/ 56

App. Specific FT

ABFT&PeriodicCkpt

ABFT&PeriodicCkpt: failure during General phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during GENERAL)

Rollback
(fulll)

Recovery

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 40/ 56

App. Specific FT

ABFT&PeriodicCkpt: Optimizations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

ABFT&P
ERIO

DICC
KPT

ABFT&PeriodicCkpt: Optimizations

If the duration of the General phase is too small: don’t add
checkpoints

If the duration of the Library phase is too small: don’t do
ABFT recovery, remain in General mode

this assumes a performance model for the library call

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 41/ 56

App. Specific FT

ABFT&PeriodicCkpt: Optimizations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

ABFT&P
ERIO

DICC
KPT

GENERAL
Checkpoint Interval

ABFT&PeriodicCkpt: Optimizations

If the duration of the General phase is too small: don’t add
checkpoints

If the duration of the Library phase is too small: don’t do
ABFT recovery, remain in General mode

this assumes a performance model for the library call

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 41/ 56

App. Specific FT

A few notations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

T0

TG TL

PG

Times, Periods

T0: Duration of an Epoch (without FT)
TL = αT0: Time spent in the Library phase
TG = (1− α)T0: Time spent in the General phase
PG : Periodic Checkpointing Period
Tff,Tff

G ,T
ff
L : “Fault Free” times

t lost
G , t lost

L : Lost time (recovery overhreads)
T final
G ,T final

L : Total times (with faults)

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 42/ 56

App. Specific FT

A few notations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

C CLCL

Costs

CL = ρC : time to take a checkpoint of the Library data set
CL̄ = (1− ρ)C : time to take a checkpoint of the General data
set
R,RL̄: time to load a full / General data set checkpoint
D: down time (time to allocate a new machine / reboot)
ReconsABFT: time to apply the ABFT recovery
φ: Slowdown factor on the Library phase, when applying ABFT

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 42/ 56

App. Specific FT

General phase, fault free waste

General phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Periodic
Checkpoint

Split
Forced

Checkpoints

Without Failures

Tff
G =

{
TG + CL̄ if TG < PG
TG

PG−C × PG if TG ≥ PG

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 56

App. Specific FT

Library phase, fault free waste

Library phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Periodic
Checkpoint

Split
Forced

Checkpoints

Without Failures

Tff
L = φ× TL + CL

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 44/ 56

App. Specific FT

General phase, failure overhead

General phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during GENERAL)

Rollback
(fulll)

Recovery

Failure Overhead

t lost
G =

{
D + R +

Tff
G

2 if TG < PG

D + R + PG
2 if TG ≥ PG

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 45/ 56

App. Specific FT

Library phase, failure overhead

Library phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during LIBRARY)

Rollback
(partial)

Recovery

ABFT
Recovery

Failure Overhead

t lost
L = D + RL̄ + ReconsABFT

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 46/ 56

App. Specific FT

Overall

Overall

Time (with overheads) of Library phase is constant (in PG):

T final
L =

1

1− D+RL̄+ReconsABFT

µ

× (α× TL + CL)

Time (with overehads) of General phase accepts two cases:

T final
G =

1

1−D+R+
TG +C

L̄
2

µ

× (TG + CL) if TG < PG

TG

(1− C
PG

)(1−D+R+
PG

2
µ

)

if TG ≥ PG

Which is minimal in the second case, if

PG =
√

2C (µ− D − R)

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 47/ 56

App. Specific FT

Waste

From the previous, we derive the waste, which is obtained by

Waste = 1− T0

T final
G + T final

L

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 48/ 56

App. Specific FT

Toward Exascale, and Beyond!

Let’s think at scale

Number of components ↗⇒ MTBF ↘
Number of components ↗⇒ Problem Size ↗
Problem Size ↗⇒

Computation Time spent in Library phase ↗

, ABFT&PeriodicCkpt should perform better with scale

ĳ/ By how much?

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 49/ 56

App. Specific FT

Competitors

FT algorithms compared

PeriodicCkpt Basic periodic checkpointing

Bi-PeriodicCkpt Applies incremental checkpointing techniques to
save only the library data during the library phase.

ABFT&PeriodicCkpt The algorithm described above

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 50/ 56

App. Specific FT

Weak Scale #1

Weak Scale Scenario #1

Number of components, n, increase

Memory per component remains constant

Problem Size increases in O(
√
n) (e.g. matrix operation)

µ at n = 105: 1 day, is in O(1
n)

C (=R) at n = 105, is 1 minute, is in O(n)

α is constant at 0.8, as is ρ.

(both Library and General phase increase in time at the
same speed)

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 51/ 56

App. Specific FT

Weak Scale #1

 0

 10

 20

 30

 40

#
 F

a
u

lt
s Nb Faults PeriodicCkpt

Nb Faults Bi-PeriodicCkpt
Nb Faults ABFT PeriodicCkpt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1k 10k 100k 1M

W
a

s
te

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 52/ 56

App. Specific FT

Weak Scale #2

Weak Scale Scenario #2

Number of components, n, increase

Memory per component remains constant

Problem Size increases in O(
√
n) (e.g. matrix operation)

µ at n = 105: 1 day, is O(1
n)

C (=R) at n = 105, is 1 minute, is in O(n)

ρ remains constant at 0.8, but Library phase is O(n3) when
General phases progresses in O(n2) (α is 0.8 at n = 105

nodes).

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 53/ 56

App. Specific FT

Weak Scale #2

 0

 10

 20

 30

 40

#
 F

a
u
lt
s Nb Faults PeriodicCkpt

Nb Faults Bi-PeriodicCkpt
Nb Faults ABFT PeriodicCkpt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1k 10k 100k 1M
0.00

0.12

0.25

0.38

0.50

0.62

0.75

0.88

1.00

W
a
s
te

R
a
ti
o
 o

f
ti
m

e
 s

p
e
n
t
in

 t
h
e
 A

B
F

T
 r

o
u
ti
n
e

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt
ABFT Ratio

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 54/ 56

App. Specific FT

Weak Scale #3

Weak Scale Scenario #3

Number of components, n, increase

Memory per component remains constant

Problem Size increases in O(
√
n) (e.g. matrix operation)

µ at n = 105: 1 day, is O(1
n)

C (=R) at n = 105, is 1 minute, stays independent of n
(O(1))

ρ remains constant at 0.8, but Library phase is O(n3) when
General phases progresses in O(n2) (α is 0.8 at n = 105

nodes).

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 55/ 56

App. Specific FT

Weak Scale #3

 0

 2

 4

 6

#
 F

a
u

lts

Nb Faults PeriodicCkpt
Nb Faults Bi-PeriodicCkpt

Nb Faults ABFT PeriodicCkpt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1k
α = 0.55

10k
α = 0.8

100k
α = 0.92

1M
α = 0.975

W
a

st
e

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 56/ 56

	Application-specific fault-tolerance techniques (45mn)
	Fault-Tolerant Middleware
	Bags of tasks
	Iterative algorithms and fixed-point convergence
	ABFT for Linear Algebra applications
	Composite approach: ABFT & Checkpointing

