
J. Parallel Distrib. Comput. 74 (2014) 2048–2064
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Checkpointing algorithms and fault prediction

Guillaume Aupy a,d,∗, Yves Robert a,c,d, Frédéric Vivien b,d, Dounia Zaidouni b,d
a École Normale Supérieure de Lyon, France
b INRIA, France
c University of Tennessee Knoxville, USA
d LIP - Université de Lyon - CNRS : UMR5668 - INRIA - École Normale Supérieure de Lyon- Université Claude Bernard - Lyon, France

h i g h l i g h t s

• We have improved the text in many places, based upon all the suggestions.
• We have added a new set of simulations based upon actual failure traces.
• We have added a new set of simulations to deal with inaccurate prediction dates.

a r t i c l e i n f o

Article history:
Received 20 November 2012
Received in revised form
9 October 2013
Accepted 31 October 2013
Available online 7 November 2013

Keywords:
Algorithms
Checkpoint
Prediction
Fault-tolerance
Resilience
Exascale

a b s t r a c t

This paper dealswith the impact of fault prediction techniques on checkpointing strategies.We extend the
classical first-order analysis of Young and Daly in the presence of a fault prediction system, characterized
by its recall and its precision. In this framework, we provide optimal algorithms to decide whether and
when to take predictions into account, andwe derive the optimal value of the checkpointing period. These
results allow us to analytically assess the key parameters that impact the performance of fault predictors
at very large scale.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Nowadays, the most powerful High Performance Computing
systems experience about one fault per day [26,20]. Consider
the relative slopes describing the evolution of the reliability of
individual components on one side, and the evolution of the
number of components on the other side: the reliability of an
entire platform is expected to decrease, due to probabilistic
amplification, as its number of components increases. Therefore,
applications running on large computing systems have to cope
with platform faults. There are two main approaches. On the one
hand, applications can use fault-tolerance mechanisms such as
checkpoint and rollback in order to become resilient. On the other
hand, system administrators can try to predict where and when

∗ Correspondence to: Laboratoire LIP, ENS Lyon, 69364 Lyon Cedex 07, France.
E-mail addresses: guillaume.aupy@ens-lyon.org, guillaume.aupy@ens-lyon.fr

(G. Aupy).

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.10.010
faults will strike. Although considerable research has been devoted
to fault predictors [6–8,14,24,25], no predictor will ever be able to
predict every fault. Therefore, fault predictors will have to be used
in conjunction with fault-tolerance mechanisms.

In this paper, we assess the impact of fault prediction tech-
niques on checkpointing strategies. We assume to have jobs ex-
ecuting on a platform subject to faults, and we let µ be the Mean
Time Between Faults (MTBF) of the platform. In the absence of fault
prediction, the standard approach is to take periodic checkpoints,
each of length C , every period of duration T . In steady-state utiliza-
tion of the platform, the value Topt of T thatminimizes the expected
waste of resource usage due to checkpointing is approximated as
Topt =

√
2µC + C , or Topt =

√
2(µ + R)C + C (where R is the du-

ration of the recovery). The former expression is the well-known
Young formula [23], while the latter is due to Daly [4].

Now, when some fault prediction mechanism is available,
can we compute a better checkpointing period to decrease the
expected waste? And to what extent? Critical parameters that
characterize a fault prediction system are its recall r , which is the

http://dx.doi.org/10.1016/j.jpdc.2013.10.010
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.10.010&domain=pdf
mailto:guillaume.aupy@ens-lyon.org
mailto:guillaume.aupy@ens-lyon.fr
http://dx.doi.org/10.1016/j.jpdc.2013.10.010


G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064 2049
fraction of faults that are indeed predicted, and its precision p,
which is the fraction of predictions that are correct (i.e., correspond
to actual faults). The major objective of this paper is to refine
the expression of the expected waste as a function of these new
parameters, and to design efficient checkpointing policies that
take predictions into account. The key contributions of this paper
are:

• A refined first-order analysis in the absence of fault prediction.
This leads to similar performance to Young [23] and Daly [4]
when faults follow an exponential distribution, and to better
performance when faults follow a Weibull distribution.

• The extension of this analysis to fault predictions, and the
design of new checkpointing policies that takes optimal
decisions on whether and when to take these predictions into
account (or to ignore them).

• For policies where the decision to trust the predictor is taken
with the sameprobability throughout the checkpointing period,
we show that we should always trust the predictor, or never,
depending upon platform and predictor parameters.

• For policies where the decision to trust the predictor is taken
with variable probability during the checkpointing period, we
show that we should change strategy only once in the period,
moving from never trusting the predictor when the prediction
arrives in the beginning of the period, to always trusting the
predictorwhen the prediction arrives later on in the period, and
we determine the optimal break-even point.

• For all policies, we compute the optimal value of the check-
pointing period thereby designing optimal algorithms to mini-
mize the waste when coupling checkpointing with predictions.

• An extensive set of simulations that corroborates all mathemat-
ical derivations. These simulations are based on synthetic fault
traces (for exponential fault distributions, and for more realis-
tic Weibull fault distributions) and on log-based fault traces. In
addition, they include exact prediction dates and uncertainty
intervals for these dates.

The rest of the paper is organized as follows. We first detail
the framework in Section 2. We revisit Young and Daly’s approach
in Section 3. We provide optimal algorithms to account for
predictions in Section 4: we start with simpler policies where
the decision to trust the predictor is taken with the same
probability throughout the checkpointing period (Section 4.1)
before dealing with the most general approach where the decision
to trust the predictor is taken with variable probability during
the checkpointing period (Section 4.2). Section 5 is devoted to
simulations: we first describe the framework (Section 5.1) and
then discuss synthetic and log-based failure traces in Sections 5.2
and 5.3 respectively. We discuss related work in Section 6. Finally,
we provide concluding remarks in Section 7. The main notation
used is listed in Table 1.

2. Framework

2.1. Checkpointing strategy

We consider a platform subject to faults. Our work is agnostic of
the granularity of the platform,whichmay consist either of a single
processor, or of several processors that work concurrently and
use coordinated checkpointing. Checkpoints are taken at regular
intervals, or periods, of length T . We denote by C the duration of a
checkpoint (all checkpoints have same duration). By construction,
wemust enforce that C ≤ T . When a fault strikes the platform, the
application is lacking some resource for a certain period of time
of length D, the downtime. The downtime accounts for software
rejuvenation (i.e., rebooting [12,3]) or for the replacement of the
failed hardware component by a spare one. Then, the application
Table 1
Notation.

p Predictor precision: proportion of true positives among the
number of predicted faults

r Predictor recall: proportion of predicted faults among total
number of faults

q Probability to trust the predictor
MTBF Mean Time Between Faults
N Number of processors in the platform
µ Platform MTBF
µind Individual MTBF
µP Rate of predicted faults
µNP Rate of unpredicted faults
µe Rate of events (predictions or unpredicted faults)
D Downtime
R Recovery time
C Duration of a regular checkpoint
Cp Duration of a proactive checkpoint
T Duration of a period

recovers from the last checkpoint. R denotes the duration of this
recovery time.

2.2. Fault predictor

A fault predictor is amechanism that is able to predict that some
faults will take place, either at a certain point in time, or within
some time-interval window. In this paper, we assume that the
predictor is able to provide exact prediction dates, and to generate
such predictions early enough so that a proactive checkpoint can
indeed be taken before the event.

The accuracy of the fault predictor is characterized by two
quantities, the recall and the precision. The recall r is the fraction of
faults that are predictedwhile the precision p is the fraction of fault
predictions that are correct. Traditionally, one defines three types
of events: (i) True positive events are faults that the predictor has
been able to predict (let TrueP be their number); (ii) False positive
events are fault predictions that did notmaterialize as actual faults
(let FalseP be their number); and (iii) False negative events are faults
that were not predicted (let FalseN be their number). With these
definitions, we have r =

TrueP
TrueP+FalseN

and p =
TrueP

TrueP+FalseP
.

Proactive checkpoints may have a different length Cp than reg-
ular checkpoints of length C . In fact there are many scenarios. On
the one hand, wemaywell have Cp > C in scenarios where regular
checkpoints are taken at time-steps where the application mem-
ory footprint is minimal [11]; in contrast, proactive checkpoints
are taken according to predictions that can take place at arbitrary
instants. On the other hand, we may have Cp < C in other sce-
narios [25], e.g., when the prediction is localized to a particular
resource subset, hence allowing for a smaller volume of check-
pointed data.

To keep full generality,wedealwith two checkpoint sizes in this
paper: C for periodic checkpoints, and Cp for proactive checkpoints
(those taken upon predictions).

In the literature, the lead time is the interval between the date at
which the prediction is made available, and the actual prediction
date. While the lead time is an important parameter, the shape
of its distribution law is irrelevant to the problem: either a fault
is predicted at least Cp seconds in advance, and then one can
checkpoint just in timebefore the fault, or the prediction is useless!
In other words, predictions that come too late should be classified
as unpredicted faults whenever they materialize as actual faults,
leading to a smaller value of the predictor recall.

2.3. Fault rates

The keyparameter isµ, theMTBFof theplatform. If the platform
is made of N components whose individual MTBF is µind, then



2050 G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064
µ =
µind
N . This result is true regardless of the fault distribution

law.1
In addition to µ, the platform MTBF, let µP be the mean time

between predicted events (both true positive and false positive),
and let µNP be the mean time between unpredicted faults (false
negative). Finally, we define the mean time between events as µe
(including all three event types). The relationships between µ, µP,
µNP, and µe are the following:

• Rate of unpredicted faults: 1
µNP

=
1−r
µ

, since 1− r is the fraction
of faults that are unpredicted;

• Rate of predicted faults: r
µ

=
p

µP
, since r is the fraction of faults

that are predicted, and p is the fraction of fault predictions that
are correct;

• Rate of events: 1
µe

=
1

µP
+

1
µNP

, since events are either predic-
tions (true or false), or unpredicted faults.

2.4. Objective: waste minimization

The natural objective is tominimize the expectation of the total
execution time, makespan, of the application. Instead, in order to
ease mathematical derivations, we aim at minimizing the waste.
The waste is the expected percentage of time lost, or ‘‘wasted’’,
during the execution. In other words, the waste is the fraction of
time during which the platform is not doing useful work. This
definitionwas introduced byWingstrom [22]. Obviously, the lower
the waste, the lower the expected makespan, and reciprocally.
Hence the two objectives are strongly related and minimizing one
of them also minimizes the other.

3. Revisiting Daly’s first-order approximation

Young proposed in [23] a ‘‘first order approximation to the
optimum checkpoint interval’’. Young’s formula was later refined
by Daly [4] to take into account the recovery time. We revisit their
analysis using the notion of waste.

Let Timebase be the base time of the application without any
overhead (neither checkpoints nor faults). First, assume a fault-
free execution of the application with periodic checkpointing. In
such an environment, during each period of length T we take a
checkpoint, which lasts for a time C , and only T − C units of work
are executed. Let TimeFF be the execution time of the application in
this setting. Following most works in the literature, we also take a
checkpoint at the end of the execution. The fault-free execution
time TimeFF is equal to the time needed to execute the whole
application, Timebase, plus the time taken by the checkpoints:

TimeFF = Timebase + NckptC (1)

where Nckpt is the number of checkpoints taken. We have

Nckpt =


Timebase
T − C


≈

Timebase
T − C

.

When discarding the ceiling function, we assume that the execu-
tion time is very large with respect to the period or, symmetrically,
that there are many periods during the execution. Plugging back
the (approximated) value Nckpt =

Timebase
T−C , we derive that

TimeFF =
Timebase
T − C

T . (2)

The waste due to checkpointing in a fault-free execution,
WasteFF, is defined as the fraction of the execution time that does

1 For the sake of completeness, we provide a proof of this widely-used result
in Appendix A. To the best of our knowledge, no proof has been published in the
literature yet.
Fig. 1. An execution (top), and its re-ordering (bottom), to illustrate both sources
of waste. Blackened intervals correspond to work destroyed by faults, downtimes,
and recoveries.

not contribute to the progress of the application:

WasteFF =
TimeFF − Timebase

TimeFF

⇔

1 − WasteFF


TimeFF = Timebase. (3)

Combining Eqs. (2) and (3), we get

WasteFF =
C
T

. (4)

Now, let Timefinal denote the expected execution time of the
application in the presence of faults. This execution time can be
divided into two parts: (i) the execution of ‘‘chunks’’ of work of size
T −C followed by their checkpoint; and (ii) the time lost due to the
faults. This decomposition is illustrated by Fig. 1. The first part of
the execution time is equal to TimeFF. Let Nfaults be the number of
faults occurring during the execution, and let Tlost be the average
time lost per fault. Then,

Timefinal = TimeFF + Nfaults × Tlost. (5)

On average, during a time Timefinal, Nfaults =
Timefinal

µ
faults happen.

We need to estimate Tlost. The instants at which periods begin and
at which faults strike are independent. Therefore, the expected
time elapsed between the completion of the last checkpoint and
a fault is T

2 for all distribution laws, regardless of their particular
shape. We conclude that Tlost =

T
2 +D+R, because after each fault

there is a downtime and a recovery. This leads to

Timefinal = TimeFF +
Timefinal

µ
×


D + R +

T
2


.

LetWastefault be the fraction of the total execution time that is lost
because of faults:

Wastefault =
Timefinal − TimeFF

Timefinal
⇔ (1 − Wastefault) Timefinal = TimeFF. (6)

We derive

Wastefault =
1
µ


D + R +

T
2


. (7)

In [4], Daly uses the expression

Timefinal =

1 + Wastefault


TimeFF (8)

instead of Eq. (6), which leads him to his well-known first-order
formula

T =


2(µ + (D + R))C + C . (9)

Fig. 1 explains why Eq. (8) is not correct and should be replaced
by Eq. (6). Indeed, the expected number of faults depends on the
final time, not on the time for a fault-free execution. We point
out that Young [23] also used Eq. (8), but with D = R = 0.
Eq. (6) can be rewritten Timefinal = TimeFF/ (1 − Wastefault).
Therefore, using Eq. (8) instead of Eq. (6), in fact, is equivalent to



G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064 2051
write 1
1−Wastefault

≈ 1 + Wastefault which is indeed a first-order
approximation ifWastefault ≪ 1.

Now, letWaste denote the total waste:

Waste =
Timefinal − Timebase

Timefinal
. (10)

Therefore

Waste = 1 −
Timebase
Timefinal

= 1 −
Timebase
TimeFF

TimeFF
Timefinal

= 1 − (1 − WasteFF)(1 − Wastefault).

Altogether, we derive the final result:

Waste = WasteFF + Wastefault − WasteFFWastefault (11)

=
C
T

+


1 −

C
T


1
µ


D + R +

T
2


. (12)

We obtain Waste =
u
T + v + wT where u = C


1 −

D+R
µ


,

v =
D+R−C/2

µ
, and w =

1
2µ . ThusWaste is minimized for T =


u
w
.

The refined first-order (RFO) formula for the optimal period is thus

TRFO =


2(µ − (D + R))C . (13)

It is interesting to point out why Eq. (13) is a first-order
approximation, even for large jobs. Indeed, there are several
restrictions to enforce for the approach to be valid:

• We have stated that the expected number of faults during exe-
cution is Nfaults =

Timefinal
µ

, and that the expected time lost due
to a fault is Tlost =

T
2 . Both statements are true individually,

but the expectation of a product is the product of the expecta-
tions only if the random variables are independent, which is not
the case here because Timefinal depends upon the failure inter-
arrival times.

• In Eq. (4), we have to enforce C ≤ T to haveWasteFF ≤ 1.
• In Eq. (7), we have to enforce D + R ≤ µ and to bound T in or-

der to have Wastefault ≤ 1. Intuitively, we need µ to be large
enough for Eq. (7) to make sense. However, regardless of the
value of the individual MTBFµind, there is always a threshold in
the number of components N above which the platform MTBF
µ =

µind
N becomes too small for Eq. (7) to be valid.

• Eq. (7) is accurate only when two or more faults do not take
placewithin the sameperiod. Although unlikelywhenµ is large
in front of T , the possible occurrence of many faults during the
same period cannot be eliminated.

To ensure that the latter condition (at most a single fault per
period) is met with a high probability, we cap the length of the
period: we enforce the condition T ≤ αµ, where α is some tuning
parameter chosen as follows. The number of faults during a period
of length T can be modeled as a Poisson process of parameter
β =

T
µ
. The probability of having k ≥ 0 faults is P(X = k) =

βk

k! e
−β , where X is the number of faults. Hence the probability of

having two or more faults is π = P(X ≥ 2) = 1 − (P(X =

0) + P(X = 1)) = 1 − (1 + β)e−β . If we assume α = 0.27 then
π ≤ 0.03, hence a valid approximation when bounding the period
range accordingly. Indeed, with such a conservative value forα, we
have overlapping faults for only 3% of the checkpointing segments
in average, so that the model is quite reliable. For consistency, we
also enforce the same type of bound on the checkpoint time, and on
the downtime and recovery: C ≤ αµ and D + R ≤ αµ. However,
enforcing these constraints may lead to use a sub-optimal period:
it may well be the case that the optimal period

√
2(µ − (D + R))C

of Eq. (13) does not belong to the admissible interval [C, αµ]. In
that case, the waste is minimized for one of the bounds of the
admissible interval: this is because, as seen fromEq. (12), thewaste
is a convex function of the period.

We conclude this discussion on a positive note. While capping
the period, and enforcing a lower bound on the MTBF, is
mandatory for mathematical rigor, simulations (see Section 5 for
both exponential and Weibull distributions) show that actual job
executions can always use the value from Eq. (13), accounting for
multiple faultswhenever they occur by re-executing thework until
success. The first-order model turns out to be surprisingly robust!

To the best of our knowledge, despite all the limitations
above, there is no better approach to estimate the waste due
to checkpointing when dealing with arbitrary fault distributions.
However, assuming that faults obey an exponential distribution,
it is possible to use the memory-less property of this distribution
to provide more accurate results. A second-order approximation
when faults obey an exponential distribution is given in Daly
[4, Eq. (20)] as Timefinal = µeR/µ(e

T
µ −1) Timebase

T−C . In fact, in that case,
the exact value of Timefinal is provided in [1,18] as Timefinal = (µ+

D)eR/µ(e
T
µ − 1) Timebase

T−C , and the optimal period is then 1+L(−e−
C
µ −1

)

µ

where L, the Lambert function, is defined as L(z)eL(z)
= z.

To assess the accuracy of the different first-order approxima-
tions, we compare the periods defined by Young’s formula [23],
Daly’s formula [4], and Eq. (13), to the optimal period, in the case of
an exponential distribution. Results are reported in Table 2. To es-
tablish these results, we use the same parameters as in Section 5:
C = R = 600 s,D = 60 s, and µind = 125 years. Furthermore,
to compute the optimal period, for each platform size we choose
the application size so that Timebase = 2 h. One can observe in
Table 2 that the relative error for Daly’s period is slightly larger
than the one for Young’s period. In turn, the absolute value of the
relative error for Young’s period is slightly larger than the one for
RFO. More importantly, when Young’s and Daly’s formulas overes-
timate the period, RFO underestimates it. Table 2 does not allow us
to assess whether these differences are actually significant. How-
ever we also report in Section 5.2 some simulations that show that
Eq. (13) leads to smaller execution times for Weibull distributions
than both classical formulas (Tables 4 and 5).

4. Taking predictions into accounts

In this section, we present an analytical model to assess the
impact of predictions on periodic checkpointing strategies. As
already mentioned, we consider the case where the predictor
is able to provide exact prediction dates, and to generate such
predictions at least Cp seconds in advance, so that a proactive
checkpoint of length Cp can indeed be taken before the event.

For the sake of clarity, we start with a simple algorithm
(Section 4.1) which we refine in Section 4.2. We then compute the
value of the period that minimizes the waste in Section 4.3.

4.1. Simple policy

In this section, we consider the following algorithm:
• While no fault prediction is available, checkpoints are taken

periodically with period T ;
• When a fault is predicted, there are two cases: either there is

the possibility to take a proactive checkpoint, or there is not
enough time to do so, because we are already checkpointing
(see Fig. 2(b) and (c)). In the latter case, there is no other
choice than ignoring the prediction. In the former case, we still
have the possibility to ignore the prediction, but we may also
decide to trust it: in fact the decision is randomly taken. With
probability q, we trust the predictor and take the prediction into
account (see Fig. 2(f) and (g)), and with probability 1 − q, we
ignore the prediction (see Fig. 2(d) and (e));



2052 G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064
Table 2
Comparing periods produced by the different approximations with optimal value. Beside each period, we report its relative deviation to the optimal. Each value is expressed
in seconds.

N µ Young Daly RFO Optimal

210 3,849,609 68,567 (0.5%) 68,573 (0.5%) 67,961 (−0.4%) 68,240
211 1,924,805 48,660 (0.7%) 48,668 (0.7%) 48,052 (−0.6%) 48,320
212 962,402 34,584 (1.2%) 34,595 (1.2%) 33,972 (−0.6%) 34,189
213 481,201 24,630 (1.6%) 24,646 (1.7%) 24,014 (−0.9%) 24,231
214 240,601 17,592 (2.3%) 17,615 (2.5%) 16,968 (−1.3%) 17,194
215 120,300 12,615 (3.2%) 12,648 (3.5%) 11,982 (−1.9%) 12,218
216 60,150 9,096 (4.5%) 9,142 (5.1%) 8,449 (−2.9%) 8,701
217 30,075 6,608 (6.3%) 6,673 (7.4%) 5,941 (−4.4%) 6,214
218 15,038 4,848 (8.8%) 4,940 (10.8%) 4,154 (−6.8%) 4,458
219 7,519 3,604 (12.0%) 3,733 (16.0%) 2,869 (−10.8%) 3,218
Table 3
Job execution times for an exponential distribution, and gains due to the fault
predictor (with respect to the performance of RFO).

Cp = C Execution time (in days) Execution time (in days)
(p = 0.82, r = 0.85) (p = 0.4, r = 0.7)
216 procs 219 procs 216 procs 219 procs

Young 65.2 11.7 65.2 11.7
Daly 65.2 11.8 65.2 11.8
RFO 65.2 11.7 65.2 11.7

OptimalPrediction 60.0 (8%) 9.5 (19%) 61.7 (5%) 10.7 (8%)
InexactPrediction 60.6 (7%) 10.2 (13%) 62.3 (4%) 11.4 (3%)

Table 4
Job execution times for a Weibull distribution with shape parameter k = 0.7, and
gains due to the fault predictor (with respect to the performance of RFO).

Cp = C Execution time (in days) Execution time (in days)
(p = 0.82, r = 0.85) (p = 0.4, r = 0.7)
216 procs 219procs 216procs 219procs

Young 81.3 30.1 81.3 30.1
Daly 81.4 31.0 81.4 31.0
RFO 80.3 25.5 80.3 25.5

OptimalPrediction 65.9 (18%) 15.9 (38%) 69.7 (13%) 20.2 (21%)
InexactPrediction 68.0 (15%) 20.3 (20%) 72.0 (10%) 24.6 (4%)

• If we take the prediction into account, we take a proactive
checkpoint (of length Cp) as late as possible, i.e., so that it
completes right at the time when the fault is predicted to
happen. After this checkpoint, we complete the execution of the
period (see Fig. 2(f) and (g));

• Ifwe ignore the prediction, either by necessity (not enough time
to take an extra checkpoint, see Fig. 2(b) and (c)), or by choice
(with probability 1 − q, Fig. 2(d) and (e)), we finish the current
period and start a new one.

The rationale for not always trusting the predictor is to avoid
taking useless checkpoints too frequently. Intuitively, the precision
p of the predictor must be above a given threshold for its usage
to be worthwhile. In other words, if we decide to checkpoint just
before a predicted event, either we will save time by avoiding a
costly re-execution if the event does correspond to an actual fault,
or wewill lose time by unduly performing an extra checkpoint.We
need a larger proportion of the former cases, i.e., a good precision,
for the predictor to be really useful. The following analysis will
determine the optimal value of q as a function of the parameters
C , Cp, µ, r , and p.

We could refine the approach by taking into account the
amount of work already done in the current period when deciding
whether to trust the predictor or not. Intuitively, themorework al-
ready done, the more important to save it, hence the more worth-
while to trust the predictor. We design such a refined strategy in
Section 4.2. Right now, we analyze a simpler algorithm where we
Table 5
Job execution times for a Weibull distribution with shape parameter k = 0.5, and
gains due to the fault predictor (with respect to the performance of RFO).

Cp = C Execution time (in days) Execution time (in days)
(p = 0.82, r = 0.85) (p = 0.4, r = 0.7)
216 procs 219procs 216procs 219procs

Young 125.5 171.8 125.5 171.8
Daly 125.8 184.7 125.8 184.7
RFO 120.2 114.8 120.2 114.8

OptimalPrediction 75.9 (37%) 39.5 (66%) 83.0 (31%) 60.8 (47%)
InexactPrediction 82.0 (32%) 60.8 (47%) 89.4 (26%) 76.6 (33%)

decide to trust or not to trust the predictor, independently of the
amount of work done so far within the period.

We analyze the algorithm in order to compute a formula for
the expected waste, just as in Eq. (12). While the value of WasteFF
is unchanged (WasteFF =

C
T ), the value of Wastefault is modified

because of predictions. As illustrated in Fig. 2, there are many
different scenarios that contribute to Wastefault that can be sorted
into three categories:
(1) Unpredicted faults: This overhead occurs each time an unpre-
dicted fault strikes, that is, on average, once everyµNP seconds. Just
as in Eq. (7), the corresponding waste is 1

µNP

 T
2 + D + R


.

(2) Predictions not taken into account: The second source of waste
is for predictions that are ignored. This overhead occurs in two
different scenarios. First, if we do not have time to take a proactive
checkpoint, we have an overhead if and only the prediction is an
actual fault. This case happens with probability p. We then lose a
time t + D + R if the predicted fault happens a time t after the
completion of the last periodic checkpoint. The expected time lost
is thus

T 1
lost =

1
T

 Cp

0
(p(t + D + R) + (1 − p)0) dt.

Then, if we do have time to take a proactive checkpoint but still
decide to ignore the prediction, we also have an overhead if and
only if the prediction is an actual fault, but the expected time lost
is now weighted by the probability (1 − q):

T 2
lost = (1 − q)

1
T

 T

Cp
(p(t + D + R) + (1 − p)0) dt.

(3) Predictions taken into account: We now compute the overhead
due to a prediction which we trust (hence we checkpoint just
before its date). If the prediction is an actual fault, we lose Cp+D+R
seconds, but if it is not, we lose the unnecessary extra checkpoint
time Cp. The expected time lost is nowweighted by the probability
q and becomes

T 3
lost = q

1
T

 T

Cp


p(Cp + D + R) + (1 − p)Cp


dt



G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064 2053
(a) Unpredicted fault. (b) Prediction cannot be taken into account—no actual fault.

(c) Prediction cannot be taken into account—with actual fault. (d) Prediction not taken into account by choice—no actual fault.

(e) Prediction not taken into account by choice—with actual fault. (f) Prediction taken into account—no actual fault.

(g) Prediction taken into account—with actual fault.

Fig. 2. Actions taken for the different event types.
We derive the final value ofWastefault:

Wastefault =
1

µNP


T
2

+ D + R


+
1
µP


T 1
lost + T 2

lost + T 3
lost


.

This final expression comes from the disjunction of all possible
cases, using the Law of Total Probability [17, p. 23]: the waste
comes either from non-predicted faults or from predictions; in
the latter case, we have analyzed the three possible sub-cases
and weighted them with their respective probabilities. After
simplifications, we obtain

Wastefault =
1
µ


(1 − rq)

T
2

+ D + R

+
qr
p
Cp −

qrCp
2

pT
(1 − p/2)


. (14)

We could now plug this expression back into Eq. (11) to compute
the value of T that minimizes the total waste. Instead, we move on
to describing the refined algorithm, andweminimize thewaste for
the refined strategy, since it always induces a smaller waste.

4.2. Refined policy

In this section, we refine the approach and consider different
trust strategies, depending upon the time in the period where the
prediction takes place. Intuitively, the later in the period, the more
likely we are inclined to trust the predictor, because the amount of
work thatwe could lose gets larger and larger. As before, we cannot
take into account a fault predicted to happen less than Cp units of
time after the beginning of the period. Therefore, we focus onwhat
happens in the period after time Cp. Formally, we now divide the
interval [Cp, T ] into n intervals [βi; βi+1] for i ∈ {0, . . . , n − 1},
where β0 = Cp and βn = T . For each interval [βi; βi+1], we trust
the predictorwith probability qi. We aim at determining the values
of n, βi, and qi that minimize the waste. As mentioned before,
intuition tells us that the qi values should be non-decreasing. We
prove below a somewhat unexpected theorem: in the optimal
strategy, there is either one or two different qi values, and these
values are 0 or 1. This means that we should never trust the
predictor in the beginning of a period, and always trust it in the
end of the period, without any intermediate behavior in between.
We formally express this striking result below. Let βlim =
Cp
p .

The optimal strategy is provided by Theorem 1 below. We first
prove the following proposition.

Proposition 1. The values of βi and qi that minimize the waste
satisfy the following conditions:
(i) For all i such that βi+1 ≤ βlim, qi = 0.
(ii) For all i such that βi ≥ βlim, qi = 1.

Proof. First we compute the waste with the refined algorithm,
using Eq. (11). The formula for Wastefault is similar to Eq. (14) on
each interval:

Waste =
C
T

+


1 −

C
T


1

µNP


T
2

+ D + R


+
1
µP

n−1
i=0


qi

 βi+1

βi

(p(Cp + D + R) + (1 − p)Cp)

T
dt

+ (1 − qi)
 βi+1

βi

p(t + D + R)
T

dt


.

Now, consider a fixed value of i and express the value ofWaste
as a function of qi:

Waste = K +


1 −

C
T


qi
µP

 βi+1

βi


Cp

T
−

pt
T


dt

where K does not depend on qi. From the sign of the function to
be integrated, one sees that Waste is minimized when qi = 0 if
βi+1 ≤ βlim =

Cp
p , and when qi = 1 if βi ≥ βlim. �

Theorem 1. The optimal algorithm takes proactive actions if and only
if the prediction falls in the interval [βlim, T ].

Proof. From Proposition 1, the values for qi are optimally defined
for every i but one: we do not know the optimal value if there
exists i0 such that βi0 < βlim < βi0+1. Then let us consider the
waste where qi0 is replaced by q(1)

i0
on [βi0 , βlim] and by q(2)

i0
on

[βlim, βi0+1]. The new waste is necessarily smaller than the one
with only qi0 , since we relaxed the constraint. We know from
Proposition 1 that the optimal solution is then to have q(1)

i0
= 0

and q(2)
i0

= 1. �



2054 G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064
Let us now compute the value of the waste with the optimal
algorithm. There are two cases, depending upon whether T ≤ βlim
or not. For values of T smaller than βlim, Theorem 1 shows that the
optimal algorithm never takes any proactive action; in that case
the waste is given by Eq. (12) in Section 3. For values of T larger
than βlim =

Cp
p , we compute the waste due to predictions as

1
µP

1
T

 Cp/p

0
p(t + D + R)dt

+

 T

Cp/p
(p(Cp + D + R) + (1 − p)Cp)dt



=
r
pµ


p(D + R) + Cp −

Cp
2

2pT


.

Indeed, in accordance with Theorem 1, no prediction is taken into
account in the interval [0, Cp

p ], while all predictions are taken

into account in the interval [
Cp
p , T ]. Adding the waste due to

unpredicted faults, namely 1
µNP

 T
2 + D + R


, we derive

Wastefault =
1
µ


(1 − r)

T
2

+
r
p
Cp


1 −

1
2p

Cp

T


+ D + R


.

Plugging this value into Eq. (11), we obtain the total waste when
Cp
p ≤ T :

Waste =
C
T

+
1
µ


(1 − r)

T
2

+
r
p
Cp


1 −

1
2p

Cp

T


+ D + R


1 −

C
T


=

rCCp
2

2p2
1

µT 2
+


µC −

rCp
2

2p2

− C

rCp

p
+ D + R


1

µT
+

1 − r
2µ

T

+
−(1 − r) C

2 +
rCp
p + D + R

µ
.

Altogether, the expression for the total waste becomes

Waste1(T ) =

C

1 −

D+R
µ


T

+
D + R − C/2

µ
+

1
2µ

T if
Cp

p
≥ T

Waste2(T ) =
rCCp

2

2µp2
1
T 2

+


C

1 −

rCp
p +D+R

µ


−

rCp2

2µp2


T

+
−(1 − r) C

2 +
rCp
p + D + R

µ
+

1 − r
2µ

T if
Cp

p
≤ T .

(15)

One can check that when r = 0 (no error predicted, hence no
proactive action in the algorithm), then Waste1 and Waste2 coin-
cide. We also check that both values coincide for T =

Cp
p . We show

how to minimize the waste in Eq. (15) in Section 4.3.

4.3. Waste minimization

In this section we focus on minimizing the waste in Eq. (15).
Recall that, by construction, we always have to enforce the
constraint T ≥ C . First consider the case where C ≤

Cp
p . On
the interval T ∈ [C,
Cp
p ], we retrieve the optimal value found in

Section 3, and derive thatWaste1, the waste when predictions are
not taken into account, is minimized for

TNoPred = max

C,min


TRFO,

Cp

p


. (16)

Indeed, the optimal value should belong to the interval [C,
Cp
p ],

and the function Waste1 is convex: if the extremal solution√
2(µ − (D + R))C does not belong to this interval, then the

optimal value is one of the bounds of the interval.
On the interval T ∈


Cp
p , +∞


, we find the optimal so-

lution by differentiating twice Waste2 with respect to T . Writ-
ing Waste2(T ) =

u
T2

+
v
T + w + xT for simplicity, we obtain

Waste′′

2(T ) =
2
T3
 3u

T + v

. Here, a key parameter is the sign of

v =


C


1 −

rCp
p + D + R

µ


−

rCp
2

2µp2


.

We detail the case v ≥ 0 in the following, because it is the most
frequent with realistic parameter sets; we do have v ≥ 0 for all the
whole range of simulations in Section 5. For the sake of complete-
ness, wewill briefly discuss the case v < 0 in the comments below.

When v ≥ 0, we have Waste′′

2(T ) ≥ 0, so that Waste2 is

convex on the interval

Cp
p , +∞


and admits a unique minimum

Textr. Note that Textr can be computed either numerically or using
Cardano’s method, since it is the unique real root of a polynomial
of degree 3. The optimal solution on


Cp
p , +∞


is then: TPred =

max

Textr,

Cp
p


.

It remains to consider the case where Cp
p < C . In fact, it suffices

to add the constraint that the value of TPred should be greater than
C , that is

TPred = max

C,max


Textr,

Cp

p


. (17)

Finally, the optimal solution for thewaste is given by theminimum
of the following two values:

C

1 −

D+R
µ


TNoPred

+
D + R − C/2

µ
+

1
2µ

TNoPred

rCCp
2

2µp2
1

TPred2
+


C

1 −

rCp
p +D+R

µ


−

rCp2

2µp2


TPred

+
−(1 − r) C

2 +
rCp
p + D + R

µ
+

1 − r
2µ

TPred.

Wemake a few observations:

• Just as for Eq. (13) in Section 3, mathematical rigor calls for
capping the values of D, R, C , Cp and T in front of the MTBF.
The only difference is that we should replace µ by µe: this
is to account for the occurrence rate of all events, be they
unpredicted faults or predictions.

• While the expression of the waste looks complicated, the
numerical value of the optimal period can easily be computed
in all cases. We have dealt with the case v ≥ 0, where v is
the coefficient of 1/T in Waste2(T ) =

u
T2

+
v
T + w + xT .

When v < 0 we only need to compute all the nonnegative real
roots of a polynomial of degree 3, and check which one leads
to the best value. More precisely, these root(s) partition the
admissible interval


Cp
p , +∞


into several sub-intervals, and

the optimal value is either a root or a sub-interval bound.



G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064 2055
• In many practical situations, when µ is large enough, we can
dramatically simplify the expression of Waste2(T ): we have
T = O(

√
µ), the term u

T2
becomes negligible, checkpoint

parameters become negligible in front of µ, and we derive

the approximated value


2µC
1−r . This value can be seen as an

extension of Eq. (13) giving TRFO, where µ is replaced by µ

1−r :
faults are replaced by non-predicted faults, and the overhead
due to false predictions is negligible. As aword of caution, recall
that this conclusion is valid only when µ is very large in front
of all other parameters.

5. Simulation results

We start by presenting the simulation framework (Section 5.1).
Thenwe report results using synthetic traces (Section 5.2) and log-
based traces (Section 5.3). Finally, we assess the respective impact
of the two key parameters of a predictor, its recall and its precision,
on checkpointing strategies (Section 5.4).

5.1. Simulation framework

Scenario generation—In order to check the accuracy of our
model and of our analysis, and to assess the potential benefits
of predictors, we study the performance of our new solutions
and of pre-existing ones using a discrete-event simulator. The
simulation engine generates a random trace of faults. Given a set
of p processors, a failure trace is a set of failure dates for each
processor over a fixed time horizon h (set to 2 years). Given the
distribution of inter-arrival times at a processor, for each processor
we generate a trace via independent sampling until the target time
horizon is reached. The job start time is assumed to be one-year
to avoid side-effects related to the synchronous initialization of all
nodes/processors. We consider two types of failure traces, namely
synthetic and log-based.
Synthetic failure traces—The simulation engine generates a random
trace of faults parametrized either by an exponential fault
distribution or byWeibull distribution laws with shape parameter
either 0.5 or 0.7. Note that exponential faults are widely used
for theoretical studies, while Weibull faults are representative of
the behavior of real-world platforms [9,21,16,10]. For example,
Heien et al. [10] have studied the failure distribution for 6 sources
of failures (storage devices, NFS, batch system, memory and
processor cache errors, etc.), and the aggregate failure distribution.
They have shown that the aggregate failure distribution is best
modeled by a Weibull distribution with a shape parameter that is
between 0.5841 and 0.7097.

The Jaguar platform, which comprised N = 45,208 processors,
is reported to have experienced about one fault per day [26], which
leads to an individual (processor) MTBF µind equal to 45,208

365 ≈

125 years. Therefore, we set the individual (processor) MTBF to
µind = 125 years. We let the total number of processors N vary
from N = 16,384 to N = 524,288, so that the platform MTBF µ
varies from µ = 4010 min (about 2.8 days) down to µ = 125
min (about 2 h). Whatever the underlying failure distribution, it is
scaled so that its expectation corresponds to the platformMTBF µ.
The application size is set to Timebase = 10,000 years/N.
Log-based failure traces—To corroborate the results obtained with
synthetic failure traces, and to further assess the performance of
our algorithms, we also perform simulations using the failure logs
of two production clusters. We use logs of the largest clusters
among the preprocessed logs in the Failure trace archive [13],
i.e., for clusters at the Los Alamos National Laboratory [21].
In these logs, each failure is tagged by the node—and not the
processor—on which the failure occurred. Among the 26 possible
clusters, we opted for the logs of the only two clusters with
more than 1000 nodes. The motivation is that we need a sample
history sufficiently large to simulate platforms with more than ten
thousand nodes. The two chosen logs are for clusters 18 (LANL18)
and 19 (LANL19) in the archive (referred to as 7 and 8 in [21]). For
each log, we record the set S of availability intervals. The discrete
failure distribution for the simulation is generated as follows: the
conditional probability P(X ≥ t | X ≥ τ) that a node stays up for
a duration t , knowing that it has been up for a duration τ , is set to
the ratio of the number of availability durations in S greater than
or equal to t , over the number of availability durations in S greater
than or equal to τ .

The two clusters used for computing our log-based failure
distributions consist of 4-processor nodes. Hence, to simulate a
platform of, say, 216 processors, we generate 214 failure traces, one
for each 4-processor node. In the logs the individual (processor)
MTBF is µind = 691 days for the LANL18 cluster, and µind = 679
days for the LANL19 cluster. The LANL18 and LANL19 traces are logs
for systems which comprised 4096 processors. Using these logs to
generate traces for a system made of 524,288 processors, as the
largest platforms we consider with synthetic failure traces, would
lead to an obvious risk of oversampling. Therefore,we limit the size
of the log-based traces we generate: we let the total number of
processors N varies from N = 1024 to N = 131,072, so that the
platform MTBF µ varies from µ = 971 min (about 16 h) down to
µ = 7.5min. The application size is set to Timebase = 250 years/N.
Predicted failures and false predictions—Once we have generated a
failure trace, we need to determine which faults are predicted and
which are not. In order to do so, we consider all faults in a trace one
by one. For each of them, we randomly decide, with probability r ,
whether it is predicted.

We use the simulation engine to generate a random trace
of false predictions. The main problem is to decide the shape
of the distribution that false predictions should follow. To the
best of our knowledge, no published study ever addressed that
problem. For synthetic failure traces, we report results when
false predictions follow the same distribution as faults (except, of
course, that both distributions do not have the same mean value).
In Appendix B, we report on simulations when false predictions
are generated according to a uniform distribution; the results
are quite similar. For log-based failures, we only report results
when false predictions are generated according to a uniform
distribution (because we believe that scaling down a discrete,
actual distribution may not be meaningful).

The distribution of false predictions is always scaled so that
its expectation is equal to µP

1−p =
pµ

r(1−p) , the inter-arrival time of
false predictions. Finally, the failure trace and the false-prediction
trace are merged to produce the final trace including all events
(true predictions, false predictions, and non-predicted faults).
Each reported value is the average over 100 randomly generated
instances.
Checkpointing, recovery, and downtime costs—The experiments use
parameters that are representative of current and forthcoming
large-scale platforms [2,5]. We take C = R = 10 min, and D = 1
min for the synthetic failure traces. For the log-based traces we
consider smaller platforms. Therefore,we take C = R = 1min, and
D = 6 s. Whatever the trace, we consider three scenarios for the
proactive checkpoints: either proactive checkpoints are (i) exactly
as expensive as periodic ones (Cp = C), (ii) ten times cheaper
(Cp = 0.1C), and (iii) two times more expensive (Cp = 2C).
Heuristics—In the simulations, we compare four checkpointing
strategies:

• RFO is the checkpointing strategy of period
T =

√
2(µ − (D + R))C (see Section 3).

• OptimalPrediction is the refined algorithm described in
Section 4.2.



2056 G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064
• To assess the quality of each strategy, we compare it with its
BestPeriod counterpart, defined as the same strategy but using
the best possible period T . This latter period is computed via
a brute-force numerical search for the optimal period (each
tested period is evaluated on 100 randomly generated traces,
and the period achieving the best average performance is
elected as the ‘‘best period’’).

Fault predictors—We experiment using the characteristics of two
predictors from the literature: one accurate predictor with high
recall and precision [24], namely with p = 0.82 and r = 0.85,
and another predictor with intermediate recall and precision [25],
namely with p = 0.4 and r = 0.7.

In practice, a predictor will not be able to predict the exact time
at which a predicted fault will strike the system. Therefore, in the
simulations, when a predictor predicts that a failure will strike
the system at a date t (true prediction), the failure actually occurs
exactly at time t for heuristic OptimalPrediction, and between
time t and time t + 2C for heuristic InexactPrediction (the
probability of fault is uniformly distributed in the time-interval).
OptimalPrediction can thus be seen as a best case. The comparison
between OptimalPrediction and InexactPrediction enables us
to assess the impact of the time imprecision of predictions, and
to show that the obtained results are quite robust to this type
of imprecision. The choice of an interval length of 2C is quite
arbitrary. For synthetic traces, this corresponds to 1200 s, which
is quite a significant imprecision.

5.2. Simulations with synthetic traces

Figs. 3 and 4 show the average waste degradation for the
two checkpointing policies, and for their BestPeriod counterparts,
for both predictors. The waste is reported as a function of the
number of processors N . We draw the plots as a function of the
number of processors N rather than of the platform MTBF µ =

µind/N , because it is more natural to see the waste increase with
larger platforms. However, recall that this work is agnostic of the
granularity of the processing elements and intrinsically focuses on
the impact of the MTBF on the waste.

We also report job execution times: in Table 3 when fault
distribution follows an exponential distribution law, and in
Tables 4 and 5 for aWeibull distribution lawwith shape parameter
k = 0.7 and k = 0.5 respectively.
Validation of the theoretical study—We used Maple to analytically
compute and plot the optimal value of the waste for both the
algorithm taking predictions into account, OptimalPrediction,
and for the algorithm ignoring them, RFO. In order to check the
accuracy of our model, we have compared these results with
results obtained with the discrete-event simulator.

We first observe that there is a very good correspondence
between analytical results and simulations in Figs. 3 and 4. In
particular, the Maple plots and the simulations for exponentially
distributed faults are very similar. This shows the validity
of the model and of its analysis. Another striking result is
that OptimalPrediction has the same waste as its BestPeriod
counterpart, even for Weibull fault distributions, in all but the
most extreme cases. In the other cases, the waste achieved
by OptimalPrediction is very close to that of its BestPeriod
counterpart. This demonstrates the very good quality of our
checkpointing period TPred. These conclusions are valid regardless
of the cost ratio of periodic and proactive checkpoints.

In Tables 3–5 we report the execution times obtained when
using the expression of T givenbyYoung [23] andDaly [4] (denoted
respectively as Young and Daly) to assess whether TRFO is a better
approximation. (Recall that these three approaches ignore the
predictions, which explains why the numbers are identical on both
sides of each table.) The expressions of T given by Young, Daly,
and RFO are identical for exponential distributions and the three
heuristics achieve the same performance (Table 3). This confirms
the analytical evaluation of Table 2 in Section 3. For Weibull
distributions (Tables 4 and 5), RFO achieves lower makespan, and
the difference becomes even more significant as the size of the
platform increases. Moreover, it is striking to observe in Table 5
that job execution time increases together with the number for
processors (from N = 216 to N = 219) if the checkpointing
period isDaly or Young. In contrast, job execution time (rightfully)
decreases when using RFO, even if the decrease is moderate with
respect to the increase of the platform size. Altogether, the main
(striking) conclusion is that RFO should be preferred to both
classical approaches for Weibull distributions.
The benefits of prediction—The second observation is that the
prediction is useful for the vast majority of the set of parameters
under study! In addition, when proactive checkpoints are cheaper
than periodic ones, the benefits of fault prediction are increased.
On the contrary, when proactive checkpoints are more expensive
than periodic ones, the benefits of fault prediction are greatly
reduced. One can even observe that the waste with prediction is
not better than without prediction in the following scenario: Cp =

2C , and using the limited-quality predictor (p = 0.4, r = 0.7) with
219 processors, see Fig. 4(i), (j), (k), and (l).

In Tables 3–5 we compute the gain (expressed in percentage)
achieved by OptimalPrediction over RFO. As a general trend, we
observe that the gains due to predictions aremore importantwhen
the distribution law is further apart from an exponential distribu-
tion. Indeed, the largest gains are when the fault distribution fol-
lows a Weibull law of parameter 0.5. Using OptimalPrediction in
conjunctionwith a ‘‘good’’ fault predictorwe report gains up to 66%
when there is a large number of processors (219). The gain is still
of 37% with 216 processors. Using a predictor with limited recall
and precision, OptimalPrediction can still decrease the execution
time by 47% with 219 processors, and 31% with 216 processors. In
all tested cases, the decrease of the execution times is significant.
Gains are less important with Weibull laws of shape parameter
k = 0.7, however they still reach at least 13% with 216 proces-
sors, and up to 38% with 219 processors. Finally, gains are further
reducedwith an exponential law. They are still reaching at least 5%
with 216 processors, and up to 19% with 219 processors.

The performance of InexactPrediction shows that using a fault
predictor remains largely beneficial even in the presence of large
uncertainties on the time the predicted faults will actually occur
(see Tables 3–5). When N = 216 the degradation with respect to
OptimalPrediction is 3% for a Weibull law with shape parameter
k = 0.7, and the minimum gain over RFO is still 10%. When the
shape parameter of the Weibull law is k = 0.5, the degradation is
7%, for a minimum gain of 26% over RFO.

5.3. Simulations with log-based traces

Fig. 5 shows the average waste degradation for the two
checkpointing policies, and for their BestPeriod counterparts, for
both predictors, both traces, and the three scenarios for proactive
checkpoints. Tables 6 and 7 present job execution times for RFO,
OptimalPrediction, and InexactPrediction, for both traces and
for platform sizes smaller than as the ones reported in Tables 3–5
for synthetic traces. The waste for RFO is closer to its BestPeriod
counterpart with log-based traces than withWeibull-based traces.
As a consequence, when prediction with OptimalPrediction is
beneficial, it is beneficial with respect to both RFO, and to RFO’s
BestPeriod.

Overall, we observe similar results and reach the same
conclusions with log-based traces as with synthetic ones. The
waste of OptimalPrediction is very close to that of its BestPeriod



G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064 2057
Fig. 3. Waste (y-axis) for the different heuristics as a function of the platform size (x-axis), with p = 0.82, r = 0.85, Cp = C (first row), Cp = 0.1C (second row), or Cp = 2C
(third row) and with a trace of false predictions parametrized by a distribution identical to the distribution of the failure trace.
counterpart for platforms containing up to 216 processors. This
demonstrates the validity of our analysis for the actual traces
considered. The waste of OptimalPrediction is often significantly
larger than that of its BestPeriod counterpart for platforms
containing 217 processors. The problemwith the largest considered
platforms may be due to oversampling. Indeed, the original logs
recorded events for platforms comprising only 4096 processors
and respectively contained only 3010 and 2343 availability
intervals.

Aswith synthetic failure traces, prediction turns out to be useful
for the vast majority of tested configurations. The only cases when
prediction is not useful is with the ‘‘bad’’ predictor (r = 0.7 and
p = 0.4), when the cost of proactive checkpoint is larger than the
cost of periodic checkpoints (Cp = 2C), and when considering the
largest of platforms (N = 217). This extreme case is, however, the
only one for which prediction is not beneficial. It is not surprising
that predictions are not useful when there are a lot of false
predictions that require the use of expensive proactive actions.
Looking at Tables 6 and 7, one could remark that performance
gains due to the predictions are similar to the ones observed with
exponential-based traces, and are significantly smaller than the
ones observed with Weibull-based traces. However, recall that we
remarked that gains increasewith the size of the platform, and that
we consider smaller platforms when using log-based traces.

Finally, the imprecision related to the time where predicted
faults strike, induces a performance degradation. However, this
degradation is rather limited for the most efficient of the two
predictors considered, or when the platform size is not too large.

5.4. Recall versus precision

In this section, we assess the impact of the two key parameters
of the predictor, its recall r and its precision p. To this purpose, we
conduct simulations with synthetic traces, where one parameter
is fixed while the other varies. We choose two platforms, a smaller
one with N = 216 processors (or a MTBF µ = 1000 min) and a



2058 G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064
(a) Maple. (b) Exponential. (c) Weibull k = 0.7. (d) Weibull k = 0.5.

(e) Maple. (f) Exponential. (g) Weibull k = 0.7. (h) Weibull k = 0.5.

(i) Maple. (j) Exponential. (k) Weibull k = 0.7. (l) Weibull k = 0.5.

Fig. 4. Waste (y-axis) for the different heuristics as a function of the platform size (x-axis), with p = 0.4, r = 0.7, Cp = C (first row), Cp = 0.1C (second row), or Cp = 2C
(third row) and with a trace of false predictions parametrized by a distribution identical to the distribution of the failure trace.
Table 6
Job execution times with failures based on the failure log of LANL18 cluster, and
gains due to the fault predictor (with respect to the performance of RFO).

Cp = C Execution time (in days) Execution time (in days)
(p = 0.82, r = 0.85) (p = 0.4, r = 0.7)
214 procs 217 procs 214 procs 217 procs

RFO 26.8 4.88 26.8 4.88

OptimalPrediction 24.4 (9%) 3.89 (20%) 25.2 (6%) 4.44 (9%)
InexactPrediction 24.7 (8%) 4.20 (14%) 25.5 (5%) 4.73 (3%)

Table 7
Job execution times with failures based on the failure log of LANL19 cluster, and
gains due to the fault predictor (with respect to the performance of RFO).

Cp = C Execution time (in days) Execution time (in days)
(p = 0.82, r = 0.85) (p = 0.4, r = 0.7)
214 procs 217 procs 214 procs 217 procs

RFO 26.8 4.86 26.8 4.86

OptimalPrediction 24.4 (9%) 3.85 (21%) 25.2 (6%) 4.42 (9%)
InexactPrediction 24.6 (8%) 4.14 (15%) 25.4 (5%) 4.71 (3%)

larger one with N = 219 processors (or a MTBF µ = 125 min).
In both cases we study the impact of the predictor characteristics
assuming aWeibull fault distribution with shape parameter either
0.5 or 0.7, under the scenario Cp = C .

In Figs. 6 and 7, we fix the value of r (either r = 0.4 or r = 0.8)
and we let p vary from 0.3 to 0.99. In the four plots, we observe
that the precision has a minor impact on the waste, whether it is
with a Weibull distribution of shape parameter 0.7 (Fig. 6), or a
Weibull distribution of shape parameter 0.5 (Fig. 7). In Figs. 8 and 9,
we conduct the converse experiment and fix the value of p (either
p = 0.4 or p = 0.8), letting r vary from0.3 to 0.99. Hereweobserve
that increasing the recall significantly improves performance, in all
but one configuration. In the configuration where improving the
recall does not make a (significant) difference, there is a very large
number of faults and a low precision, hence a large number of false
predictions which negatively impact the performance whatever
the value of the recall.

Altogetherwe conclude that it ismore important (for the design
of future predictors) to focus on improving the recall r rather than
the precision p, and our results can help quantify this statement.
We provide an intuitive explanation as follows: unpredicted faults
prove very harmful and heavily increase the waste, while unduly
checkpointing due to false predictions (usually) turns out to induce
a smaller overhead.



G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064 2059
Fig. 5. Waste (y-axis) for the different heuristics as a function of the platform size (x-axis) with failures based on the failure log of LANL clusters 18 and 19.
6. Related work

Considerable research has been devoted to fault prediction,
using very different models (system log analysis [24], event-
driven approach [7,24,25], support vector machines [14,6], nearest
neighbors [14], etc.). In this section we give a brief overview of
existing predictors, focusing on their characteristics rather than on
the methods of prediction. For the sake of clarity, we sum up the
characteristics of the different fault predictors from the literature
in Table 8.

The authors of [25] introduce the lead time, that is the duration
between the time theprediction ismade and the time thepredicted
fault is supposed to happen. This time should be sufficiently large
to enable proactive actions. As alreadymentioned, the distribution



2060 G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064
(a) r = 0.4, N = 216 . (b) r = 0.4, N = 219 . (c) r = 0.8, N = 216 . (d) r = 0.8, N = 219 .

Fig. 6. Waste (y-axis) as a function of the precision (x-axis) for a fixed recall (r = 0.4 and r = 0.8) and for a Weibull distribution of faults (with shape
parameter k = 0.7).
(a) r = 0.4, N = 216 . (b) r = 0.4, N = 219 . (c) r = 0.8, N = 216 . (d) r = 0.8, N = 219 .

Fig. 7. Waste (y-axis) as a function of the precision (x-axis) for a fixed recall (r = 0.4 and r = 0.8) and for a Weibull distribution of faults (with shape
parameter k = 0.5).
(a) p = 0.4, N = 216 . (b) p = 0.4, N = 219 . (c) p = 0.8, N = 216 . (d) p = 0.8, N = 219 .

Fig. 8. Waste (y-axis) as a function of the recall (x-axis) for a fixed precision (p = 0.4 and p = 0.8) and for a Weibull distribution (k = 0.7).
(a) p = 0.4, N = 216 . (b) p = 0.4, N = 219 . (c) p = 0.8, N = 216 . (d) p = 0.8, N = 219 .

Fig. 9. Waste (y-axis) as a function of the recall (x-axis) for a fixed precision (p = 0.4 and p = 0.8) and for a Weibull distribution (k = 0.5).
of lead times is irrelevant. Indeed, only predictions whose lead
time is greater than Cp, the time to take a proactive checkpoint,
are meaningful. Predictions whose lead time is smaller than Cp,
whenever they materialize as actual faults, should be classified
as unpredicted faults; the predictor recall should be decreased
accordingly.
The predictor of [25] is also able to locate where the predicted
fault is supposed to strike. This additional characteristics has a
negative impact on the precision (because a fault happening at
the predicted time but not on the predicted location is classified
as a non-predicted fault; see the low value of p in Table 8). The
authors of [25] state that fault localization has a positive impact



G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064 2061
Table 8
Comparative study of different parameters returned by some predictors.

Paper Lead time Precision Recall

[25] 300 s 40% 70%
[25] 600 s 35% 60%
[24] 2h 64.8% 65.2%
[24] 0 min 82.3% 85.4%
[7] 32 s 93% 43%
[8] 10 s 92% 40%
[8] 60 s 92% 20%
[8] 600 s 92% 3%
[6] NA 70% 75%
[14] NA 20% 30%
[14] NA 30% 75%
[14] NA 40% 90%
[14] NA 50% 30%
[14] NA 60% 85%

on proactive checkpointing time in their context: instead of a
full checkpoint costing 1500 s they can take a partial checkpoint
costing only 12 s. This led us to introduce a different cost Cp for
proactive checkpoints, that canbe smaller than the costC of regular
checkpoints. Gainaru et al. [8] also stated that fault-localization
could help decrease the checkpointing time. Their predictor also
gives information on fault localization. They studied the impact
of different lead times on the recall of their predictor. Papers [24]
and [14] also considered lead times.

Most studies on fault prediction state that a proactive action
must be taken right before the predicted fault, be it a checkpoint
or a migration. However, we have shown in this paper that it is
beneficial to ignore some predictions, namely when the predicted
fault is announced to strike less than Cp

p seconds after the last
periodic checkpoint.

Gainaru et al. [8] studied the impact of prediction on the
checkpointing period. Their computation of the total waste is not
fully accurate and they do not provide any minimization analysis.
Instead, they only propose to use Young’s formula, replacing the
MTBFby themean-timeof unpredicted faults. Theydonot question
whether all predictions should be taken into account. Furthermore,
they did not conduct any simulations; instead they analytically
computed the ratio of the waste with and without predictions and
instantiated the corresponding formula with several scenarios.

Li et al. [15] considered themathematical problem of when and
how to migrate. In order to be able to use migration, they assumed
that at any time 2% of the resources are available as spares. This
allows them to conceive a knapsack-based heuristic. Thanks to
their algorithm, they were able to save 30% of the execution time
compared to a heuristic that does not take the prediction into
account, with a precision and recall of 70%, and with a maximum
load of 0.7. In our study we do not consider that we have a batch of
spare resources. We assume that after a downtime the resources
that failed are once again available.

Note that some authors [24,14] do not consider that their
predictors predict the exact time of the fault. On the contrary, they
consider a ‘‘predictionwindow’’which is the time interval inwhich
the predicted is supposed to occur. Because most papers focus
on prediction windows of negligible length, we did not consider
prediction windows in this study.

Finally, to the best of our knowledge, this work is the first to
focus on themathematical aspect of fault prediction, and to provide
a model and a detailed analysis of the waste due to all three types
of events (true and false predictions and unpredicted failures).

7. Conclusion

In this work we have studied the impact of fault prediction
on periodic checkpointing. We started by revisiting the first-order
approach byYoung andDaly.Wehave performed a refined analysis
leading to a better checkpointing period: TRFO is slightly closer
to the optimal period for exponential distributions (the only case
where the optimal is known), and leads to smaller execution times
for Weibull distributions (as shown in Section 5.2).

Thenwehave extended the analysis to include fault predictions.
We have established analytical conditions stating whether a fault
prediction should be taken into account or not. More importantly,
we have proven that the optimal approach is to never trust the
predictor in the beginning of a regular period, and to always
trust it in the end of the period; the cross-over point Cp

p depends
on the time to take a proactive checkpoint and on the precision
of the predictor. This striking result is somewhat unexpected,
as one might have envisioned more trust regimes, with several
intermediate trust levels smoothly evolving from a ‘‘never trust’’
policy to an ‘‘always trust’’ one.

We have conducted simulations involving synthetic failure
traces following either an exponential distribution lawor aWeibull
one. We have also used log-based failure traces. In addition, we
have used exact prediction dates and uncertainty intervals for
these dates. Through this extensive experiment setting, we have
established the accuracy of the model, of its analysis, and of
the predicted period (in the presence of a fault predictor). The
simulations also show that even a not-so-good fault predictor can
lead to quite a significant decrease in the application execution
time. We have also shown that the most important characteristic
of a fault predictor is its recall (the percentage of actually predicted
faults) rather than its precision (the percentage of predictions
that actually correspond to faults): better safe than sorry, or better
prepare for a false event than miss an actual failure!

Altogether, the analytical model and the comprehensive results
provided in this work make it possible to fully assess the
impact of fault prediction on optimal checkpointing strategies.
Future work will be devoted to the study of the impact of
fault prediction on uncoordinated or hierarchical checkpointing
protocols. Another challenging problem is to determine the best
trade-off between performance and energy consumption when
combining several resilience techniques such as checkpointing,
prediction, and replication.

Acknowledgments

The authors are with Université de Lyon, France. Y. Robert is
with the Institut Universitaire de France. This work was supported
in part by the ANR RESCUE project. We would like to thank
the reviewers for their comments and suggestions, which greatly
helped improve the final version of the paper.

Appendix A

For the sake of completeness, we provide a proof of the follow-
ing result.

Proposition 2. Consider a platform comprising N components, and
assume that the inter-arrival times of the faults on the components
are independent and identically distributed random variables that
follow an arbitrary probability law whose expectation is µind. Then
the expectation of the inter-arrival times of the faults on the whole
platform is µ =

µind
N .

Proof. Consider first a single component, say component number
q. Let Xi, i ≥ 0 denote the IID random variables for fault inter-
arrival times on that component, with E (Xi) = µind. Consider
a fixed time bound F . Let nq(F) be the number of faults on the
component until time F is exceeded. In other words, the (nq(F) −

1)th fault is the last one to happen strictly before time F , and the
nq(F)th fault is the first to happen at time F or after. By definition



2062 G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064
Fig. B.10. Waste (y-axis) for the different heuristics as a function of the platform size (x-axis), with p = 0.82, r = 0.85, Cp = C (first row), Cp = 0.1C (second row), or
Cp = 2C (third row) and with a trace of false predictions parametrized by a uniform distribution.
of nq(F), we have

nq(F)−1
i=1

Xi ≤ F ≤

nq(F)
i=1

Xi.

Using Wald’s equation [19, p. 486], with nq(F) as a stopping crite-
rion, we derive

(E

nq(F)


− 1)µind ≤ F ≤ E


nq(F)


µind

and we obtain

lim
F→+∞

E

nq(F)


F

=
1

µind
. (A.1)

Consider now the whole platform, and let Yi, i ≥ 0 denote the
IID random variables for fault inter-arrival times on the platform,
with E (Yi) = µ. Consider a fixed time bound F as before. Let n(F)
be the number of faults on the whole platform until time F is ex-
ceeded. With the same reasoning for the whole platform as for a
single component, we derive
lim
F→+∞

E (n(F))

F
=

1
µ

. (A.2)

Now letmq(F) be the number of these faults that strike component
number q. Of course we have n(F) =

N
q=1 mq(F). By definition,

except for the component hit by the last failure, mq(F) + 1 is the
number of failures on component q until time F is exceeded, hence
nq(F) = mq(F) + 1 (and this number is mq(F) = nq(F) on the
component hit by the last failure). From Eq. (A.1) again, we have
for each component q,

lim
F→+∞

E

mq(F)


F

=
1

µind
.

Since n(F) =
N

q=1 mq(F), we also have

lim
F→+∞

E (n(F))

F
=

N
µind

. (A.3)

Eqs. (A.2) and (A.3) lead to the result. �



G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064 2063
(a) Maple. (b) Exponential. (c) Weibull k = 0.7. (d) Weibull k = 0.5.

(e) Maple. (f) Exponential. (g) Weibull k = 0.7. (h) Weibull k = 0.5.

(i) Maple. (j) Exponential. (k) Weibull k = 0.7. (l) Weibull k = 0.5.

Fig. B.11. Waste (y-axis) for the different heuristics as a function of the platform size (x-axis), with p = 0.4, r = 0.7, Cp = C (first row), Cp = 0.1C (second row), or Cp = 2C
(third row) and with a trace of false predictions parametrized by a uniform distribution.
Appendix B

In this section, we provide results for synthetic failure traces
when false predictions are generated according to a uniform
distribution. See Figs. B.10 and B.11.

References

[1] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, F. Vivien, Checkpointing
strategies for parallel jobs, in: Proceedings of SC’11, 2011.

[2] F. Cappello, H. Casanova, Y. Robert, Preventive migration vs. preventive
checkpointing for extreme scale supercomputers, Parallel Process. Lett. 21 (2)
(2011) 111–132.

[3] V. Castelli, R.E. Harper, P. Heidelberger, S.W. Hunter, K.S. Trivedi, K.
Vaidyanathan, W.P. Zeggert, Proactive management of software aging, IBM J.
Res. Dev. 45 (2) (2001) 311–332.

[4] J.T. Daly, A higher order estimate of the optimum checkpoint interval for
restart dumps, FGCS 22 (3) (2004) 303–312.

[5] K. Ferreira, J. Stearley, J.H.I. Laros, R. Oldfield, K. Pedretti, R. Brightwell, R.
Riesen, P.G. Bridges, D. Arnold, Evaluating the Viability of Process Replication
Reliability for Exascale Systems, in: Proceedings of the 2011 ACM/IEEE Conf.
on Supercomputing, 2011.

[6] E.W. Fulp, G.A. Fink, J.N. Haack, Predicting computer system failures using
support vector machines, in: Proceedings of the First USENIX Conference on
Analysis of System Logs, USENIX Association, 2008.
[7] A. Gainaru, F. Cappello,W. Kramer, Taming of the shrew:modeling the normal
and faulty behavior of large-scale hpc systems, in: Proc. IPDPS’12, 2012.

[8] A. Gainaru, F. Cappello, W. Kramer, M. Snir, Fault prediction under the
microscope—a closer look into hpc systems, in: SC’12 (the 2012 International
Conference for High Performance Computing, Networking, Storage and
Analysis), 2012.

[9] T. Heath, R.P. Martin, T.D. Nguyen, Improving cluster availability using
workstation validation, SIGMETRICS Perf. Eval. Rev. 30 (1) (2002).

[10] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, F. Cappello, Modeling and
tolerating heterogeneous failures in large parallel systems, in: Proc. ACM/IEEE
Supercomputing’11, ACM Press, 2011.

[11] J. Hong, S. Kim, Y. Cho, H. Yeom, T. Park, On the choice of checkpoint interval
using memory usage profile and adaptive time series analysis, in: Proc. Pacific
Rim Int. Symp. on Dependable Computing, IEEE Computer Society, 2001.

[12] N. Kolettis, N.D. Fulton, Software rejuvenation: Analysis, module and
applications, in: FTCS ’95, IEEE CS, Washington, DC, USA, 1995, p. 381.

[13] D. Kondo, B. Javadi, A. Iosup, D. Epema, The failure trace archive: Enabling
comparative analysis of failures in diverse distributed systems, Cluster
Computing and the Grid, IEEE International Symposium on 0 (2010) 398–407.
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2010.71.

[14] Y. Liang, Y. Zhang, H. Xiong, R.K. Sahoo, Failure prediction in ibm bluegene/l
event logs, in: ICDM, 2007, pp. 583–588.

[15] Y. Li, Z. Lan, P. Gujrati, X. Sun, Fault-aware runtime strategies for high-
performance computing, IEEE Trans. Parallel Distrib. Syst. 20 (4) (2009)
460–473.

[16] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, S. Scott,
An optimal checkpoint/restart model for a large scale high performance
computing system, in: IPDPS’08, IEEE, 2008.

http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref2
http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref3
http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref4
http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref9
http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref10
http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref11
http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref12
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2010.71
http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref15
http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref16


2064 G. Aupy et al. / J. Parallel Distrib. Comput. 74 (2014) 2048–2064
[17] M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis, Cambridge University Press, 2005.

[18] Y. Robert, F. Vivien, D. Zaidouni, On the complexity of scheduling checkpoints
for computational workflowss, in: FTXS’2012, the Workshop on Fault-
Tolerance for HPC at Extreme Scale, in conjunction with the 42nd Annual
IEEE/IFIP Int. Conf. on Dependable Systems and Networks, DSN 2012, IEEE
Computer Society Press, 2012.

[19] S.M. Ross, Introduction to Probability Models, tenth ed., Academic Press, 2009.
[20] K. Sato, A. Moody, K. Mohror, T. Gamblin, B.R. de Supinski, N. Maruyama, S.

Matsuoka, Design and modeling of a non-blocking checkpointing system, in:
SC’12 (the 2012 International Conference for High Performance Computing,
Networking, Storage and Analysis), 2012.

[21] B. Schroeder, G.A. Gibson, A large-scale study of failures in high-performance
computing systems, in: Proc. of DSN, 2006, pp. 249–258.

[22] J. Wingstrom, Overcoming The Difficulties Created By The Volatile Nature
Of Desktop Grids Through Understanding, Prediction And Redundancy, Ph.D.
Thesis, University of Hawai‘i at Manoa, 2009.

[23] J.W. Young, A first order approximation to the optimum checkpoint interval,
Comm. of the ACM 17 (9) (1974) 530–531.

[24] L. Yu, Z. Zheng, Z. Lan, S. Coghlan, Practical online failure prediction for blue
gene/p: period-based vs event-driven, in: Dependable Systems and Networks
Workshops, DSN-W, 2011, pp. 259–264.
http://dx.doi.org/10.1109/DSNW.2011.5958823.

[25] Z. Zheng, Z. Lan, R. Gupta, S. Coghlan, P. Beckman, A practical failure prediction
with location and lead time for blue gene/p, in: Dependable Systems and
Networks Workshops, DSN-W, 2010, pp. 15–22.
http://dx.doi.org/10.1109/DSNW.2010.5542627.

[26] G. Zheng, X. Ni, L. Kale, A scalable double in-memory checkpoint and restart
scheme towards exascale, in: Dependable Systems and Networks Workshops,
DSN-W, 2012. http://dx.doi.org/10.1109/DSNW.2012.6264677.

Guillaume Aupy received his Master’s degree in 2011
from MPRI (Parisian Master of Research in Computer
Science) and ENS Lyon. He is currently a Ph.D. student
in the Computer Science department of ENS Lyon. His
current research interests include scheduling techniques
and parallel algorithms for distributed systems, energy-
aware and fault-tolerant algorithms.
Yves Robert received the Ph.D. degree from Institut Na-
tional Polytechnique de Grenoble in 1986. He is currently
a full professor in the Computer Science Laboratory LIP at
ENS Lyon. He is the author of 5 books, 110 papers pub-
lished in international journals, and 150 papers published
in international conferences. He is the editor of 10 book
proceedings and 12 journal special issues. He is the advisor
of 25 Ph.D. theses. He served on many editorial boards, in-
cluding IEEE TPDS. He was the program chair of HiPC’2006
in Bangalore, of IPDPS’2008 in Miami and of ISPDC’2009 in
Lisbon. He will be the program co-chair of ICPP’2013 and

HiPC’2013. He is a Fellow of the IEEE. He has been elected a Senior Member of In-
stitut Universitaire de France in 2007 and renewed in 2012. His main research in-
terests are scheduling techniques, parallel algorithms and resilient approaches for
large-scale platforms.

Frédéric Vivien received a Ph.D. degree from École nor-
male supérieure de Lyon in 1997. From 1998 to 2002, he
was an associate professor at Louis Pasteur University, in
Strasbourg, France. He spent the year 2000 working in the
Computer Architecture Group of the MIT Laboratory for
Computer Science. He is currently a full researcher from
INRIA, working at ENS Lyon, France. He leads the INRIA
project-team GRAAL which focuses on Scheduling strate-
gies and algorithm design for heterogeneous distributed
platforms. He visited for one year the CoRG group of the
University of Hawai’i at Mānoa. He is the author of one

book, 25 papers published in international journals, and 40 papers published in in-
ternational conferences. He is also the editor of one textbook. His main research
interests are scheduling techniques and parallel algorithms for distributed and/or
heterogeneous systems.

Dounia Zaidouni is a Ph.D. student currently working
in the department of computer science at ENS-Lyon
(France). Dounia received her Master’s degree in 2011
from University of Lyon 1 and INSA of Lyon. Her current
research interests include Resource allocation and Fault
tolerance algorithms for exascale applications.

http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref17
http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref18
http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref19
http://refhub.elsevier.com/S0743-7315(13)00221-9/sbref23
http://dx.doi.org/10.1109/DSNW.2011.5958823
http://dx.doi.org/10.1109/DSNW.2010.5542627
http://dx.doi.org/10.1109/DSNW.2012.6264677

	Checkpointing algorithms and fault prediction
	Introduction
	Framework
	Checkpointing strategy
	Fault predictor
	Fault rates
	Objective: waste minimization

	Revisiting Daly's first-order approximation
	Taking predictions into accounts
	Simple policy
	Refined policy
	Waste minimization

	Simulation results
	Simulation framework
	Simulations with synthetic traces
	Simulations with log-based traces
	Recall versus precision

	Related work
	Conclusion
	Acknowledgments
	Appendix A
	Appendix B
	References


