
Quantitatively Modeling Application Resilience with
the Data Vulnerability Factor

Li Yu�, Dong Li†, Sparsh Mittal†, and Jeffrey S. Vetter†§

†Oak Ridge National Laboratory, �Illinois Institute of Technology,
§Georgia Institute of Technology

{lyu17}@iit.edu, {lid1, mittals, vetter}@ornl.gov

Abstract—Recent strategies to improve the observable re-
silience of applications require the ability to classify vulnerabili-
ties of individual components (e.g., data structures, instructions)
of an application, and then, selectively apply protection mecha-
nisms to its critical components. To facilitate this vulnerability
classification, it is important to have accurate, quantitative tech-
niques that can be applied uniformly and automatically across
real-world applications. Traditional methods cannot effectively
quantify vulnerability, because they lack a holistic view to exam-
ine system resilience, and come with prohibitive evaluation costs.
In this paper, we introduce a data-driven, practical methodology
to analyze these application vulnerabilities using a novel resilience
metric: the data vulnerability factor (DVF). DVF integrates
knowledge from both the application and target hardware into the
calculation. To calculate DVF, we extend a performance modeling
language to provide a structured, fast modeling solution. We
evaluate our methodology on six representative computational
kernels; we demonstrate the significance of DVF by quantifying
the impact of algorithm optimization on vulnerability, and by
quantifying the effectiveness of specific hardware protection
mechanisms.

I. INTRODUCTION

The continued growth of today’s extreme-scale systems is
fueled by the two trends: continued integration of additional
functionality onto system nodes, and the increased number of
nodes (and components) in the systems [7]. Meanwhile, suc-
ceeding generations of these systems introduce new challenges
in managing system performance, power, and reliability.

In this regard, strategies for improving the visible resilience
of extreme-scale applications continue to evolve. Recent tech-
niques for resiliency [13] require the ability to estimate the
resilience of each specific application component rather than
treating the application processes monolithically [8], [19], [22],
[29]. This work extends our previous work [24] that revealed
a wide range of responses of application data structures to
system memory errors.

Resilience variance within an application demands a quan-
titative approach to measure application vulnerability with
enough resolution to distinguish the resilience differences
across application components in order to selectively apply
protection mechanisms to those important components. We
believe that selective use of these safeguards is critical when
balancing their benefits against the costs of their respective
overheads. Hence, quantifying real-world application resilience

uniformly and automatically is absolutely essential for practi-
cal design of resilient extreme-scale systems.

When an application is executed on a specific hardware, the
visible resilience of the application is determined by both ap-
plication and hardware. In particular, the application algorithm
and implementation impact the sensitivity of the application
to errors [9], [10], [20] and constrain error propagation [32],
[41]; the hardware decides fault patterns (i.e., how frequently
and where the faults happen), which in turn impacts runtime
states of the application. Hence, an accurate resilience study
of extreme-scale applications should use a holistic view and
capture the effects of both application and hardware.

The existing methodologies to understand application re-
silience are not sufficient to guide the resilient system design.
They either rely on statistical-based fault injection or detailed
architecture analysis. The statistical-based fault injection tech-
nique injects random faults into application states [10], [24],
[41] or hardware components [23], [33]. To ensure statistical
significance, researchers have to perform a large amount of
fault injection operations, which is prohibitively expensive.
In addition, researchers can only statistically characterize
application resilience; there is no capability to quantitatively
compare the resilience of application components, which limits
the application of fault injection results to optimize resilience
mechanisms. The other existing methodology, the detailed
architecture analysis [6], [31], is highly hardware-oriented, and
it cannot perform fined-grained resilience analysis (e.g., at the
granularity of data structures) at the application level.

In this paper, we introduce an analytical model-based
approach to quantify application resilience. We propose a novel
resilience metric, named the data vulnerability factor (DVF),
to quantify vulnerability of individual data structures. The
creation of DVF intends to holistically examine the system
stack and capture the impacts of both application and hardware
on data vulnerability. Hence, the introduction of DVF seeks to
avoid the isolation between application and hardware when
evaluating application resilience. In this paper, we limit our
study to a specific hardware component, the main memory.
But the definition of DVF is also applicable to other hardware
components (e.g., cache hierarchy, register file and network
interface card).

In this paper, we use a data-driven approach and focus
on quantifying the resilience of data structures (e.g., the tree
structure in the Barnes-Hut N-body simulation and the matrices
in matrix multiplication). Using the data-driven approach is

SC14: International Conference for High Performance Computing, Networking, Storage and Analysis

978-1-4799-5500-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SC.2014.62

695

critical for the resilience research, because HPC applications
are characterized with a large amount of data structures, and
the application outputs are typically stored in data structures.

Furthermore, many popular resilience mechanisms are
designed to protect data structures (e.g., checkpointing and
specific algorithm-based fault tolerance methods [11], [12],
[14], [15], [17]). Quantifying the resilience of data structures
can benefit the designs of those mechanisms and implement
selective protection with minimal overhead.

To measure DVF, we introduce a novel modeling method
based on a domain specific language (DSL) for system model-
ing, Aspen [35]. We extend the syntax and semantics of Aspen
to facilitate the DVF calculation. Furthermore, we categorize
memory access patterns after investigating a number of HPC
application kernels, and derive a set of general approaches to
calculate DVF. Based on the extended Aspen, researchers can
quickly explore and compare the resilience of data structures
with various hardware options; researchers can also investigate
the trade-off between performance and resilience, shown in our
two use cases. Furthermore, using the Aspen-based approach,
the evaluation cost is at the time granularity of seconds, much
smaller than the evaluation costs associated with the statistical-
based fault injection and detailed architecture analysis.

The major contributions of this paper are summarized as
follows:

1) We create an analytical model-based approach to ana-
lyze application resilience based on a novel resilience
metric, DVF; DVF integrates the resilience effects of
both application and specific hardware into the resilience
analysis, hence providing a more complete view of system
resilience than the traditional methods;

2) We introduce a method to measure DVF by extending
a domain specific language for system modeling. This
method provides a fast solution to model application
resilience;

3) We measure six numerical kernels from a spectrum of
computational domains, including dense linear algebra,
sparse linear algebra, N-body methods, structured grids,
spectral methods and Monte Carlo;

4) We demonstrate the values of DVF by two use cases. In
the first use case, we quantify the impact of algorithm
optimization on algorithm resilience; in the second use
case, we quantify the effectiveness of a hardware protec-
tion mechanism in terms of resilience and explore the
tradeoff between performance and resilience. The two
use cases show that the DVF-based analytical model
provides valuable guides to the design of algorithms and
optimization of hardware-based protection.

II. INTRODUCTION TO ASPEN

Our resilience modeling is based on Aspen. Aspen is a
domain specific language for structured analytical modeling
of applications and architectures. Aspen specifies a formal
grammar to describe an abstract machine model and describe
an application’s behaviors, including available parallelism, op-
eration counts, data structures, and control flow. Aspen’s DSL
constraints models to fit the formal language specification,
which enforces similar concepts across models and allows
for correctness checks. Aspen is designed to enable rapid

exploration of new algorithm and architectures. Because of
the succinctness, expressiveness and composability of Aspen,
we use Aspen as the vehicle for our resilience modeling. A
more detailed description of Aspen can be found from [35].

Based on Aspen, our resilience modeling intends to capture
resilience effects of both application and hardware. Further-
more, our resilience modeling is designed to be a facilitator for
coarse-grained exploration of application resilience on specific
hardware. Like prior Aspen, our resilience modeling intends to
achieve excellent flexibility, performance, ease and scalability
with balanced accuracy. It complements traditional simulation
approaches by avoiding detailed architectural information and
detailed application source code.

In this paper, we model application resilience with the
consideration of a single hardware component, main memory.
Our ongoing work involves additional hardware components
and critical application behaviors into the resilience modeling.

III. RESILIENCE MODELING

In this section, we discuss the resilience modeling in more
details. We first introduce the concept of DVF. Then we explain
how to measure DVF based on Aspen. The notations for the
resilience modeling are summarized in Table I.

TABLE I. NOTATIONS FOR THE RESILIENCY MODELING

DV Fd DVF for a specific data structure
FIT Failure rate (i.e., failures per billion hours per

Mbit)
T Application execution time
Sd Size of data structure
Nerror Number of errors that could occur to a specific

data structure during application execution
Nha Number of accesses to hardware (the main

memory in this work)
n Number of major data structures in an appli-

cation
DV Fa DVF for the application

A. DVF: A New Resilience Metric

DVF is designed to quantify the effects of hardware and
application on application resilience. DVF for a specific data
structure (DV Fd) is defined in Equation (1). Generally speak-
ing, DVF for a data structure is defined as the multiplication
of number of errors (Nerror) and number of accesses to the
hardware component due to accesses to the data structure
(Nha). Nerror refers to the errors that could happen to the
data structure due to hardware failure. Given the execution
time, failure rate and data size, Nerror can be calculated as
Nerror = FIT ∗ T ∗ Sd. We discuss how to calculate Nha in
Section III-B.

DV Fd = Nerror ∗Nha

= FIT ∗ T ∗ Sd ∗Nha

(1)

The term Nerror captures critical hardware effects (i.e., the
failure rate) and application effects (i.e., the execution time and
data size); The term Nha captures application effects (i.e., the
memory access pattern). Intuitively, a higher hardware failure
rate, a longer execution time, a larger data size, and a larger

696

number of accesses to a data structure indicate that the data
structure is more vulnerable, because the data structure has
more chances to be corrupted and the corruption has more
chances to affect the application. The definition of DVF for
a data structure is aligned with the above intuition: a larger
value of DVF indicates a more vulnerable data structure and
vice versa.

The definition of DVF for a data structure employs a
straight multiplication of Nerror and Nha, based on an im-
plicit assumption that these two resilience effects have equal
contributions to the vulnerability of the data structure. In fact,
many other metrics (e.g., the energy which is the product of
power and time, EDP which is the product of energy and
delay, and the impulse which is the product of force and time),
use the similar assumption to capture the effects of multiple
contributing factors. A further refined definition of DV F could
assign a weighting factor to each term to account for diverse
vulnerability contributions from each term.

DVF for an application (DV Fa) is defined in Equation (2).
Generally speaking, DV Fa is the numerical summation of
DVFs of those major data structures within the application.
The combination of major data structures accounts for most of
the working set size of an application, and most of the com-
putational operations happen to those data structures. Hence,
DV Fa is employed to evaluate the application vulnerability.

DV Fa =
n∑

i=1

DV Fdi
(2)

Based on the above definition of DVF, we are able to
perform comparative studies of resilience at the level of fine-
grained data structure and coarse-grained application. In addi-
tion, we can use DVF in a number of research scenarios. For
example, we use DVF to evaluate the algorithm optimization
and quickly explore the tradeoff between performance and
resilience (shown in Section V); we use DVF to decide whether
a specific resilience mechanism provides sufficient protection,
given a pre-defined DVF target; we use DVF to compare the
effectiveness of diverse fault tolerance mechanisms; we use
DVF to determine if a data structure is vulnerable and whether
we should enforce extra protection.

To calculate DVF, we must calculate Nha. We discuss it in
the next two subsections. The general workflow of calculating
DVF with Aspen is described in Section III-D.

B. Counting Main Memory Accesses Based on Data Access
Patterns

Counting the number of main memory accesses to a data
structure is challenging because of the following reasons. First,
we must consider the caching effects. The cache hierarchy re-
duces the number of accesses to the main memory. The caching
effects are tightly coupled with memory access patterns which
are determined by the application. Second, we intend to
maintain the successful paradigm of Aspen which demands
no detailed application source code and limited architectural
information while providing fast exploration of application
characteristics on various hardware options. However, this
paradigm imposes a great challenge on counting memory

accesses, because accurately counting the number of memory
accesses heavily depends on the details of application imple-
mentation and system designs. Third, we perform the memory
access analysis at the granularity of individual data structures.
This is different from the traditional methods that focus on
the whole application working set. Analyzing memory access
at the data structure level requires establishing connections
between data semantics and memory accesses. This further
imposes challenges on our analysis.

We introduce a novel analytical modeling method
to address the above challenges, namely coarse grained,
pseudocode-based memory access accounting (CGPMAC).
CGPMAC works at the high-level pseudo code, making it inde-
pendent of the application implementation details. CGPMAC
leverages the access order of critical data structures extracted
from the high-level pseudo code, and estimates the number
of main memory accesses due to the last level cache misses
and evictions, based on the probability analysis and the coarse
grained reuse analysis. Hence, CGPMAC intends to capture
temporal access patterns and provide a strong indication to
the realistic memory accesses.

After investigating a number of representative HPC appli-
cation kernels, we classify memory access patterns into four
classes to facilitate CGPMAC-based analysis. The memory
access pattern for a specific data structure can be charac-
terized by the composition of these four classes of memory
access patterns. Hence, our method inherits modularity and
composability of Aspen. We will discuss these four classes
and describe how CGPMAC is applied to the six numerical
algorithms listed in Table II.

C. Four Classes of Data Access Patterns

The four generalized memory access patterns are streaming
access, random access, template-based access, and data reuse
access. We explain how to estimate the number of main
memory accesses corresponding to each of these memory
access patterns. In addition, we only consider the last level
cache during analysis, because it has the largest impact on the
number of main memory accesses within the cache hierarchy.
This is especially true for inclusive caches. The parameters for
the last level cache and data structures used in our models are
summarized as below.

TABLE III. NOTATIONS FOR THE LAST LEVEL CACHE AND DATA

STRUCTURES.

Cc Cache capacity
CA Cache associativity
NA Number of cache sets
CL Cache line length
D Data structure size
N Number of elements in a data structure
E Size of a single element

Streaming Access Pattern The streaming access is defined
as a sequential traverse of a data structure with a fixed stride
length. Since each element in the data structure is accessed
at most once, all the main memory accesses are caused by
compulsory cache misses. Figure 1 shows an example, in
which S is the access stride length. To estimate the number
of main memory accesses for the streaming access pattern, we
consider three cases.

697

TABLE II. SIX NUMERICAL ALGORITHMS EMPLOYED IN THIS WORK

Algorithm name Computational method
class

Major data structures Memory access patterns Example benchmarks

Vector Multiplication (VM) Dense linear algebra A, B, and C Streaming Homemade code
Conjugate Gradient (CG) Sparse linear algebra A, x, p and r Template+Reuse+streaming NPB CG [2]
Barnes-Hut simulation (NB) N-body method T and P Random [1]
Multi-grid (MG) Structured grids R Template-based NPB MG [2]
1D FFT (FT) Spectral methods A Template-based NPB FT [2]
Monte Carlo simulation (MC) Monte Carlo G and E Random XSBench [4]

���

���

�� �� �� �� �� ��

������	�
�����������
�� ��

��� ��
���

��
���

��
���

����������������

��� ��� ���

��

Fig. 1. An example of steaming accesses to a data structure.

In the first case, the cache line length is no larger than
the element size (i.e., CL ≤ E). Depending on whether the
element is aligned with the cache line, each reference to the
element either introduces �E/CL� or �E/CL� + 1 memory
accesses. The former occurs when the element is aligned with
cache lines, while the later occurs when it is out of alignment.
Assuming that each byte within a cache line has the same
probability to save the element , then the probability of having
�E/CL�+1 memory accesses (i.e., nonalignment) is calculated
as

p =
(E − 1) mod CL

CL

(3)

Consequently, the expected number of main memory accesses
for each element reference (AE) is

AE = �E/CL� ∗ (1− p) + (�E/CL�+ 1) ∗ p

= �E/CL�+ p
(4)

If the stride length is larger than the element size (i.e.,
E < S), then no cache line can be used by more than one
element. The number of elements accessed is �D/S�, and the
number of main memory accesses is estimated as �D/S�∗AE .
If the stride length is equal to the element size (note that the
stride length is typically no smaller than the element size), all
cache lines used by the data structure need to be loaded. The
total number of memory access is estimated as �D/CL�.

In the second case, the cache line length is between the
element size and the stride length (i.e., E < CL ≤ S). Similar
to the previous case, each reference to an element in this
case introduces either 1 or 2 memory accesses, depending
on whether the element is aligned with the cache line. The
expected number of main memory accesses for each element
reference is 1 ∗ (1 − p) + 2 ∗ p = 1 + p, and the number of
elements accessed is �D/S�. Hence the total number of main
memory access is estimated as �D/S� ∗ (1 + p).

In the third case, the cache line length is larger than the

stride length (i.e., S < CL). All the cache lines used by the
data structure need to be loaded and the total number of main
memory access is estimated as �D/CL�.

Random Access Pattern The random access pattern exists
in a number of scientific applications such as N-body simula-
tion and Monte Carlo simulation. This pattern is characterized
with a computation loop within which the elements of the
target data structure are randomly accessed in each iteration,
and whether there is any access to each element depends on
control flows and runtime states. For example, the Barnes-Hut
algorithm (N-body simulation) organizes n bodies (i.e., the
elements) into a quad-tree (i.e. the data structure). To calculate
the net force on a particular body, the tree is traversed to
calculate the force acting on the body. During the tree traverse,
whether a particular body will be accessed or not depends on
the physics, which is random and dependent on the runtime
states. To calculate the net force for all bodies, the tree must
be repeatedly traversed. Hence, unlike the steaming access
pattern, the random access could result in an unpredictable
number of accesses to each element. During the modeling,
we assume that each element in the target data structure is
already traversed once before the random accesses happen.
This assumption is used to model the data construction phase,
commonly found in many scientific applications.

Our modeling for the random access is based on a proba-
bility analysis. In particular, we calculate the probability that
the data elements are still in the cache after random visits, and
then we estimate the number of data blocks that need to be
loaded into the cache based on the calculated probability. To
analyze the random access pattern for a target data structure,
we require five parameters as inputs, including (1) the number
of elements in the target data structure, denoted by N ; (2) the
element size denoted by E; (3) the average number of distinct
elements visited in each iteration denoted by k; (4) the number
of iterations denoted by iter; and (5) the ratio of cache blocks
occupied by the target data structure to the whole cache blocks,
denoted by r.

The parameters k and iter are used to reduce randomness
for modeling and make the analysis of memory access formal-
izable. These two parameters are usually output as a part of
the application results, hence they can be easily obtained by
profiling application on any available hardware. The parameter
r is used to model the cache interferences between concurrent
random accesses to multiple data structures. In particular, we
model the impact of the cache interference by dividing the
cache among all data structures. Each data structure gets only a
fraction of the cache according to its size. For example, for the
Monte Carlo simulation, two data structures (Grid and Energy)
are randomly and concurrently accessed. Given the data sizes
Sgrid and Seng for the Grid and Energy respectively, the Grid

698

gets the cache size Sgrid/(Sgrid+Seng)∗Cc while the Energy
gets the cache size Seng/(Sgrid + Seng) ∗ Cc. The number
of main memory accesses for each data structure is estimated
based on a fraction of the cache instead of the whole cache. In
fact, a similar method has been employed to model the cache
interferences in [28].

Depending on the relationship between the data structure
size and the cache capacity, we categorize the random access
into two cases.

In the first case, all of the data elements can be loaded into
the cache (i.e., E ∗N ≤ Cc ∗ r). The random accesses to the
data structure only introduce compulsory cache misses. The
number of memory access is estimated as �E ∗N/CL�.

In the second case, the cache capacity is smaller than
the size of the data structure (i.e., Cc ∗ r < E ∗ N). The
first accesses to the data elements still causes �E ∗ N/CL�
times memory access. However when some of the elements
are randomly re-visited, they may not be in the cache and
cause additional memory accesses. To calculate the number
of main memory accesses for this case, we first calculate the
expected number of elements that are not in the cache, then
we calculate the number of cache blocks that must be loaded
in order to load these missed elements.

Let X be a variable representing the number of elements
that are not in the cache when k distinct elements are visited,
we have

P (X = x) =

(
k

k−x

)(
N−k

m−k+x

)
(
N
m

) (5)

where m is the number of elements that can be loaded into
the cache (i.e., m = Cc ∗ r/E) at the same time. Equation 5
describes the possibility of any (k − x) elements out of k
distinct elements appearing in any m elements loaded into the
cache. Based on Equation 5, we can calculate the expected
number of elements not in the cache, shown in Equation 6.

XE =

min{N−m,k}∑
x=1

P (X = x) ∗ x (6)

Given XE , we now calculate the number of cache blocks
that need to be read from the main memory in order to load
XE elements. In particular, if the element size is larger than
the cache line size (i.e., CL < E), then the number of needed
cache blocks is roughly calculated as Belm = �(E/CL)� ∗
XE ; otherwise, the number of needed cache blocks is roughly
estimated as Belm = XE , which is the largest possible number
of needed cache blocks (the number of needed cache blocks
could be smaller). Furthermore, as the total number of cache
blocks used by the data structure is E ∗N/CL and CA∗NA∗r
cache blocks are in the cache, the number of cache blocks not
in the cache is Bout = E ∗N/CL−CA ∗NA ∗ r. This implies
that the XE elements cannot be loaded by more than Bout

cache blocks.

Based on the above discussion, we estimate the average
number of cache blocks that need to be reloaded per iteration

as

Breload = min(Belm, Bout) (7)

Finally, the total number of main memory accesses for
iter iterations plus the data initialization is calculated as
�E∗N/CL�+Breload∗iter (note that �E∗N/CL� comes from
the initial accesses to the target data structure before random
accesses).

Template-Based Access Pattern Some data structures
have very complex memory access patterns falling between
the streaming access and the random access. In particular,
these access patterns are more complicated than the streaming
access but cannot be simply categorized into the random access
because they follow specific rules. For example, for the mesh-
based PDE solver, the accesses to mesh elements of the data
structure mesh follow specific topology or stencil information
instead of arbitrarily constructed. We call this kind of access
pattern, the template-based access pattern.

��� ��� ��� ��� ��� ��� � ��!�� ��!�� ���

���� �� ���� �� �!���!�� ��

���

��"�"��#�#��"�!�"�!��� $�"�"�"�"�"�"� %�
��&'�(��&)�(�
*���
�&&

�+�,����

-�����&&

�+�,����
.�/
/�

Fig. 2. An example of the template based access.

To estimate the number of main memory accesses for a
data structure with the template-based access pattern, the users
are required to input detailed information about the memory
access. Assume the size of the data structure is D and the
number of cache blocks needed to load the data structure is
n = �D/CL�. We represent the data structure by a set of
data blocks B = {b1, b2, ..., bn}. Then the access template T
can be any combination of the elements in B. Section III-D
gives an example of how to express the template. According to
the memory access template, we estimate the number of main
memory accesses by the following two-steps algorithm.

• Step 1. For each data block bi in template T , if bi appears
for the first time, we increase the number of the memory
accesses by one.

• Step 2. If bi appears more than once, then we calculate the
distance between this appearance and the immediate last
appearance, denoted by d. If d is larger than the maximum
available cache capacity, then a cache miss could occur.
We then increase the number of main memory accesses
by one.

In addition, to improve the usability of this model, we allow
users to input the template based on data structure elements,
and the template can be expressed in a regular expression
similar to the one in Matlab. The parser then converts the
template to a cache block-based template. Figure 2 shows an
example.

Data Reuse Pattern The data reuse pattern indicates that
data is repeatedly accessed by the application. When the

699

data is reused, the requested data may or may not be in
the cache because of the cache interference from the other
existing data structures. The random access pattern and the
template-based access pattern also have the characteristics of
data reuse. However, the data reuse in the random access
pattern is unpredictable; the data reuse in the template-based
access pattern is highly regular and structural. The data reuse
pattern in this section refers to those cases not included in the
random and template-based access patterns. In particular, this
pattern is predictable, but it cannot be easily expressed with a
template. Also, this pattern requires a thorough consideration
of the cache interferences between multiple data structures.
For example, the data structure pk in CG (see Algorithm 4)
is repeatedly used within each iteration, however we cannot
easily use a template to describe the reuse pattern because of
the complex program structure and logic. Also, the accesses to
pk are interfered by other data structures such as A, x and r.
In the following discussion, we will use the terms cache block
and data block interchangeably.

Similar to the random access model, the key idea to model
the data reuse pattern is based on a probability analysis. We
first model that the target data structure is exclusively loaded
into the cache (Equation 8) or concurrently loaded into the
cache with other interfering data structures (Equation 10); after
the target data structure is loaded, we model how the target data
structure is reused and interleaved with the other interfering
data structures (Equations 11 and 12).

Similar to [38], we model the allocation of data blocks into
cache associative sets as a Bernoulli trial (Equation 8), i.e., a
data block has equal opportunity to be allocated into any of the
associative sets. We define that A is the target data structure
with a size FA in terms of the number of cache blocks and
XA is a variable representing the number of cache blocks left
by A in a single cache set when A exclusively uses the cache.
The probability that x cache blocks are left by A in a cache
set is estimated as

P (XA = x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

NA

)x ∗ (1−
1

NA

)FA−x, x < CA

FA∑
i=A

(
1

NA

)i ∗ (1−
1

NA

)FA−i, x = CA

(8)

where 1

NA
is the probability that a data block of A falls into

one of the cache sets and the cache associativity CA is the
maximum number of cache blocks that can be left in one set.

The expected number of cache blocks left by A in a cache
set is

E(XA) =

CA∑
r=1

P (XA = r) ∗ r (9)

Now we consider the scenario when A is loaded concur-
rently with other data structures. To simply the model, we
consider other data structures as a whole, denoted by B with
FB as its size in terms of the number of cache blocks. XB

is a variable representing the number of cache blocks left by
B in a cache set when B exclusively use the cache. RA is a

variable representing the number of cache blocks left by A in
a cache set when A and B are loaded concurrently. We have

P (RA = r|XA = x,XB = y)

=

⎧⎪⎪⎨
⎪⎪⎩

1, r = x and x+ y ≤ CA

1, r = CA ∗
x

x+ y
and x+ y > CA

0, otherwise

(10)

Equation 10 states that: (1) if the cache blocks left by A
and B for the exclusive usage of the cache can be loaded into
the cache at the same time, then there is no interference; (2)
otherwise, the cache blocks allocated to A are a fraction (i.e.,
x/(x+ y)) of a cache set.

After A is accessed and loaded into the cache, the interfer-
ing data B can be immediately accessed and impact the future
reuse of A. There are two possible scenarios. The first scenario
follows Equation 8 (i.e., A is exclusively loaded); the second
scenario follows Equation 10 (i.e., A is concurrently loaded
with other data structures). For the first scenario, if the cache
replace happens, the accesses to B will replace cache blocks
not belonging to A because of the LRU policy and because A
is just accessed. After all the other cache blocks in each set
have been replaced, the cache blocks for A will be replaced.
Based on the above analysis, we calculate the possibility that
A leaves r data blocks in a cache set after accessing B as

P (RA = r|XA = x,XB = y)

=

⎧⎨
⎩

1, x+ y ≤ CA and r = x

1, x+ y > CA and r = CA − y

0, otherwise

(11)

Equation 11 states that if there is no interference (i.e., x+y ≤
CA) then all the cache blocks for A will stay in the cache;
otherwise, a specific number (x+y−CA) of cache blocks for
A will be replaced.

For the second scenario, we first calculate the expected
number of data blocks left by A and B based on Equations 8
and 9. This can be done by regarding A and B as a combined,
single data structure. We refer this expected number as I . If the
cache replace happens, any of I cache blocks can be replaced.
We calculate the possibility that A leaves r data blocks in a
cache set after accessing B as

P (RA = r|XA = x,XB = y)

=

(
x

x−r

)(
I−x

y−x+r

)
(
I
y

) (12)

Based on Equations 8 and 10-12, we calculate P (RA = r)
as follows.

P (RA = r,XA = x,XB = y)

= P (RA = r|XA = x,XB = y)

∗ P (XA = x) ∗ P (XB = y)

(13)

700

P (RA = r) =

CA∑
x=0

CA∑
y=0

P (RA = r,XA = x,XB = y) (14)

Based on Equation 14, we calculate the expected number
of cache blocks left by A in a cache set as

E(RA) =

CA∑
r=1

P (RA = r) ∗ r (15)

The number of main memory accesses to A includes loading
those elements not in the cache, which is estimated as FA −
NA ∗ E(RA).

D. Extending Aspen

We extend syntax and semantics of Aspen to allow users
to express memory access patterns of a target data structure
and describe hardware information. We also extend the Aspen
compiler to implement the models in the last subsections.
Figure 3 depicts the workflow to calculate DVF based on the
user input information and Aspen compiler.

0����/�1���
2�/*3�/�4���/�������

��&'��������/������

-���
�/�&��/�4���/�������

���� ��/�*� �&&

�.���/��

+�,���� ��'/�.�/���/
�

�5��**��
,��6�*��

�5��**��
,�����
,��/�

7��8/�����
0����/
�

7��8/�����
�&&

� -90�

�,,��&������4���/�������

�
,��6�*��

�/&'��&��/���4���/��������

,
��
��
�
,�
�
/��5&������

+���

Fig. 3. The workflow to calculate DVF.

To explain the new syntax of Aspen for the memory access
patterns, we use four out of the six algorithms (see Table II)
as examples. The first algorithm is the vector multiplication
(VM) that calculates the product of two arrays, shown in
Algorithm 1. In VM, the data structure A, B and C have the
stream access patterns, but with different access strides. To
describe the streaming access pattern, there are three Aspen
parameters, including the element size in bytes, the number of
elements in the target data structure, and the the stride length
measured by number of elements. An example for the data
structure A is shown as follows. This example shows that the
data structure A has 200 elements, each of which is 8 bytes,
and the stride is 8 ∗ 4 = 32 bytes (4 elements).

Algorithm 1 Vector Multiplication

procedure VM(A,B,C) � C=A*B
for i← 1, n do

Ci ← Ci +Ai∗j ∗Bi∗k

end for
end procedure

Aspen Program
Data structure : {A}
Access Pattern : {s}
Parameters : {(8,200,4)}

Algorithm 2 The core procedure for Barnes-Hut algorithm

procedure FORCE UPDATE(p,node)
if region at node contains 1 particle then

compute force between the two particles
else

if p is distant enough from region then
compute force between p and region center

else
for each subnode of node do

Force Update (p,subnode)
end for

end if
end if

end procedure

Aspen Program
Data structure : {T}
Access Pattern : {r}
Parameters : {(1000,32,200,1000,1.0)}

The second example is the core procedure of Barnes-
Hut algorithm that is widely used for simulating the N-body
problem. In this procedure, all nodes are organized into a tree
structure (T), and each node needs to be compared with a
portion of other nodes in the tree. The number of comparisons
for each node depends on the tree structure and particle’s mass
which are usually generated randomly. Hence the memory
accesses to the tree are random. Algorithm 2 depicts the
procedure. As mentioned earlier, the parameters to describe
the random access pattern include N , E, k, iter and r. In
this example, there are 1000 tree nodes (N = 1000) with
size 32 bytes (E = 32). The number of iteration is 1000
(iter = 1000), and the average number of node comparisons
in each iteration is 200 (k = 200). The cache ratio factor is
1.0 (r = 1.0).

Algorithm 3 A smoother procedure in Multi-grid

procedure SMOOTHER(R) � R(i,j,k)=i*n2*n1+j*n1+k
for i← 2, n3− 1 do

for j ← 2, n2− 1 do
for k ← 1, n1 do

R[i] = R(i,(j-1),k)
+ R(i,(j+1),k)
+ R((i-1),j,k)
+ R((i+1),j,k)

end for
end for

end for
end procedure

Aspen Program
Data structure : {R}
Access Pattern : {t}
Parameters : {(16)}
Template : {(R(2, 1, 1), R(2, 3, 1), R(1, 2, 1), R(2, 2, 1)) :
1 : (R(n3−1, n2−2, n1), R(n3−1, n2, n1), R(n3−2, n2−
1, n1), R(n3, n2− 1, n1))}

The third example is for the template-based access pattern.
Algorithm 3 shows the smoother procedure in Multi-grid

701

algorithm (MG), in which the grid (denoted by R) is accessed
following a specific template. According to the pseudocode,
the procedure starts with sequential references of four start-
ing elements in R (i.e., R(2, 1, 1), R(2, 3, 1), R(1, 2, 1) and
R(2, 2, 1)) and then within each iteration the algorithm ad-
vances accesses to the elements in the last iteration by one until
reaching the grid boundary (i.e., R(n3−1, n2−2, n1), R(n3−
1, n2, n1), R(n3−2, n2−1, n1) and R(n3, n2−1, n1)). In the
template, the four starting elements are expressed as a function
of n1, n2 and n3. For example, the first reference element is
R(2, 1, 1) = 2 ∗ n2 ∗ n1+ n1+ 1. Also, we input the element
size (16) as a parameter, based on which the input template
can be converted to the cache block-based template.

The fourth example is a complex example, particularly
Conjugate Gradient method (CG), including the reuse pattern
and other patterns. Algorithm 4 shows one iteration in the CG,
in which four data structures (i.e., A, x, p, r) are referenced
and reused. To describe the access patterns, the model input
includes a list of data structures (A, r, p, x), a list of data access
order based on the pseudo code for reuse analysis, a list of
data access patterns for individual data structures, a list of
parameter sets to describe data structures (i.e., data structure
size, element size, and stride size) for the streaming patterns
and templates. In this example, due to the space limit, we do
not show the templates for data structure A and p and some
parameter sets for p, r, and x.

Algorithm 4 One iteration in Conjugate Gradient method

procedure ITERATION(A, r, p, x)

αk =
rT
k
rk

pT

k
Apk

xk+1 = xk + αkpk
rk+1 = rk − αkApk

βk =
rT
k+1rk+1

rT
k
rk

pk+1 = rk+1 + βkpk
k ← k + 1

end procedure

Aspen Program
Data structure : {A r p x}
Access order : {r(Ap)p(xp)(Ap)r(rp)}
Access Pattern : {s(tt)s(ss)(tt)s(ss)}
Parameters : {(8,200,4)...}
Template : {...}

IV. RESULTS

In this section, we first validate our models by estimating
the number of main memory accesses. Then we measure DVF
for diverse numeral algorithms (i.e., DVF profiling), and study
the implications of DVF on algorithm designs. To validate
the memory access models, we develop a tool to collect
memory references based on Pin [27]. We also develop a
configurable cache simulator that uses the memory references
as input and counts number of memory accesses for specific
data structures after caching. We then compare the number of
memory accesses reported by the cache simulator with the
number estimated by our models. The cache simulation is
based on the popular LRU algorithm and can report the number
of cache misses and writebacks. We simulate a last level cache
during the model verification. The cache configurations are

summarized in Table IV. During the verification and DVF
profiling, we focus on the major computation parts of the
algorithms, and ignore initialization and finalization phases,
because most computation operations happen in those compu-
tation parts. The FT algorithm used in our experiments is a
segment of codes from the NPB FT benchmark that conducts
a 1D FFT computation. For the MG algorithm, we use the
V-cycle kernel and skip the other segments.

TABLE IV. CACHE CONFIGURATION.

Cache CA NA CL Cc

Small (Verification) 4 64 32 bytes 8KB
Large (Verification) 16 4096 64 bytes 4MB
16KB (Profiling) 2 1024 8 bytes 16KB
128KB (Profiling) 4 2048 16 bytes 128KM
1MB (Profiling) 6 4096 32 bytes 1MB
8MB (Profiling) 8 8192 64 bytes 8MB

A. Verification of Estimating Number of Main Memory Ac-
cesses

For the model verification, we choose two sets of cache
configurations (i.e., the small and large ones shown in Ta-
ble IV). We also use a set of relatively small input sizes
(Table V) for the algorithms, because the cache simulation is
very time consuming with the memory traces of the large input
problem sizes. For the small cache configuration, we choose
the cache to be small enough to have cache interferences.
Figure 4 presents the verification results.

The figure shows that our model provides accurate estima-
tions for all access patterns in general. The estimation error
is within 15% in all cases. For the random access pattern
(Barnes-hut and Monte Carlo), even though there is access
randomness, given the sufficient information from users, our
model still achieves good estimation accuracy.

TABLE V. APPLICATION INPUT SIZE (VERIFICATION).

Application Input size

VM 10
3 Integer Array

CG 500*500 Double Matrix [3]
NB 1000 Particles [1]
MG Problem class = S [2]
FT Problem class = S [2]

MC Size = small, Lookups = 10
3 [4]

B. DVF Profiling

TABLE VI. APPLICATION INPUT SIZE (PROFILING).

Application Input size

VM 10
5 Integer Array

CG 800*800 Double Matrix [3]
NB 6000 Particles [1]
MG Problem class = W [2]
FT Problem class = S [2]

MC Size = small, Lookups = 10
5 [4]

For DVF profiling, we can use a set of relatively large
input sizes summarized in Table VI, because of the low
evaluation cost of our modeling method. We choose four cache
configurations with diverse configurations shown in Table IV
to study the sensitivity of DVF to the cache configurations.
The results are presented in Figure 5.

702

(a) Vector Multiplication (b) Conjugate Gradient (c) Nbody (Barnes-hut)

(d) Multi-grid (e) 1D FFT (f) Monte Carlo

Fig. 4. Model Verification

We first notice that different data structures within the
same application can have different DVFs. An interesting
observation is from the VM algorithm (See Figure 5(a)), in
which the data structure A has obviously larger DVF than
the data structures B and C. Because the execution times for
the three data structures are the same, the difference in DVF
mainly comes from the footprint size of the data structure and
the number of main memory accesses. In our experiments, the
data structure A has a larger stride length than B and C; both
the footprint size and the number of main accesses of A are
larger than B and C. This observation tells us that the data
access pattern can affect DVF significantly.

We further compare DVFs across algorithms. We notice
that CG and FT are both memory-intensive algorithms, but the
DVF for our CG implementation can be thousands of times
larger than that for the FT implementation (See Figure 5(b)
and 5(e)). We find that this big difference mainly comes
from two reasons. First, the working set size of CG in our
implementation is more than 100 times larger than that of FT
(i.e., 5000KB vs. 33KB). Second, the execution time of CG
is more than 200 times longer than that of FT. Although the
number of main memory accesses for FT is larger than that
for CG, the larger working set size and longer execution time
of the CG implementation makes it more vulnerable than that
of the FT implementation.

A similar observation comes from NB and MC (See
Figure 5(c) and 5(f)). Both applications have the random access
pattern but the DVF for MC is much larger than that for NB.
We find that the DVF difference is partially caused by the
larger working set size and the longer execution time of MC.
In addition, although the average number of node comparisons
in MC is smaller than that in NB (i.e., 1 and 80), the number
of iterations in MC is larger (105 and 6000), which leads to
a bigger number of main memory accesses of MC than NB.

In addition, we find that the algorithms show different
sensitivities to the cache capacity. For instance, the DVF
values for the FT algorithm increase suddenly when the cache

capacity is smaller than a threshold (i.e., 16KB in Figure 5(e)).
This sudden change is caused by the specific access pattern of
the FT algorithm. In this access pattern, the same data structure
is traversed multiple times following a specific template. If the
cache cannot load the entire data structure, there is a large
number of cache misses, thus leading to an increase of the
number of main memory accesses. Other algorithms do not
show such a sudden change of DVF because they have diverse
access patterns. The streaming access pattern does not have the
sudden change of DVF because the data structure is traversed
only once and the number of main memory accesses remains
relatively stable across cache configurations. For the random
access pattern, when the cache capacity is not enough for
the whole data structure, the DVF increases gradually (not
suddenly).

V. USE CASES

In this section, we demonstrate the significance of our
resilience modeling work with two use cases: an example of
algorithm optimization that examines the impact of algorithm-
level optimization on application resilience; and an example
of hardware protection that evaluates the tradeoff between
performance and resilience. The cache configuration used in
this section is the largest cache in Table IV.

A. Quantifying the Impact of Algorithm Optimization on Vul-
nerability

The algorithm optimization traditionally aims to improve
performance and energy efficiency, but it is widely unknown
how can a specific algorithm optimization impact the algorithm
resilience. To implement scalable and efficient execution of
applications on the extreme-scale systems, it is critical to
extend the algorithm study into multiple dimensions (i.e.,
performance, energy and resilience). We particularly study the
CG in this section. The regular CG is depicted in Algorithm 4.
The preconditioned CG (PCG), as an algorithm optimization
(see Algorithm 5), is designed to ensure faster convergence

703

A B C VM
0

0.3

0.6

0.9

1.2

1.5

Data Structure

D
V

F

16KB Cache
128KB Cache
1MB Cache
8MB Cache

(a) Vector Multiplication

A x p r CG
0

10

20

30

40

50

Data Structure

D
V

F

16KB Cache
128KB Cache
1MB Cache
8MB Cache

(b) Conjugate Gradient

T P NB
0

1

2

3

4

5

Data Structure

D
V

F

16KB Cache
128KB Cache
1MB Cache
8MB Cache

(c) Nbody (Barnes-hut)

R MG
0

0.03

0.06

0.09

0.12

0.15

Data Structure

D
V

F

16KB Cache
128KB Cache
1MB Cache
8MB Cache

(d) Multi-grid

X FT
0

0.004

0.008

0.012

0.016

0.02

Data Structure

D
V

F

16KB Cache
128KB Cache
1MB Cache
8MB Cache

(e) 1D FFT

G E MC
0

0.4

0.8

1.2

1.6

2

x 10
4

Data Structure

D
V

F

16KB Cache
128KB Cache
1MB Cache
8MB Cache

(f) Monte Carlo

Fig. 5. DVF Profiling

Algorithm 5 Preconditioned Conjugate Gradient

r0 = b−Ax0

z0 = M−1r0
p0 = z0
k = 0

procedure REPEAT(A,M, r, z, p, x)

αk =
rT
k
zk

pT
k
Apk

xk+1 = xk + αkpk
rk+1 = rk − αkApk
if rk+1 is sufficiently small then

exit loop
end if
zk+1 = M−1zk+1

βk =
zT
k+1

rk+1

zT
k
rk

pk+1 = zk+1 + βkpk
k = k + 1

end procedure

of CG, and aims to provide better performance. Most of the
data structures in PCG are the same as those in CG except
an auxiliary matrix M and an auxiliary vector z in PCG. We
calculate DVF for CG and PCG, and compare their resilience;
we also vary the input problem size and observe how the
algorithm vulnerability is correlated with it. Figure 6 shows
the results.

The results show that PCG is more vulnerable than CG
(but pretty close) with the small input problem sizes (100 and
200); however PCG becomes better than CG with the large
input problem sizes. This resilience variance comes from the
contradicting contributions of performance improvement and
larger working set size to DVF in PCG: On one hand, PCG
provides better performance which should reduce DVF; on
the other hand, the increase of the working set size increases
DVF. In our study, with the small input problem sizes, the

100 200 300 400 500 600 700 800

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Problem Size (n)

D
V

F

CG
PCG

Fig. 6. CG vs PCG.

performance of PCG is close to CG but PCG uses a larger
working set and has more main memory accesses, hence the
DVF of PCG becomes worse. However, with the large input
problem sizes, the performance benefit of PCG is significantly
pronounced and outweighs the negative impact of the larger
working set, thus improving DVF. Based on this study, we are
able to derive an appropriate input problem size to achieve joint
optimization of performance and resilience when applying
PCG.

B. Quantifying Effectiveness of A Data Protection Mechanism

The hardware-based resilience mechanisms are commonly
employed in high-end computing systems. With the traditional
methods for vulnerability study, it is difficult to quantify
the effectiveness of those mechanisms in terms of resilience.
With the introduction of DVF, we can quickly evaluate them
and explore the tradeoff between performance and resilience.
In this section, we particularly investigate hardware error
checking and correction code (ECC) for main memory. The
hardware ECC can correct specific faults occuring in the
memory devices, but they also result in performance loss.
Chipkill [16] and SECDED [21] are two commonly used
ECC. The error rates with these two ECC applied in the main

704

memory are summarized in Table VII.

TABLE VII. ERROR RATE WITH ECC IN PLACE (FIT=FAILURES PER

BILLION HOURS)

ECC Protection Error Rate (FIT/Mbit)
No ECC 5000 [25], [26]
Chipkill correct 0.02 [26], [34]
SECDED 1300 [26], [39]

Based on Table VII, we can calculate DVF taking into
consideration the effect of ECC protection. Figure 7 depicts
the variance of DVF with a range of possible performance
degradations when applying ECC. From the figure, we notice
that DVF is decreased, demonstrating the effectiveness of
ECC protection. Furthermore, we notice that DVF achieves
the smallest value when the performance degradation is about
5%. A further increase of performance loss (larger than 5%)
results in a increase of application vulnerability. This is be-
cause a longer execution time due to performance loss makes
application more easily hit by the hardware failure, hence
reducing the application resilience. Although we do not have
real performance results with ECC protection due to hardware
limitation, based on Figure 7 we can quickly explore what
performance target the ECC mechanism should aim at in order
to maximize application resilience.

0 5 10 15 20 25 30

0

0.05

0.10

0.15

0.20

0.25

Performance Degradation (%)

D
V

F

Vector Multiplication

SECDED
Chipkill correct

Fig. 7. The impact of ECC on DVF.

VI. RELATED WORK

To understand application vulnerability, the statistical-
based random fault injection is one of the major methods. Li
et al. [24] build a binary instrumentation-based fault injection
tool and perform random fault injection into the data structures
of realistic applications based on the PIN infrastructure. Casa
et al. [10] inject faults into each instruction’s output based
on the LLVL typed byte code, and study the vulnerability of
algebraic multi-grid solver. Sastry et al. [20] and Xu et al. [41]
aggressively employ static and dynamic program analyses to
analyze application fault sites and pick a small subset to
perform selective fault injections. Their methods greatly reduce
the fault injection space. The random fault injection has large
evaluation cost, because a large number of fault injections
must be performed to obtain statistically meaningful results.
Also, this methodology does not consider hardware effects on
resilience. It cannot be used to evaluate hardware resilience
mechanisms and cannot be used to quantitatively compare the
resilience difference between application components.

Besides the statistical-based random fault injection, another
class of resilience analysis employs detailed hardware analysis.
Mukherjee et al. [30] define the architectural vulnerability
factor (AVF) as the probability that a fault in a particular
structure will result an error. Biswas et al. [5] show how

to compute the AVF of address-based processor structures
based on a detailed analysis of architecturally correct exe-
cution. However, dynamically measuring AVF requires costly
performance modeling and simulation. To accelerate AVF
analysis, Walcott et al. [40] and Duan et. al [18] identify strong
correlations between AVF values and a small set of processor
metrics, based on which a faster estimation of AVF is possible.
However, a fine-grained (i.e., data structure) application-level
analysis is not possible with such analysis. Based on the prior
AVF work, Sridharan and Kaeli [36], [37] introduce a new
metric to capture the architecture-level fault masking inherent
in a program. However, to calculate AVF, one has to use fault
injection or an architectural simulator, which can be very costly
for evaluation.

Our work in this paper improves current application re-
silience analysis from three perspectives. First, our method-
ology considers the effects of both hardware and software;
Second, our methodology allows fine-grained analysis (i.e., at
the level of data structure); Third, our methodology provides
a much faster solution to model application resilience.

VII. CONCLUSION

In this paper, we introduce a methodology to quantify
application resilience based on a performance modeling lan-
guage. Our method captures both hardware and application
factors those impact the application resilience. Our method is
applied to a spectrum of numerical algorithms and reveals the
resilience variance within an algorithm and across different
algorithms. More importantly, our work is based on a novel
resilience metric, DVF. We demonstrate the significance of our
resilience modeling on various optimization problems.

ACKNOWLEDGMENT

REFERENCES

[1] Barnes-hut Implementation on GitHub. http://github.com/JAChapmanII/
barnes-hut, 2010.

[2] NPB Website. https://www.nas.nasa.gov/publications/npb.html, 2012.

[3] Conjugate Gradient Implementation on GitHub. https://github.com/
danesh-d/cg/blob/master, 2013.

[4] The Monte Carlo Macroscopic Cross Section Lookup Benchmark. https:
//github.com/jtramm/XSBench, 2013.

[5] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S.S. Mukherjee, and
R. Rangan. A Systematic Methodology to Compute the Architectural
Vulnerability Factors for a High-Performance Microprocessor. In
International Symposium on Computer Architecture (ISCA), 2005.

[6] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S.S. Mukherjee, and
R. Rangan. Computing Architectural Vulnerability Factors for Address-
based Structures. In International Symposium on Computer Architecture

(ISCA), 2005.

[7] A. Bland, W. Joubert, D. Maxwell, N. Podhorszki, J. Rogers, G. Ship-
man, and A. Tharrington. Titan: 20-Petaflop Cray XK6 at Oak
Ridge National Laboratory. In J.S. Vetter, editor, Contemporary High

Performance Computing: From Petascale Toward Exascale, CRC Com-
putational Science Series. Taylor and Francis, 2013.

[8] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain,
T. Herault, P. Lemarinier, O. Lodygensky, and F. Magniette. MPICH-V:
Toward a Scalable Fault Tolerant MPI for Volatile Nodes. In The In-

ternational Conference for High Performance Computing, Networking,

Storage, and Analysis (SC), 2002.

[9] G. Bronevetsky and B.R. Supinski. Soft Error Vulnerability of Iterative
Linear Algebra Methods. In International Conference on Supercomput-

ing (ICS), 2008.

705

[10] M. Casas, B.R. Supinski, G. Bronevetsky, and M. Schulz. Fault Re-
silience of the Algebraic Multi-grid Solver. In International Conference

on Supercomputing (ICS), 2012.

[11] Z. Chen. Algorithm-Based Recovery for Iterative Methods without
Checkpointing. In The International ACM Symposium on High-

Performance Parallel and Distributed Computing (HPDC), 2011.

[12] Z. Chen. Online-ABFT: An Online Algorithm Based Fault Tolerance
Scheme for Soft Error Detection in Iterative Methods. In ACM

SIGPLAN Annual Symposium Principles and Practice of Parallel Pro-

gramming (PPoPP), 2013.

[13] J. Chung, I. Lee, M. Sullivan, J.H. Ryoo, D.W. Kim, D.H. Yoon, L. Ka-
plan, and M. Erez. Containment Domains: A Scalable, Efficient, and
Flexible Resilience Scheme for Exascale Systems. In The International

Conference for High Performance Computing, Networking, Storage, and

Analysis (SC), 2012.

[14] T. Davies and Z. Chen. Correcting Soft Errors Online in LU Factor-
ization. In The International ACM Symposium on High-Performance

Parallel and Distributed Computing (HPDC), 2013.

[15] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen. High Perfor-
mance Linpack Benchmark: A Fault Tolerant Implementation without
Checkpointing. In International Conference on Supercomputing (ICS),
2011.

[16] T. Dell. A White Paper On The Benefits Of Chipkill-Correct ECC
for PC Server Main Memory. Technical report, IBM Microelectronics
Division, 1997.

[17] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra. Algorithm-
based Fault Tolerance for Dense Matrix Factorizations. In ACM

SIGPLAN Annual Symposium Principles and Practice of Parallel Pro-

gramming (PPoPP), 2011.

[18] L. Duan, B. Li, and L. Peng. Versatile Prediction and Fast Estima-
tion of Architectural Vulnerability Factor from Processor Performance
Metrics. In International Symposium on High-Performance Computer

Architecture (HPCA), 2009.

[19] P.H. Hargrove and J.C. Duell. Berkeley Lab Checkpoint/Restart(BLCR)
for Linux Clusters. JPCS, 2006.

[20] S.K.S. Hari, S.V. Adve, H. Naeimi, and P. Ramachandran. Relyzer:
Exploiting Application-Level Fault Equivalence to Analyze Applica-
tion Resiliency to Transient Faults. In The International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2012.

[21] M.Y. Hsiao. A Class of Optimal Minimum Odd-Weight-Column
SECDED Codes. IBM Journal of Research and Development, 1970.

[22] J. Hursey, J.M. Squyres, T.I. Mattox, and A. Lumsdaine. The Design
and Implementation of Checkpoint/Restart Process Fault Tolerance for
Open MPI. In IEEE International Parallel & Distributed Processing

Symposium (IPDPS), 2007.

[23] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical Fault
Injection: Quantified Error and Confidence. In Design, Automation and

Test in Europe (DATE), 2009.

[24] D. Li, J.S. Vetter, and W. Yu. Classifying Soft Error Vulnerabilities in
Extreme-Scale Scientific Applications Using a Binary Instrumentation
Tool. In The International Conference for High Performance Comput-

ing, Networking, Storage, and Analysis (SC), 2012.

[25] S. Li, K. Chen, M.-Y. Hsieh, N. Muralimanohar, C.D. Kersey, J.B.
Brockman, A.F. Rodrigues, and N.P. Jouppi. System Implications
of Memory Reliability in Exascale Computing. In The International

Conference for High Performance Computing, Networking, Storage, and

Analysis (SC), 2011.

[26] X. Li, M.C. Huang, K. Shen, and L. Chu. A Realistic Evaluation
of Memory Hardware Errors and Software System Susceptibility. In
USENIX Annual Technical Conference (ATC), 2010.

[27] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V.J. Reddi, and K. Hazelwood. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. SIGPLAN Not.,
2005.

[28] S. Manegold, P. Boncz, and M.L. Kersten. Generic Database Cost
Models for Hierarchical Memory Systems. In International Conference

on Very Large Databases (VLDB), 2002.

[29] A. Moody, G. Bronevetsky, K. Mohror, and B.R. Supinski. Design,
Modeling, and Evaluation of A Scalable Multi-level Checkpointing Sys-

tem. In The International Conference for High Performance Computing,

Networking, Storage, and Analysis (SC), 2010.

[30] S.S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, and T. Austin.
A Systematic Methodology to Compute the Architectural Vulnerabil-
ity Factors for a High-Performance Microprocessor. In The Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),
2003.

[31] S.S. Mukherjee, C.T. Weaver, J. Emer, S.K. Reinhardt, and T. Austin.
Measuring Architectural Vulnerability Factors. IEEE Micro, 2003.

[32] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Characterizing the
Impact of Soft Errors on Iterative Methods in Scientific Computing. In
International Conference on Supercomputing (ICS), 2011.

[33] G. Shi, J. Enos, M. Showerman, and V. Kindratenko. On Testing
GPU Memory for Hard and Soft Errors. In Symposium on Application

Accelerators in High-Performance Computing (SAAHPC), 2009.

[34] C. Slayman. Impact of Error Correction Code and Dynamic Memory
Reconfiguration on High-Reliability/Low-Cost Server Memory. In
Integrated Reliability Workshop, 2006.

[35] K. Spafford and J.S. Vetter. Aspen: A Domain Specific Language
for Performance Modeling. In The International Conference for High

Performance Computing, Networking, Storage, and Analysis (SC), 2012.

[36] V. Sridharan and D.R. Kaeli. Eliminating Microarchitectural Depen-
dency From Architectural Vulnerability. In International Symposium

on High-Performance Computer Architecture (HPCA), 2009.

[37] V. Sridharan and D.R. Kaeli. Using PVF Traces to Accelerate AVF
Modeling. In Workshop on Silicon Errors in Logic - System Effects,
2010.

[38] D. Thiebaut and H.S. Stone. Footprints in the Cache. ACM Trans.

Comput. Syst., 1987.

[39] A.N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and
N.P. Jouppi. LOT-ECC: Localized and Tiered Reliability Mechanisms
for Commodity Memory Systems. In International Symposium on

Computer Architecture (ISCA), 2012.

[40] K.R. Walcott, G. Humphreys, and S. Gurumurthi. Dynamic Prediction
of Architectural Vulnerability from Microarchitectural State. In Inter-

national Symposium on Computer Architecture (ISCA), 2007.

[41] X. Xu and M.-L. Li. Understanding Soft Error Propagation Using
Efficient Vulnerability-Driven Fault Injection. In The Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN),
2012.

706

