
Fault-Tolerant Dynamic Task Graph Scheduling

Mehmet Can Kurt∗, Sriram Krishnamoorthy†, Kunal Agrawal‡, and Gagan Agrawal∗
∗ The Ohio State University,

Email: {kurt,agrawal}@cse.ohio-state.edu
†Pacific Northwest National Laboratory,

Email: sriram@pnnl.gov
‡Washington University in St. Louis,

Email: kunal@cse.wustl.edu

Abstract—In this paper, we present an approach to fault-
tolerant execution of dynamic task graphs scheduled using work
stealing. In particular, we focus on selective and localized recovery
of tasks in the presence of soft faults. From users, we elicit the
basic task graph structure in terms of successor and predecessor
relationships. The work-stealing-based algorithm to schedule such
a task graph is augmented to enable recovery when the data
and metadata associated with a task get corrupted. We use
this redundancy, and knowledge of the task graph structure,
to selectively recover from faults with low space and time
overheads. We show that the fault tolerant design retains the
essential properties of the underlying work stealing-based task
scheduling algorithm, and that the fault tolerant execution is
asymptotically optimal when task re-execution is taken into
account. Experimental evaluation demonstrates the low cost of
recovery under various fault scenarios.

Keywords—dag, task graphs, cilk, work stealing, fault tolerance

I. INTRODUCTION

Most of the work on fault tolerance in parallel systems
has focused on fail-stop failures, where a node completely
halts. In recent years, there has been growing concern about
another class of failures, namely, the soft errors or silent
data corruption. These errors involve bit flips in either the
processing cores, the memory, or the disk, and there are
several causes for such bit flips in an operational system.
Traditionally, although radiation has been considered the cause
of such random bit flips [1], the use of smaller and smaller
transistors as well as efforts to improve power efficiency in
hardware now are attributed as causes of these faults occurring
more frequently [2]. Other factors can include packaging
materials and voltage fluctuations. Many recent publications
have summarized the observed frequency of these faults [3].
For example, double bit flips, which cannot be corrected
by Error Correcting Codes (ECC), occur daily at a national
lab’s Cray XT5, and, similarly, such errors were frequent in
BG/L’s unprotected L1 cache. While hardware designs have
traditionally tolerated many of the soft errors, there is an
increasing need for software solutions to this problem.

In this paper, we focus on dealing with detectable soft
errors in task graphs. With the increasing popularity of large-
scale multi-core and many-core machines and a need for
parallelizing dynamic or irregular applications, task graph
scheduling has emerged as an important problem. A task graph
represents tasks as basic units of work and the dependences
between the tasks. Task graphs expose greater concurrency

than parallelism typically available in the hardware and enable
automated scheduling of tasks onto processor cores. Such task
scheduling can be performed to satisfy a variety of require-
ments, although the most common consideration is ensuring
load balance among the processing cores and, thus, reduced
execution.

We consider the design, implementation, and evaluation of
scheduling algorithms that can continue execution of an ap-
plication specified through a task graph to completion despite
faults. The goal of the work is to minimize the slowdown of
the application in the presence of soft errors. To the best of
our knowledge, this problem has not been addressed in the
past. There is a considerable amount of work on fault-tolerant
task graph scheduling in the real-time systems community [4],
[5], [6]. These efforts require replicated task execution and/or
duplicated state to support efficient failover. In comparison,
our goal is to minimize the impact of faults without sig-
nificantly impacting the performance or resource utilization
during normal execution. In addition, we also consider the
scheduling problem in the context of dynamic task graphs [7]
with two characteristics. First, the task graphs cannot be fully
expanded until they actually are being executed. Second, the
task execution times are not known ahead of time. These
two characteristics hold true for scientific applications that
are likely to be expressed with a task model. At the same
time, because of these characteristics, low-overhead runtime
approaches are needed not only to schedule tasks, but to
reschedule tasks when failures occur. In comparison, static task
graphs, which are graphs that can be fully processed at the
compile time, allow offline scheduling for performance and
possibly even for fault tolerance. However, applications that
can be expressed using static tasks graphs likely may also be
expressed with more structured frameworks, such as OpenMP
or its variants.

While both our problem formulation as well as the main
ideas in our solution are general and applicable to task graph
execution on shared and distributed-memory platforms, the
detailed algorithms we have developed and implemented are
specific to the NABBIT system. NABBIT [8] is a framework
for scheduling task graphs in a provably time-efficient manner
using work stealing. In this paper, we adapt the NABBIT

dynamic task graph scheduling algorithm to support scalable
recovery from soft errors that impact individual tasks. The
recovery is performed in a non-collective fashion without inter-
fering with threads not impacted by the fault. Simultaneously,
the threads requiring a waiting task efficiently perform the

SC14: International Conference for High Performance Computing, Networking, Storage and Analysis

978-1-4799-5500-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SC.2014.64

719

recovery without incurring significant blocked or idle time. The
presented approach can recover from an arbitrary number of
task failures while incurring very low overheads in the absence
of faults.

Our work is significant from both theoretical and practi-
cal viewpoints. We prove the fault-tolerant algorithm retains
the time-efficiency properties of the NABBIT framework. In
particular, in the absence of faults, we get the same bounds
as the original NABBIT bounds. In addition, for graphs with
small degree, the overhead due to contention is negligible,
and the bounds are asymptotically optimal. From the practical
side, extensive experimental evaluation involving five real
scientific applications on a 48-core machine demonstrates
that the overheads of the fault tolerance scheme are low
(within system noise) in the absence of faults, and the cost
of recovery from failures is proportional to the work lost. For
the benchmarks considered, recovery from loss of 5% of work
introduces an overhead between 5.1%-8.2%, and failure of a
small constant number of tasks (up to 64) can be recovered
with no statistically significant overhead.

II. BACKGROUND AND PROBLEM STATEMENT

In our work, a task graph is represented by a directed
acyclic graph with vertices representing tasks and edges rep-
resenting dependences between them, pointing from a source
of a dependence to its destination. A task/vertex cannot begin
execution until all tasks it depends on, referred to as its pre-
decessors, complete. Vertices with no incoming dependences
are referred to as source vertices, and those with no outgoing
dependences are referred to as the sink vertices.

The task graph representation in this work encompasses
models that represent the dependence between tasks rather than
between tasks and data blocks [9], [10]. This representation
can be derived from such a bipartitite dependence graph by
transitively constructing the task-task dependences. We do
not require that each data block be constructed exactly once.
Instead, we allow updates to data blocks, as long as the depen-
dences specified ensure that all uses of a data block causally
precede a subsequent definition (considered the next version) of
the same block. Each task is considered synonymous with the
definitions of data blocks it effects. A single task can produce
multiple data blocks, and two tasks have a dependence between
them if any data block defined by one task is used by the other.
Figure 1 shows an example task graph with A as the source and
E as the sink task. Note that task A’s data could be overwritten
by task C because all uses of A’s output, except by C itself,
are complete when task C begins execution.

Our goal is to handle task scheduling in the presence of
soft faults or errors. A soft fault can result in a bit flip in
combinational or sequential logic. This can propagate into an
incorrect arithmetic result or memory state. When undetected,
this can lead to what is referred to as silent data corruption.
A soft error affecting a task affects the computation only if
the description of the task or any of its outputs is affected.
Therefore, we focus on recovery from corruption of data blocks
or task descriptors and, more specifically, on recovery from
such corruption once it is detected. There is significant ongoing
research in error detection, which can stem detect errors from
a variety of sources: hardware or software error detection

�

�

�

� �

Fig. 1: A task graph example with task A as the source and
task E as the sink. Dependence edges are drawn from producer
to consumer. Black-shaded task B fails during execution.

codes, such as ECC; symptom-based error detectors [11];
application-level assertions; etc. Sequential execution elements
(memory allocator, call stack, etc.), information on the task
graph structure embedded in the application, the work stealing
runtime, and the application data structures beyond the data
blocks operated on by tasks are assumed to be made resilient
through other means. We also assume that once an error is
detected, all subsequent accesses to that object will observe
the error.

In this paper, we are interested in runtime scheduling
algorithms for dynamic task graphs that can recover from
corruption of task descriptors and data blocks. We consider al-
gorithms that do not require or complement checkpoint-restart
and, particularly, do not require using stable storage during
task graph processing. Collective recovery approaches, such
as those with checkpointing and restart, would synchronize
all threads, possibly rolling them back to a prior execution.
These approaches will require the overhead of synchronization
even when there are no failures, and, with frequent errors,
the application’s progress may be extremely slow. Our overall
objective is to minimize overheads in the absence of faults
with recovery costs proportional to the amount of work lost,
while ensuring high resource utilization (i.e., not involving
unnecessary repeated execution or replication).

For an illustration of the challenges involved, consider a
specific snapshot of the execution of the task graph in Figure 1.
In the snapshot, task B fails right after its computation, and the
failure is detected by the thread operating on task B. Now, even
before such a failure is detected, the threads processing tasks
C and D could have observed the computation of task B and
started their respective computations. Thus, the first challenge
is to ensure that the threads executing tasks C and D are aware
of the fault in the computation of task B. Then, task B’s output
has to be recomputed (or recovered) before computations of C
and D are restarted. For efficiency, it is important that task B
recovers only once—not twice—which could occur possibly
at the initiation of two different threads executing C and D.

Yet another complication arises because of the reuse or
overwriting of memory that takes place. Recall from our earlier
example that task C reuses the space allocated by task A for its
output (as the only other use of A’s output is by B, which needs
to finish before C’s execution). Thus, even before C is aware
of B’s failure, it could be overwriting A’s output. However, A’s
output is required for recomputing B, as well as for restarting
the computation of C once B has been recomputed. This
implies that A will have to be recovered as well. Finally,
similar to the preceding discussion, it is important that A also

720

TRYINITCOMPUTE(A, key, life, pkey)

1 inserted = INSERTTASKIFABSENT(pkey)
2 # get task descriptor of A’s predecessor (B)
3 (B, blife) = GETTASK(pkey)
4 if (inserted)
5 # B has just been inserted. explore B
6 spawn INITANDCOMPUTE(B, pkey, blife)

7 try
8 if(B.overwritten) throw;

9 finished = true
10 lock(B)
11 if (B.status <Computed)
12 # B should notify A once computed
13 add A.key{key} to B.notifyArray
14 finished = false
15 unlock(B)

16 catch
17 finished = false
18 RECOVERTASKONCE(pkey, blife)

19 if (finished)
20 # B has already been computed
21 NOTIFYONCE(A, key, pkey, life)

NOTIFYONCE(A, key, pkey, life)

1 try
2 # get index of pkey in the ordered list of preds
3 ind = CONVERTPREDKEYTOINDEX(key, pkey)
4 success = ATOMICBITUNSET(A.bitVector, ind)
5 # notify A only if the vector bit was set
6 if(success)
7 val = ATOMICDECANDFETCH(A.join)
8 # execute A if join counter is zero
9 if (val==0)COMPUTEANDNOTIFY(A, key, life)

10 catch
11 RECOVERTASKONCE(key, life)

INITANDCOMPUTE(A, key, life)

1 INIT(A)
2 # traverse immediate predecessors of A
3 for pkey ∈ predecessors(A.key{key})
4 spawn TRYINITCOMPUTE(A, key, life, pkey)

5 NOTIFYONCE(A, key, key, life)

NOTIFYSUCCESSOR(key, skey)

1 (S, slife) = GETTASK(skey)
2 NOTIFYONCE(S, skey, key, slife)

COMPUTEANDNOTIFY(A, key, life)

1 try
2 COMPUTE(A)
3 A.status = Computed
4 n = SIZEOF(A.notifyArray)
5 notified = 0
6 # notify all successors enqueued in notify array
7 while (notified <n)
8 for i ∈ [notified, n)
9 skey = A.notifyArray[i]

10 spawn NOTIFYSUCCESSOR(key, skey)

11 notified = n
12 lock(A)
13 n = SIZEOF(A.notifyArray)
14 if (notified == n) A.status = Completed

15 unlock(A)

16 catch
17 if(error in A) RECOVERTASKONCE(key, life)

18 else RESETNODE(A, key, life)

Fig. 2: Routines used by the fault-tolerant task graph scheduler. Non-shaded portions correspond to the actions of the non-fault-
tolerant NABBIT scheduler. Shaded portions indicate additions to the algorithm that make it fault tolerant. “A.key{key}” means
that key replaces A.key in the fault-tolerant version. Auxiliary routines used for recovery (in catch blocks) are discussed in
Section IV.

recovers only once.

Thus, handling such recovery correctly and efficiently for
a general dynamic task graph is a significant challenge. This
problem is addressed in the rest of the paper, in the context of
an existing scheduler used in the NABBIT framework.

III. TASK GRAPH SCHEDULING USING NABBIT

In this section, as a prelude to presenting the scheduling
scheme in the presence of failures, we describe the elements
of the task graph to be specified by the user and outline the
scheduling algorithm in the absence of faults. The fault-tolerant
scheduling algorithm relies on the following information from
the user about the task graph:

Task key: A unique identifier for each task used to relate
different references to the same task without the need for a
pre-allocated task object.

Sink task: The task that transitively depends on all other tasks
in the task graph.

Predecessors and successors: Functions that return an ordered
list of predecessors and successors of a task, given its key. This
information is used to reveal the dependences among tasks.

Compute: A function that defines the main operations to be
performed by each task.

Once this information is available through library-provided
classes, the task graph scheduling algorithm captures the struc-
ture of the task graph. The task scheduling algorithm is built
on the NABBIT task graph scheduler [8], which is a provably
efficient scheduler based on work stealing. Figure 2 presents
the routines used by the task scheduler. For this section, we
only refer to the non-shaded portions of the routines and ignore

the gray shaded parts, which show how the runtime is modified
to support failure recovery.

The tasks in the task graph are referred by keys (type
int64 t), and their execution is controlled by the runtime
through a concurrent hash map. A created task is atomically
inserted into the hash map using the INSERTTASKIFABSENT

routine and obtained later with a call to GETTASK. Note that
the hash map stores the pointers to the tasks and not the tasks
themselves.

For each task, the runtime holds the following fields:

(int) join: A counter, referred to as the join counter, that
tracks the number of outstanding predecessors for a task.
This counter is the basic unit of completion notification. It is
initialized with the number of predecessors and decremented
whenever a predecessor completes execution. Given that a
task can be notified in parallel by any of its predecessors,
while it is potentially being operated upon, the join counter is
incremented and decremented atomically. A task is ready to
be executed when its join counter is zero.

(int64 t*) notifyArray: An array (initially empty) that stores
the successors that are enqueued to be notified once the task
finishes its execution. Similar to the join counter, mutual
exclusion is ensured among concurrent operations on a task’s
notify array by protecting them with a lock associated with
each task.

(int) status: The execution status of a task at the moment. The
possible values are Visited, Computed, and Completed. Once
a task has been inserted into the hash map, its status is set as
Visited.

The execution of a task graph begins with the creation
and insertion of the sink task into the hash map followed

721

by an invocation of the INITANDCOMPUTE function. INI-
TANDCOMPUTE initializes the task and traverses its immediate
predecessors through calls to TRYINITCOMPUTE. Note that in
general, if the predecessors of a task are all computed, the task
can be executed right away using the COMPUTEANDNOTIFY

routine. Otherwise, the task registers itself to the notify array
of each predecessor that is not ready. Invoking INITAND-
COMPUTE and TRYINITCOMPUTE in a recursive fashion, the
execution expands the task graph and eventually reaches one
of the source tasks with no incoming dependences. COMPUTE-
ANDNOTIFY executes such a task’s COMPUTE function (pro-
vided by the user), updates its status as Computed, and begins
notifying the successors (via NOTIFYSUCCESSOR) registered
in its notify array. After there are no more successors left in
the notify array, the task changes its status to COMPLETED.
Any successor traversing this task after the status change can
see the completion of the task’s execution and can directly
decrement its join counter. If a successor’s join counter is
observed to be zero, it is scheduled for execution using the
same COMPUTEANDNOTIFY routine.

The actions of the task graph scheduler are parallelized
using Cilk-style support for recursive parallel (strict) com-
putations. In particular, the creation and computation of the
predecessors of a given task are concurrent and can be executed
by different threads. The work-stealing scheduler randomly
finds work, in terms of segments of task graph traversals to be
performed, until the root of the computation—the sink task—is
completed.

The actions of individual threads coupled with the schedul-
ing properties of work stealing were used to show that this
task graph scheduling algorithm is provably efficient. In par-
ticular, given a task graph with work T1 (the time it takes
to execute the task graph on a single processor), critical
path length T∞ (the time it takes to execute on an infinite
number of processors), and maximum degree d (maximum
number of predecessors and successors), the running time is
O(T1/P+T∞ min{P, d}), where P is the number of available
processors. The running time is asymptotically optimal for task
graphs where the degree of each node can be bounded by a
constant. Even for task graphs with large degree nodes, the
running time is close to optimal, modulo a small amount of
synchronization overhead.

IV. FAULT-TOLERANT SCHEDULING

Figure 2 presents the pseudocode for the fault-tolerant
dynamic task graph scheduler. The statements and function
parameters shaded in gray are introduced to the NABBIT sched-
uler to support fault tolerance. These routines are supported by
the recovery routines shown in Figure 3. The changes to the
NABBIT algorithm are two-fold. First, different phases of the
algorithm that access a task object or a data block are enclosed
in try-catch statements. Any detected errors are assumed to
throw an exception, which is caught to trigger the recovery
procedure. Second, additional function parameters and data
structures are introduced to support the recovery.

We describe our recovery approach in terms of how the
algorithm supports fault recovery by providing key guaran-
tees. These guarantees are then combined to show that the
proposed approach can execute a task graph to completion

with the correct result irrespective of the number of faults.
This descriptive outline of the correctness proof is provided
in place of a formal proof due to space constraints. We shall
use the example task graph in Figure 1 and execution snapshot
described in Section II for illustration.

Guarantee 1. Each failure is recovered at most once.

For example, we want task B in Figure 1 to be recovered
once and not by every observer of the fault. We associate
each creation and insertion of a task object into the hash map
with a life number. This life number is tracked through the
call stack whenever that task is processed. Thus, a failure
detected is associated with a particular life number of that
task, referred to as its incarnation. When multiple threads
detect the failure, they try to simultaneously recover that
task using the RECOVERTASKONCE routine. As the first step,
the ISRECOVERING routine checks whether recovery of the
current incarnation of the task (the task with the current life
number) already has been initiated. The first thread to observe
this condition performs the actual recovery. To facilitate this,
we maintain a separate concurrent hash map (denoted as R
in Figure 3) that associates a given key with the most recent
life number for which a recovery process has been initiated.
The recovery table is empty initially, and a record for a given
key is inserted only if a failure occurs on the corresponding
task. When a task fails the first time, the thread that inserts the
record into R performs the recovery. For subsequent failures on
the same task, the thread that succeeds in updating the existing
record performs the recovery. Note that a failed task whose
successors already have been computed is not recovered,
because no other task attempts to access such a task.

Guarantee 2. A task’s status is correctly recovered.

A task’s status dictates the action a thread takes when
it is encountered. As indicated before, a task’s status could
be Visited (created but not computed), Computed (COMPUTE

function has been executed), or Completed (all enqueued
successors have been notified). Rather than attempt to restore
a recovered task’s status from a backup or snapshot, we treat
a task being recovered as a newly created task and begin its
processing by checking the status of its predecessors. This is
shown in the RECOVERTASK routine, where the recovering
thread calls INITANDCOMPUTE to redo the task’s execution.
Any successor requesting this task from the hash map (using
its key) would get this new incarnation and handle it as they
would a non-failed predecessor.

Guarantee 3. The join counter of a task object is decremented
exactly once per predecessor.

Consider the scenario where task B decremented D’s join
counter before failure and attempts to do so again after
recovery. D’s join counter would now be zero, allowing it to
be executed, even though its predecessor task C might not
have been computed. We avoid these scenarios by associating
each join counter with additional information about which
predecessors have notified it. In particular, we retain a bit
vector that tracks if the join counter has been decremented
for a particular predecessor in the ordered list of predecessors.
This bit vector is initialized to 1 for all bits. Each bit is unset
when the corresponding predecessor is observed to have been

722

RECOVERTASKONCE(key, life)

1 if (!ISRECOVERING(key, life))
2 RECOVERTASK(key)

ISRECOVERING(key, life)

1 inserted = INSERTRECORD(R, key, life)
2 if (inserted) return false

3 stored = GETRECORD(R, key)
4 success = ATOMICCOMPANDSWAP(stored, life-

1, life)
5 return !success

RESETNODE(A, key, life)

1 try
2 A.join = 1 + SIZEOF(A.preds)
3 SETALLBITS(A.bitVector)
4 INITANDCOMPUTE(A, key, life)

5 catch
6 RECOVERTASKONCE(key, life)

REINITNOTIFYENTRY(T, key, S, skey, slife)

1 try
2 # ignore Computed and Completed tasks
3 if (S.status �= Visited) return
4 ind = CONVERTPREDKEYTOINDEX(skey,key)
5 if (S.bitVector[ind] == 1)
6 lock(T)
7 # skey’s waiting notification from T
8 add skey to T.notifyArray
9 unlock(T)

10 catch
11 if (error in S)
12 RECOVERTASKONCE(skey, slife)
13 else
14 throw

RECOVERTASK(key)

1 repeat
2 try
3 success = true
4 # insert the new incarnation of the task
5 (T, life) = REPLACETASK(key)
6 T.recovery = true
7 # traverse successors to recreate notify arr.
8 T.succs = GETSUCCS(key)
9 for skey ∈ T.succs

10 (S, slife) = GETTASK(key)
11 REINITNOTIFYENTRY(T, key, S, skey,

slife)

12 spawn INITANDCOMPUTE(T, key, life)

13 catch
14 if (!ISRECOVERING(key, life))
15 success = false
16 until (success)

Fig. 3: Additional routines to assist in the recovery from faults.

computed, or when that predecessor issues a notification to
this task. The join counter is decremented only if that bit
is set. This change to NABBIT is shown in NOTIFYONCE in
Figure 2. The CONVERTPREDKEYTOINDEX routine, given a
predecessor key, returns the predecessor’s index in the ordered
list of predecessors, so that the corresponding bit in the vector
can be unset.

Guarantee 4. Every task waiting on a predecessor is notified.

Successors enqueued in the notify array of a failed task
are expected to be notified by this task when it computes.
Not notifying any such task can result in some tasks never
being executed, leading to a hung execution state. In the
example, task B needs to correctly handle the notification to
tasks C and D. Recovering this information (mainly, the notify
array) using some form of duplicated storage would require
additional support to recover from multiple failures. We work
around this issue by altering the base task graph scheduling
algorithm’s behavior in the presence of failures. This is shown
in REINITNOTIFYENTRY. A task being recovered traverses all
of its successors with Visited status to check their bit vector
and observe if they have been notified. Any successor not yet
notified is considered to have been enqueued for notification
before the failure and is enqueued into the reconstructed
notify array. When this task computes, all such enqueued tasks
are notified. This ensures that tasks C and D are notified
when task B has been recovered and recomputed. This eager
notification deviates from the NABBIT algorithm and could
potentially result in execution of tasks in a different, albeit
still correct, order impacting its optimality guarantees. We
prove in Section V that this change does not violate NABBIT’s
asymptotic parallel efficiency guarantee.

Guarantee 5. Failures in data blocks observed during task
computation are recovered.

Note that faults in the data blocks could also be observed in
application code, denoted by the COMPUTE routine in COM-
PUTEANDNOTIFY, when a thread is executing the COMPUTE

function to perform the actual computation represented by
the task. We assume that these detected errors are reported

back to the runtime through exceptions. When an exception is
caught in the COMPUTEANDNOTIFY routine, we first identify
which task’s fault resulted in the failure. Then, we check if
the task being computed is the source of the error. If so,
that task is recovered. If not, we begin processing the task
anew, using the RESETNODE routine, by atomically resetting
the notification bit vector and join counter and traversing its
predecessors to verify if any of them have failed. As just
described, the bit corresponding to each predecessor is unset
upon notification, and the join counter is decremented exactly
once per predecessor.

Guarantee 6. Failures observed during recovery are recur-
sively recovered.

We would like to recover from failures that might affect
tasks while they are being recovered. As shown in the RE-
COVERTASK routine, the recovery of a failed task involves
updating its entry in the hash map with a new incarnation
of the task using the REPLACETASK routine, initializing the
notify array by inspecting its successors, and re-executing the
task as if it were a normal task. If an error occurs when such
a re-execution is being performed, the next incarnation of the
task is inserted into the hash map, and the re-execution begins
anew. Such errors can happen an arbitrary number of times
and still be recovered. In the algorithm, this can be observed
by the fact that operations in the recovery routines in Figure 3
are themselves enclosed in try-catch statements.

Lemma 1. Every task is executed only after all of its prede-
cessors have been computed, and the final output of every task
is computed from the same inputs with and without failures.

Proof Sketch: Each predecessor decrements a task’s join
counter exactly once. When the join counter becomes zero
and the task is ready to be computed, all of its predecessors
have been computed. If a task observes a failure in the task
descriptors or data associated with one of its predecessors,
it attempts to identify and recover from that failure. This
continues until all predecessors execute without faults, and
the resulting data blocks are fault-free. Fault-free execution
of predecessors produces the same inputs to a task even if the

723

predecessors had experienced prior failures.

Lemma 2. A task whose predecessors fail is eventually exe-
cuted.

Proof Sketch: A task might observe the failure of one of
its predecessors during its computation or when it is checking
its predecessors. Any such failed predecessor ensures that it
notifies this task exactly once. Note that a task may have
been notified by an earlier incarnation of a predecessor before
it failed. If the task begins its user computation while the
failed predecessor is being recovered, it would reset its bit
vector, traverse the predecessors one more time, and observe
this failure. This task either observes the recovered state of
its predecessor and is computed, or is eventually notified by
any outstanding predecessors, including the predecessor being
recovered. The last predecessor to notify executes this task.

Lemma 3. The sink task is executed to completion irrespective
of the number of failures.

Proof Sketch: The predecessors of a sink task might
observe a failure in themselves, or in one of their predecessors,
during their computation. All of these failures can be recovered
from, as explained in Lemma 2. Thus, all predecessors of the
sink task execute to completion. If the sink task itself fails, it
is observed by the thread processing the sink task or by one
of its predecessors. As such, failures in the sink task or its
predecessors are recovered. When the sink task and all of its
predecessors are in an error-free state, the sink task is executed.

Theorem 1. The task graph execution produces the same result
with and without faults.

Proof Sketch: Lemma 3 showed that the sink task is
executed irrespective of the number of failures encountered.
All tasks are assumed to be stateless, meaning every execution
of a task produces the same output for the same inputs.
Lemma 1 shows that the sink task is executed with the correct
non-faulty inputs, producing the same final result with and
without faults.

When data blocks are reused by multiple tasks in a graph,
additional re-execution may be required. For example, task
A’s output has been partially overwritten by task C. However,
re-execution of task B (and later task C) requires the output
from A. During normal execution, the dependences specified
ensure that all uses of a particular version of a data block
are complete before the task that produces the next version of
the data block is allowed to execute. However, a fault might
result in the need to use such a data block version after it has
been overwritten. Our algorithm tracks such overwrites and
re-executes these tasks by treating them as if they failed.

The fault-tolerant algorithm does not affect the perfor-
mance of the base task graph scheduler in the absence of
faults, except through the addition of atomic operations to
maintain the bit vector. The recovery focuses on tasks that
failed and is performed by threads that need to operate on them
without affecting other threads. While single-assignment task
graphs only incur these costs, reuse of data buffers could result
in additional re-execution in trying to reproduce the inputs
to the failed tasks. In the experimental evaluation, we show

that this overhead is not significant in practice, and could be
ameliorated by retaining the intermediate versions in memory.
While errors can still affect these retained versions, the impact
of such re-execution also can be minimized.

V. PERFORMANCE ANALYSIS

In this section, we provide a theoretical analysis of the run-
time of the program on P processors in the presence of faults.
As there is failure recovery built into the system, the running
time depends on the number of times each node fails and is
recovered. In particular, we prove an a posteriori bound—
our bound depends on the number of times each node failed
and was recovered. We first calculate the upper bounds on the
total work and span of any execution. Then, we translate these
bounds to completion time bounds using known theoretical
bounds on completion times of series-parallel programs using
randomized work stealing [12], [13].

A. Definitions

Consider a task graph D = (V,E). Each node A ∈ V has a
list in(A) of immediate predecessors and a list out(A) of im-
mediate successors. Therefore, |out(A)| and |in(A)| denote
the out- and in-degrees of A, respectively. For simplicity in
stating the results, we assume that every node is a successor
of a unique node root(D) with no incoming edges and a
predecessor of a unique node final(D) with no outgoing
edges. Let paths(A,B) be the set of all paths in D from node
A to node B.

Note that actual execution of the computation is non-
deterministic for several reasons. A node may be executed
more than once due to failures or because the memory con-
taining the result has been freed since the node executed and
another successor needs this result. In addition, the actual
execution of a dynamic task graph may depend on the input
and the schedule. Hence, our completion time bounds will
be for a particular execution. Each possible execution can be
represented as an execution graph (more specifically, DAG) E .
Each execution of D leads to a potentially different E .

We define several notations for subgraphs of an execution
graph E . For a particular execution graph E , we define a
function N such that N(E , A) is the number of times task A
is executed in E . In addition, let comi(E , A) be the subgraph
corresponding to ith execution of the compute function and
comNoti(E , A) be the subgraph corresponding to the ith ex-
ecution of the compute and notify function. For any subgraph
E ′ of an execution DAG, we denote the work of the subgraph
as W (E ′) and the span as S(E ′).

To analyze the running time, we must examine executions
of the worst-case parameters of E . We define that the total
work done by an execution E of D is W (E), and the span is
S(E). We will overload the notation, indicating that W (DN)
is the maximum work among all execution graphs that have
the same function N , and S(DN) is the maximum span among
all of these execution graphs. Similarly, for each node A, we
define W (com(A)) as the maximum time a compute function
can take over all execution graphs E and all executions of that
compute function. Similarly, S(com(A)) is the maximum span
of the compute function of A over all execution possibilities
of A.

724

B. Work Analysis

To calculate the work of a task graph execution, we first
construct (pessimistic) bounds on the time NABBIT spends
waiting at synchronization operations. Let LW (A) be the
maximum over all executions of the time spent on atomic
decrements.

Lemma 4. Any execution of D has work at most
W (DN) = O

(∑
A∈V N(A)

(
W (com(A)) +

∑
B∈out(A) N(B) +

LN (A)
)
+ LJ (A)

)
,

where
LJ (A) = O

(∑
B∈out(A) min {|in(B)|, P}

)
and

LN (A) = O
(∑

C∈in(A) min {|in(C)|, P}
)

.

Proof: The first term arises from the work of the compute
functions because each node is executed N(A) times. The
second term arises from the fact that every time A is executed,
we must look through the notify array to see if any of them
should be notified. Note that each successor B of A can
appear many times in the notify array, in particular, N(B)
times. The term LN stems from the fact that a node may
be added many times to its predecessor’s notify array, and
there is potential contention on this array. Finally, the term LJ

bounds the amount of time we can spend waiting to decrement
the join counter. Every time a node B is notified and its join
counter is decremented, the decrement may have to wait for
other updates. We do not multiply this quantity by N(A) as
the failure model ensures that each node is notified at most
once.

C. Span Analysis

The nondeterministic nature of the computation compli-
cates a direct calculation of S(DN). Instead, we construct a
new, deterministic execution DAG EN , which is parametrized
by the function N . The span of this DAG is an upper bound
on the span of the computation where the number of times
each node is executed is dictated by the function N .

In this DAG, for a node A, there are N(A) ex-
ecutions of the compute function represented by DAGs
com1(A),com2(A), ...,comN(A)(A). We omit E from this
notation and assume that each of these DAGs is the worst-case
DAG for the compute function over all executions. At the end
of each compute function, we assume there is a notification to
all of the successors, but none of these notifications actually
succeed. Finally, in the graph EN , we add edge from the end
of DAG comi(A) to comi+1(A) as these computations must
occur sequentially one after the other.

More importantly, in EN , we make two assumptions. First,
for each node, we define the method comNot∗(A) to be
the same as the original method, except that all possible
recursive calls always occur. In other words, comNot∗(A)
always makes recursive calls for all of its successors. Second,
we assume that only the last execution of each node A actually
manages to inform all of the successors. In other words, the
last call to com(A) is the one that turns into comNot∗(A).
Therefore, the first instance of com1(B) of B has an edge
from the last instance of comN(A)(A) of A if A is a parent
of B.

Lemma 5. With a dynamic execution graph E generated by
D, where a node A is executed N(A) times, the span of E is
at most S(EN).

Proof Sketch: Consider the longest path to any subDAG
com1(A) in E and in EN . Both paths must contain at least
one instance of comNot(B) for every B that precedes A.
However, it is easy to see that the path in EN is not shorter
because everyone is always successfully notified by the last
execution of every node.

Lemma 6. The span of the computation is S(EN) is at most

S(EN) ≤ O

(
maxp∈paths(root,final)

{∑
X∈p N(X)

(
S(com(X))+

∑
Y ∈out(A) N(Y) + LN (X)

)
+

∑
(X,Y)∈p LS(X,Y)

})
,

where
LS(X,Y) = O (min {|in(Y)|, P}) and
LN (A) = O

(∑
C∈in(A) min {|in(C)|, P}

)
.

Proof sketch: The first term is due to the fact that node
X is executed N(X) times (one after the other), and each
execution has the span S(com(X)). The second term comes
from the fact that each of these compute functions tries to
notify all of the nodes in the notify array but fails to do so.
The term LN is due to the contention on the notify array.
Finally, the last term stems from the fact the last execution
of X successfully notifies all of X’s successors. The term
LS(X) accounts for the contention cost of decrementing the
join counter for Y , where Y is a descendant of X . In the worst
case, this decrement might have to wait for min {|in(Y)|, P}
other decrements.

D. Completion Time Bounds

We have bounded the work and span of the execution graph
using the characteristics of the task graph. Now, we relate
these bounds back to the execution time using a work-stealing
scheduler.

For any task graph D, where a node A is executed N(A)
times according to the failure model, define T1 as the time it
takes to execute D on a single processor. Define T∞ as the
time it takes to execute D on an infinite number of processors,
assuming no synchronization overhead. We have

T1 =
∑

A∈V N(A)(W (com(A)) + |out(A)|)
and

T∞ = maxp∈paths(root,final)

{∑
X∈p N(A)S(com(X))

}
.

Using Lemmas 4 and 6, and the analysis of a work-stealing
scheduler [12], [13], we obtain the following upper bound for
the completion time of the task graph on P processors:

Theorem 2. Consider a task graph D, where each node
A is executed N(A) times. The graph has the maximum
degree d and maximum path length (number of nodes on the
longest path in the task graph from root to final) M . Also,
N = maxA∈D N(A). With probability at least 1− ε, NABBIT

executes D on P in time

O (T1/P + T∞ + lg(P/ε) +NMd+NL(D)) ,

where L(D) = O ((|E|/P +M)min{d, P}).

725

LCS LU Cholesky FW SW

N 512Kx512K 10Kx10K 10Kx10K 5Kx5K 6Kx6K
B 2Kx2K 128x128 128x128 128x128 128x128
T 65536 173880 88560 64000 132650
E 195585 508760 255960 308880 262600
S 510 238 238 120 1475

TABLE I: Matrix size (N), block size (B), total number of
tasks (T), total number of dependencies (E) and the critical
path length (S) for each benchmark.

Proof sketch: From [12], [13], a Cilk-like work-stealing
scheduler completes a computation with work W and span S in
time O(W/P +S+lg(P/ε)) on P processors with probability
at least 1−ε. To prove the completion time, we relate the work
W (EN) and span S(EN) to T1 and T∞.

The proof follows from Lemmas 4 and 6. We bound the
in- and out-degrees of nodes by d and bound expressions that
compute maximum over paths p in terms of M . Bounding the
work in Lemma 4 using the maximum degree, we know that

W (EN) = T1 +N|E|min{di, P} .
Similarly, we can use Lemma 6 to show that S(EN) is not
more than

O (T∞ +NMdo +NM min{di, P}) .

We note a few things about this bound. It reduces to
the normal NABBIT bound when there are no failures and
N(A) = 1 for all A. Second, it is asymptotically optimal for
constant degree graphs, graphs whose degree can be bounded
by a constant. Even when the degree is not bounded, we do
not expect the terms that depend on the degree to have much
impact on the runtime all nodes have sufficient work.

VI. EXPERIMENTS

We evaluated our scheduling algorithm on a 48-core Redhat
4.1.2-54 Linux system, consisting of four sockets, each with
a 12-core AMD Opteron 2.3 GHz processor, and 256 GB of
memory. Our implementation is built on top of Cilk++ 8503
x86 64 release, and all benchmarks are compiled with Cilk++
compiler (based on gcc 4.2.4) with “-O3” optimization. We
attempted to mitigate the impact of system noise and variability
by using only 44 of the 48 cores for our experiments and
setting the affinity of each thread to a specific core. In all
experiments reported in this section, we take 10 runs and
report the average (arithmetic mean). Standard deviations are
presented as error bars.

We evaluated our implementation using five benchmarks:
LCS (longest common subsequence); Smith-Waterman (lo-
cal sequence alignment algorithm [14]); Floyd-Warshall (all-
pairs shortest path algorithm in a weighted graph); and two
dense linear algebra kernels, which are LU decomposition
and Cholesky factorization. The configuration used for each
benchmark is shown in Table I. LCS, Smith-Waterman (SW),
and Floyd-Warshall (FW) are implemented using the recur-
sive definitions of the corresponding dynamic programming
solutions. We evaluated single-assignment and memory reuse
strategies for implementing these benchmarks. In the memory
reuse version, we allocate a set of data blocks and reused them

to store the outputs of subsequent tasks whenever possible.
In all cases, except LCS, the memory reuse implementation
resulted in improved performance. Thus, we used this version
for subsequent evaluation. Note that memory reuse increases
the potential cost of our algorithm by requiring recomputation
of tasks because their outputs have been overwritten. We
expect the overheads of our fault tolerance scheme for the
single-assignment implementations to be lower. Memory reuse
is not applicable to LCS because each task’s output is part of
the computation’s final output and cannot be reused.

We observed that the cost of fault recovery for Floyd-
Warshall significantly depended on the exact location of the
fault. This is due to the impact of varying costs incurred by the
recursive recomputation of inputs to a failed task. We adapted
the implementation to retain two versions per data block, dou-
bling the memory requirement to minimize the impact of such
cascading recomputation. Note that neither version of a data
block is considered checkpointed as either, or potentially both,
could fail. Our resilience approach would be equally applicable
to the single-assignment approach for implementing Floyd-
Warshall and might be preferable when optimized memory
management policies make that implementation comparable
or better performing than the two-version implementation. In
general, such choices point to the trade-offs between different
task graph representations for a given application rather than
the scheduling algorithm.

A. Overheads Without Failures

We evaluated the impact of fault tolerance support on per-
formance in the absence of failures. Figure 4 shows speedups
achieved by the implementation with no fault tolerance support
(baseline) and by our fault-tolerant implementation for
each benchmark. Unlike the fault-tolerant version, the baseline
version includes no additional data structures or statements
introduced for fault tolerance. Results indicate that these
additional structures do not incur substantial overheads. One
exception is Floyd-Warshall, with nearly 10% overhead on
the execution with 44 cores. This is due to the memory
management and additional cache misses introduced by the
two versions maintained for each data block.

B. Overheads With Failures

We evaluate overheads in the presence of failures by
injecting faults into execution. For each figure in this section,
recovery overhead is defined as the increase in the execution
time (over the fault-tolerant version in the absence of failures)
and displayed as a percentage. To simulate faults, we a priori
identify the tasks that would fail and the point in their lifetimes
where they would fail. When a fault is injected, a flag is set to
mark the fault, which is then observed by a thread accessing
that task. We evaluate the following fault scenarios:

Amount of work lost: We randomly inject failures in the
task graph to effect the loss of a constant amount of work or a
certain percentage of the total work. A fault affects both a task
and the data blocks it has computed. For every experiment, we
verify the fault injection by ensuring that the number of tasks
recovered matches the loss of work in terms of number of
tasks, intended. This cannot be guaranteed in some scenarios
(descriptions follow).

726

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32 44

S
p
e
e
d
u
p

Number of Cores

LCS, baseline
LCS, w/ FT support

SW, baseline
SW, w/ FT support

(a) LCS, SW

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32 44

Number of Cores

baseline
w/ FT support

(b) LU

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32 44

Number of Cores

baseline
w/ FT support

(c) Cholesky

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32 44

Number of Cores

baseline
w/ FT support

(d) FW

Fig. 4: Speedup for the baseline and fault-tolerant versions in the absence of faults. Sequential times (in secs) for each
benchmark are as follows: LCS (baseline=650, w/FT-support=668), SW (baseline=578, w/FT-support=579), LU (baseline=624,
w/FT-support=613), Cholesky (baseline=338, w/FT-support=337), and FW (baseline=315, w/FT-support=371).

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

LCS LU Cholesky FW SW

O
v
e
rh

e
a
d
 P

e
rc

e
n
ta

g
e
 (

%
)

before compute,v=0
after compute,v=0
before compute,v=rand
after compute,v=rand
before compute,v=last
after compute,v=last

(a) 512

-2

 0

 2

 4

 6

 8

 10

LCS LU Cholesky FW SW

2%,before compute,v=rand
2%,after compute,v=rand
5%,before compute,v=rand
5%,after compute,v=rand

(b) 2% and 5%

Fig. 5: Impact of the time of failure (“before compute” and “after compute”) on the recovery overhead, when failures occur
on different task types (“v=0,” “v=rand,” and “v=last”). (a) Failures cause the re-execution of 512 tasks; (b) failures cause 2%
and 5% of the total number of tasks to be re-executed. In both (a) and (b), overheads are calculated by taking the sequential
execution time of FT-support version, in the absence of faults, as the baseline. FT-support (evaluated in Figure 4) introduces an
additional 10% overhead for FW, and negligible overhead for the other benchmarks.

Time: The cost incurred by a fault depends on the point in
a task’s lifetime at which the fault affects it. A task lifetime
consists of three phases: before compute, after compute, and
after notify. A task failing in the before compute phase has
traversed its predecessors and is waiting for one or more
notifications to be scheduled for execution. A task that has
completed its main operations and is about to notify its
successor tasks, is considered to be in the after compute phase.
Once a task finishes notifying its successors, it transitions into
the after notify period. A task may spend a significantly larger
fraction of its lifetime in before compute and after notify phases
as these phases could potentially involve several recursive task
computations.

The impact of a fault on a task is different in each of
these scenarios. A task in the before compute phase has
not performed its computation, incurring a computation cost.
Recovering such a task, while incurring the cost of resetting
its state and tracking its predecessors, does not result in
task re-execution overhead. In contrast, failures occurring in
after compute require the task to be re-executed, potentially

incurring significant overhead. Statically analyzing the impact
of faults in the after notify phase is difficult due to fact that
some tasks might not recover if all successors of a failed task
finish their computation before the fault can be injected.

Task type: We define three sets of tasks for the injection of
failures: v=0, v=last, and v=rand. Tasks with the v=0 label
denote tasks that produce the first version of a data block. The
v=last label denotes tasks that produces the last version. A
failure on a v=0 task causes either 0 or 1 task re-execution,
depending on the time at which it is injected. Conversely, the
failure of a v=last task can trigger a chain of re-executions,
where all of the tasks that produce the previous versions of
a particular data block get re-executed. Representing a case
between these two extremes, we identify a v=rand task as a
task that produces a random ith version (0 ≤ i ≤ n) of a data
block, where n is the last version number of the same data
block.

We show the impact of the timing of failure (before
compute and after compute) when we inject failures on three

727

LCS LU Cholesky FW SW

0 last rand 0 last rand 0 last rand 0 last rand 0 last rand

Avg 443 448 442 473 3606 470 389 5020 483 307 213 508 318 2955 209
Min 431 437 431 448 1976 185 350 3954 232 247 0 333 259 1890 76
Max 453 464 452 484 5385 1292 413 5483 966 419 551 880 361 4397 401
Std 8 9 8 10 1206 360 19 483 282 48 198 192 37 828 97

TABLE II: Average, minimum, maximum, and standard deviation of the number of re-executed tasks in after notify scenario
when the original set of failures on different task types (“v=0,” “v=last,” and “v=rand”) implies 512 task re-executions. The
resulting average recovery overhead for each benchmark is presented in Figure 6.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

LCS LU Cholesky FW SW

O
v
e
rh

e
a
d
 P

e
rc

e
n
ta

g
e
 (

%
)

512,v=0
512,v=rand
512,v=last
2%,v=rand
5%,v=rand

Fig. 6: Recovery overheads in the after notify scenario when
the set of injected failures implies re-execution of 512 tasks,
2% and 5% of the total number of tasks in the graph.

different task types (“v=0,” “v=rand,” and “v=last”) in Fig-
ure 5(a). In each of the six injection scenarios, the injected
failures cause the recovery to execute a total of 512 tasks
corresponding to less than 1% of all tasks for each application,
with the largest observed overhead being 0.96%. As expected,
the before compute cases incur negligible overheads as recov-
ering such failures does not lose any work done prior to the
failure. In comparison, after compute scenarios lead to loss of
computed work, bringing an observable but still small overhead
on all benchmarks. Moreover, we observe there is no clear
difference in the impact of failures between the before compute
and after compute scenarios, for the various task types. We
repeated the same experiment for scenarios with only 1, 8,
and 64 task re-executions and did not observe any statistically
significant overheads. The relevant figures are not displayed
due to space constraints.

Figure 5(b) demonstrates results for the same setup, but
with injected failures causing 2% and 5% of the total number
of tasks to be re-executed. For this experiment, we report the
results for “v=rand” tasks only because the available amount of
“v=0” and “v=last” tasks in most of our benchmarks are below
5%. As in the previous figure, before compute failures hardly
bring any overhead, whereas after compute failures cause, at
most, 3.6% and 8.2% overheads for the “2%” and “5%” cases,
respectively. Broadly, the amount of re-execution overhead is
proportional to the amount of work lost.

Next, we evaluate the impact of faults injected in the
after notify phase for different types of tasks. We present
these results separately because the impact of after notify
faults depends on the specific benchmark and types of faults

introduced. In one extreme case, all of the successor tasks
may have already used the failing predecessor’s output by the
time the failure is injected, implying no re-executed work. As
another extreme, if the successor discovers the predecessor’s
failure after it has started to overwrite the previous versions of
its output data block, separate recoveries must be initiated to
restore both the failing predecessor’s output and the previous
versions of the successor’s output. Table II reports the statistics
for the actual number of re-executed tasks (average, min,
max, and standard deviation) for each benchmark when the
initial set of failures injected at the after notify period implies
512 task re-executions. Results show that after notify failures
on different task types can have a distinct impact on each
benchmark, especially in benchmarks where the number of
uses on the last version of data blocks depends on the problem
size (as in LU, Cholesky, and SW). Such failures can lead to
a high number of re-executions with large standard deviation
values. In contrast, applications such as LCS, where each data
block has, at most, three uses, the re-execution amounts are
low and similar for all task types. Figure 6 demonstrates the
average overheads for the setup in Table II along with the
scenarios where the injected failures imply re-execution of 2%
and 5% of the total number of tasks (on “v=rand” tasks only).
For most cases, the overheads do not exceed 2.5% and 6.5%
for “2%” and “5%” scenarios, respectively.

C. Scalability Analysis

For this analysis, we focus on failures that occur at the
after compute time period on “v=rand” tasks. Figure 7 plots
the scalability of the fault tolerance mechanism when varying
the number of cores are used. As Figure 7(a) shows, a constant
number of re-executions hardly has any effect on the overall
execution, whereas, in Figure 7(b), we observe an increasing
trend in the recovery costs when more cores are employed.
Generally, when a data reuse strategy is applied for subsequent
versions of data blocks, each failure in the system leads to a
chain of task re-executions, which cannot be run in parallel.
The chain involves the producer task for the corrupted data
block, as well as any tasks that produce a previous version for
the same data block. These chains lack concurrency to keep
all threads busy and comprise the biggest scalability challenge
for any task graph execution scheme and related fault tolerance
mechanisms. Unsurprisingly, this loss in available concurrency
is more visible with a higher number of cores, as shown by
Figure 7(b). Nevertheless, the overhead of our fault tolerance
mechanism still does not exceed 6.5% for most cases, reaching
a maximum of 8.2% in Smith-Waterman on 44 cores.

728

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

LCS LU Cholesky FW SW

O
v
e
rh

e
a
d
 P

e
rc

e
n
ta

g
e
 (

%
)

P=1
P=8
P=16
P=32
P=44

(a) 512

 4

 5

 6

 7

 8

 9

 10

 11

LCS LU Cholesky FW SW

P=1
P=8
P=16
P=32
P=44

(b) 5%

Fig. 7: Recovery overheads when varying the number of cores (P) for a failure scenario, causing the re-execution of (a) 512
tasks and (b) 5% of all the tasks. In both (a) and (b), failures are injected on “v=rand” tasks at the after compute failure point.

VII. RELATED WORK

The challenges of dealing with an architecture that can
expose soft errors to programmers has received some attention
in recent years. The area of approximate computation has
emerged [15], [16], [17], [18], [19], [20], [21], with the idea
being that a programmer can explicitly declare what compu-
tations can be performed approximately. The target domains
have been multimedia, data mining, and machine learning.
In comparison, scientific programmers are typically unwilling
to accept a lack of precision unless supported by rigorous
mathematical analysis. Erez et al. have experimented with
the notion of containment domains [22], which can confine
errors in certain program segments. This approach also requires
additional programmer effort. Another direction has been to
use replication of processes [3], [23]. While this approach does
not require additional programmer effort, it decreases resource
utilization efficiency, increasing costs and power budget. Our
solution does not require additional programmer effort, and
has much lower costs compared to replication. However, it
does assume that soft errors can be detected in a timely
fashion. In other efforts, Li et al. [24] recently studied soft
error vulnerabilities in scientific programs, but their work does
not provide a specific solution for addressing the problem.

Algorithm-level solutions for fault tolerance: Algorithm-
level fault tolerance solutions have been a topic of investi-
gation for almost three decades. In this approach, the idea
is that recovery can be performed by using already existing
information in running processes, and, if the algorithm itself
does not contain such redundant information, it can be added
by modifying them [25], [26], [27], [28], [29]. While this
approach can handle most types of soft errors, it is specific to
a particular algorithm, and cannot be applied to all algorithms.

Task graph scheduling with knowledge of computation
and communication times: Many task graph scheduling
approaches assume the structure of the task graph and weights
associated with the vertices and edges, corresponding to task
computation and inter-task communication times, are known
in advance [30]. Fault tolerance approaches under these as-
sumptions include both entirely offline approaches [31], [32],

[33], [4] and approaches that include some dynamic decision
making [34], [5]. These approaches typically employ task
duplication, by a fixed or variable amount, to tolerate failures
of individual tasks [4], [6] while minimally impacting the task
graph execution latency. Given our focus on minimizing fault
tolerance overheads rather than minimizing execution latency,
we do not assume such complete a priori knowledge and do
not employ task duplication.

Fault tolerance for task-based computations: Maehle and
Markus [35] presented fault-tolerant scheduling of data flow
programs on distributed systems by preserving the inputs to
tasks so a task can be recovered from a failure using its inputs.
In general, recovery from multiple failures requires multiple
checkpoints. Vrvilo et al. [36] consider fault tolerance for
Concurrent Collections using checkpoints of the current execu-
tion frontier of the data flow graph. Using single-assignment
data allows checkpointing to be performed in parallel with
computation once the data has been created. Charm++ supports
message-driven execution and employs message logging and
checkpointing to recover from faults [23], [37]. Our approach
complements these schemes and can increase the time between
checkpoints in computations that can be structured as task
graphs.

Fault-tolerant key-value store: Key-value stores have been
made resilient against a variety of errors. Dynamo [38];
MapReduce [39], which operates on key-value pairs; and
Linda [40], [41], which operates on tuples, provide fault
tolerance through replication. These approaches typically store
significant application state in the key-value store, requiring
expensive techniques to ensure fault tolerance. In our scheme,
the values in the hash map are individual scalars that track
tasks and can be made resilient with low overhead. We ob-
served that application data blocks and computation dominate
the total time (>96% in most cases) and space consumed
during execution. Thus, the hash map can be made resilient
with minimal impact on overall application performance.

We are not aware of any prior work that combines provably
efficient task scheduling and scalable error recovery.

729

VIII. CONCLUSIONS

We presented a fault-tolerant dynamic task graph schedul-
ing algorithm that recovers from faults without global co-
ordination and can efficiently interleave recovery from faults
and normal execution to avoid scalability limitations. The
algorithm was shown to be asymptotically optimal for graphs
whose degree can be bound by a constant. In the absence
of faults, the fault-tolerant version was shown to not incur
significant overheads compared to the non-fault-tolerant ver-
sion. Experimental evaluation through injection of faults at
various stages of execution showed the presented algorithm
can efficiently recover from an arbitrary number of faults with
costs that are roughly proportional to the amount of work lost.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research under award number 63823. It
also is partially supported by NSF award CCF-1318420 to the
Ohio State University.

REFERENCES

[1] H. Quinn and P. Graham, “Terrestrial-based radiation upsets: a caution-
ary tale,” in FCCM, 2005, pp. 193–202.

[2] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild:
a large-scale field study,” CACM, vol. 54, no. 2, pp. 100–107, 2011.

[3] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. B. Ferreira, and
R. Brightwell, “Detection and correction of silent data corruption for
large-scale high-performance computing,” in SC, 2012, pp. 78:1–78:12.

[4] X. Qin and H. Jiang, “A novel fault-tolerant scheduling algorithm
for precedence constrained tasks in real-time heterogeneous systems,”
Parallel Computing, vol. 32, no. 5, pp. 331–356, 2006.

[5] G. Fohler, “Adaptive fault-tolerance with statically scheduled real-time
systems,” in RTS, 1997, pp. 161–167.

[6] O. González, H. Shrikumar, J. A. Stankovic, and K. Ramamritham,
“Adaptive fault tolerance and graceful degradation under dynamic hard
real-time scheduling,” in RTSS, 1997, pp. 79–89.

[7] T. Johnson, “A concurrent dynamic task graph,” in ICPP, 1993, pp.
223–230.

[8] K. Agrawal, C. E. Leiserson, and J. Sukha, “Executing task graphs
using work-stealing,” in IPDPS, 2010, pp. 1–12.

[9] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra, “DAGuE: A generic distributed DAG engine for high
performance computing,” Parallel Computing, vol. 38, no. 1, pp. 37–51,
2012.

[10] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton,
J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach et al., “Concurrent
collections,” Scientific Programming, vol. 18, no. 3, pp. 203–217, 2010.

[11] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost program-level
detectors for reducing silent data corruptions,” in DSN, 2012, pp. 1–12.

[12] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for
multiprogrammed multiprocessors,” in SPAA, 1998, pp. 119–129.

[13] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, 1999.

[14] M. Y. H. Low, W. Liu, and B. Schmidt, “A parallel BSP algorithm for
irregular dynamic programming,” in APPT, 2007, pp. 151–160.

[15] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ASPLOS, 2012,
pp. 301–312.

[16] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: approximate data types for safe and general low-
power computation,” in PLDI, 2011, pp. 164–174.

[17] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain <T>: A
first-order type for uncertain data,” in ASPLOS, 2014, pp. 51–66.

[18] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative re-
liability for programs that execute on unreliable hardware,” in OOPSLA,
2013, pp. 33–52.

[19] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Quality programmable vector processors for approx-
imate computing,” in MICRO, 2013, pp. 1–12.

[20] M. Samadi, D. A. Jamshidi, J. Lee, , and S. Mahlke, “Paraprox: Pattern-
based approximation for data parallel applications,” in ASPLOS, 2014,
pp. 35–50.

[21] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage
in solid-state memories,” in MICRO, 2013, pp. 25–36.

[22] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon,
L. Kaplan, and M. Erez, “Containment domains: a scalable, efficient,
and flexible resilience scheme for exascale systems,” in SC, 2012, pp.
58:1–58:11.

[23] X. Ni, E. Meneses, N. Jain, and L. V. Kalé, “Acr: automatic check-
point/restart for soft and hard error protection,” in SC, 2013, pp. 7:1–
7:12.

[24] D. Li, J. S. Vetter, and W. Yu, “Classifying soft error vulnerabilities
in extreme-scale scientific applications using a binary instrumentation
tool,” in SC, 2012, pp. 57:1–57:11.

[25] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Computers, vol. 33, no. 6, pp. 518–528,
1984.

[26] Z. Chen, “Extending algorithm-based fault tolerance to tolerate fail-stop
failures in high performance distributed environments,” in IPDPS, 2008,
pp. 1–8.

[27] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen, “High per-
formance linpack benchmark: a fault tolerant implementation without
checkpointing,” in ICS, 2011, pp. 162–171.

[28] H. Liu, T. Davies, C. Ding, C. Karlsson, and Z. Chen, “Algorithm-based
recovery for Newton’s method without checkpointing,” in IPDPSW,
2011, pp. 1541–1548.

[29] Z. Chen, “Algorithm-based recovery for iterative methods without
checkpointing,” in HPDC, 2011, pp. 73–84.

[30] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys,
vol. 31, no. 4, pp. 406–471, 1999.

[31] K. Hashimoto, T. Tsuchiya, and T. Kikuno, “Effective scheduling of
duplicated tasks for fault tolerance in multiprocessor systems,” IEICE
Trans. on Info. and Systems, vol. 85, no. 3, pp. 525–534, 2002.

[32] A. Girault, H. Kalla, M. Sighireanu, Y. Sorel et al., “An algorithm for
automatically obtaining distributed and fault-tolerant static schedules,”
in DSN, 2003, pp. 165–190.

[33] A. Benoit, M. Hakem, and Y. Robert, “Fault tolerant scheduling of
precedence task graphs on heterogeneous platforms,” in IPDPS, 2008,
pp. 1–8.

[34] N. Tabbaa, R. Entezari-Maleki, and A. Movaghar, “A fault tolerant
scheduling algorithm for dag applications in cluster environments,” in
ICDIPC, 2011, pp. 189–199.

[35] E. Maehle and F.-J. Markus, “Fault-tolerant dynamic task scheduling
based on dataflow graphs,” in Fault-Tolerant Parallel and Distributed
Systems, 1998, pp. 357–371.

[36] N. Vrvilo, V. Sarkar, K. Knobe, and F. Schlimbach, “Implement-
ing asynchronous checkpoint/restart for CnC,” Concurrent Collections
workshop, 2013.

[37] E. Meneses, “Scalable message-logging techniques for effective fault
tolerance in HPC applications,” Ph.D. dissertation, Dept. of Computer
Science, University of Illinois, 2013.

[38] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in SOSP, 2007, pp. 205–
220.

[39] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” CACM, vol. 51, no. 1, pp. 107–113, 2008.

[40] D. E. Bakken and R. D. Schlichting, “Supporting fault-tolerant parallel
programming in Linda,” TPDS, vol. 6, no. 3, pp. 287–302, 1995.

[41] A. Xu and B. Liskov, “A design for a fault-tolerant, distributed imple-
mentation of Linda,” in FTCS, 1989, pp. 199–206.

730

