
Optimization of a Multilevel Checkpoint Model with Uncertain Execution Scales

Sheng Di12, Leonardo Bautista-Gomez2, Franck Cappello23

1INRIA, France, 2Argonne National Laboratory, USA,
3University of Illinois at Urbana-Champaign, USA

{sdi1, leobago, cappello}@anl.gov

Abstract—Future extreme-scale systems are expected to
experience different types of failures affecting applications
with different failure scales, from transient uncorrectable
memory errors in processes to massive system outages. In this
paper, we propose a multilevel checkpoint model by taking
into account uncertain execution scales (different numbers of
processes/cores). The contribution is threefold: (1) we provide
an in-depth analysis on why it is difficult to derive the
optimal checkpoint intervals for different checkpoint levels
and optimize the number of cores simultaneously; (2) we
devise a novel method that can quickly obtain an optimized
solution—the first successful attempt in multilevel checkpoint
models with uncertain scales; and (3) we perform both large-
scale real experiments and extreme-scale numerical simulation
to validate the effectiveness of our design. The experiments
confirm that our optimized solution outperforms other state-
of-the-art solutions by 4.3–88% on wall-clock length.

I. INTRODUCTION

Extreme-scale environments with a million cores or more

will be used more and more commonly in solving scien-

tific problems [1]. With such numbers of cores, however,

such environments become more fragile, and fault tolerance

mechanisms are needed in order to protect high-performance

computing (HPC) executions.

To solve the fault tolerance issue, many researchers

have proposed solutions [2] that adopt a periodic check-

point/restart model (or checkpoint model for short) [3], [4],

because of its ease of use and acceptable overall performance

in practice [5], [6], [7]. For an MPI program, one just needs

to periodically set checkpoints (i.e., store running processes’

memories) via a parallel file system (PFS), and roll back

execution to the most recent checkpoint upon a failure.

Such a simple PFS-based checkpoint model is called single

level, because it uses only one storage technology for storing

checkpoints.

For exascale applications, however, the classic single-

level checkpoint model may result in a huge performance

degradation. One reason is that exascale applications [8] are

likely to experience different types of failures frequently, be-

cause of the number of cores used simultaneously. Another

reason is that classic checkpoint/restart models always store

checkpoint files on the PFS, whereas exascale applications

tend to use very large datasets during the execution, leading

to a huge checkpoint/restart overhead (up to 25%) [9] due

to the I/O bottleneck.

Compared with the single-level checkpoint/restart model,

multilevel checkpoint/restart [10], [11], [12], [13] is a

promising model to solve the cited problem. The Fault

Tolerance Interface (FTI) [13] toolkit, for example, provides

four-level checkpointing interfaces, including local-storage-

device, partner-copy [13], [14], Reed-Solomon encoding

(RS-encoding) [15], [16], and PFS. Different checkpoint

levels handle different types of failure events. For example,

partner-copy technology makes each checkpoint file have

two copies stored in local storage device and another partner-

node, respectively. Thus, upon a failure event with multiple

simultaneous hardware crashes,1 the whole execution can

still be recovered via partner-copy as long as no adja-

cent/partner nodes have crashed.

Since different levels correspond to various checkpoint

overheads, such a multilevel checkpoint model creates a

new avenue to refine the checkpoint strategies. For ex-

ample, saving processes’ runtime memories in the form

of checkpoint files on local storage devices in parallel

would be much faster than on the PFS. The difference of

checkpoint overheads between local storage devices and the

PFS will be larger in the near-future systems, especially

because of the rapid development of non-volatile dynamic

RAM (NVDRAM) (such as DVDIMM [19]), which is now

available with DDR3 DRAM [20] and to be integrated with

DDR4 [21].

In our previous work [22], we proposed an efficient

method to compute the optimal checkpoint intervals for

different levels and to optimize the selection of levels for

each HPC application. However, that solution optimizes

the checkpoint intervals for fixed execution scales. Our re-

cent experiments indicate that an application’s performance

with the checkpoint model not only is determined by the

checkpoint/recovery overheads and rollback loss but also is

related to the execution scale with consideration of check-

point/recovery overhead and failure events. Hence, we revisit

the multilevel checkpoint model in order to optimize the

execution scales based on multilevel checkpoint overheads

and various failure events.

1Simultaneous failures means multiple nodes fail in a short period (i.e.,
correlated failure window), such as a resource allocation period. In [17] and
[18], the window lengths are set to 1 minute and 2 minutes, respectively.
Simultaneous node failures may also occur because of malfunctioned
switches or power boards shared by multiple nodes.

SC14: International Conference for High Performance Computing, Networking, Storage and Analysis

978-1-4799-5500-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SC.2014.79

907

Our main contributions are threefold.

• We first reformulate and analyze the multilevel check-

point model based on both checkpoint interval variables

and the number of cores to be used in execution. Our

problem formulation takes into account both linear and

nonlinear speedup applications. The key challenge of

the problem is twofold. First, the lower-level checkpoint

overheads will impact the higher-level rollback loss, so

we have to combine all checkpoint levels with different

failure rates to optimize the entire performance for each

HPC application. Second, the failure event probability

likely depends on execution scales; that is, different

numbers of cores in execution will definitely impact the

failure rates on different checkpoint levels, which leads

to a nonconvex optimization problem. Hence, finding

the optimal solution based on such a new multilevel

checkpoint model is extremely difficult. This contrasts

with Young’s formula [3] or Daly’s work [4], which

is much easier to use in order to get approximate

checkpoint intervals because of the single checkpoint

level and fixed execution scales.

• We propose a method that can quickly optimize the

trade-off between speedup and various overheads, with

consideration of uncertain execution scales. That is,

the new solution can optimize the checkpoint intervals

for different levels and optimize the number of cores

simultaneously. On the one hand, the larger the number

of processes/cores used, the shorter the productive time

we obtain in general. On the other hand, different num-

bers of processes to be launched in the execution will

lead to different failure rates and checkpoint overheads.

Hence, there would be an optimum scale for a specific

application. Based on the multilevel checkpoint model,

we comprehensively analyze how to optimize the scales

with regard to both the application speedup and various

overheads. To the best of our knowledge, this is the first

attempt to solve such a problem with this approach.

• We evaluate our multilevel checkpoint model and some

related work by using an exascale simulation envi-

ronment. This environment provides simulation results

close to practical situations, since we carefully emulate

the execution of real MPI programs and also validate

the correctness of its generated results using a real

cluster environment with 1000+ cores. Our solution

adopts both the optimized checkpoint intervals and

optimized execution scales computed by our algorithm.

The related work we evaluate includes (1) a single-

level PFS checkpoint model with Young’s formula

[3]; (2) a multilevel checkpoint model with optimized

checkpoint intervals yet without optimization of scales

(i.e., our previous work [22]); and (3) a single-level

PFS checkpoint model with both Young’s formula and

optimized number of processes, which is proposed by

[23]. Experiments show that our approach outperforms

other solutions by 4.3–88%.

The rest of the paper is organized as follows. In Section

II, we formulate the multilevel periodic checkpoint model

to minimize the entire wall-clock time for each HPC ap-

plication with respect to execution scales and checkpoint

intervals. In Section III, we derive the provably optimal

solution for different types of HPC applications. We present

our experimental results in Section IV, discuss the related

works in Section V, and provide concluding remarks and a

look at future work in Section VI.

II. PROBLEM FORMULATION

In this section, we formulate our research as an opti-

mization problem based on the multilevel checkpoint/restart

model. We focus mainly on the periodic checkpoint model

(i.e., equidistant checkpoint model) because it is a de facto

standard in the fault tolerance research community.

Here, we propose a generic multilevel checkpoint/restart

model with L checkpoint levels. The checkpoint level 1

corresponds to transient/software failures. The remaining

higher levels (2, 3, · · · , L) correspond to different cases

of hardware failures. In FTI, for example, there are four

checkpoint levels (local storage, partner-copy, RS-encoding,

and PFS), which correspond to software error with no hard-

ware failure, nonadjacent node failures, a certain number of

node failures with adjacent failure cases, and the situations

that lower levels cannot take over, respectively. Upon any

type of hardware failure, the system will reallocate a new

set of nodes/cores to replace the crashed nodes/cores; and

the resource allocation is a constant period, denoted by A,

which is far shorter than the application execution time.

The checkpoint overhead and recovery overhead1 are

different from level to level and may also be different with

various numbers of processes/cores used. Suppose we are

given N processes running on N cores in parallel. Then

the checkpoint overhead at the checkpoint level i is denoted

by Ci(N). In general, C1(N) ≤ C2(N) ≤ · · · ≤ CL(N).
Similarly, the recovery overhead at level i is denoted by

Ri(N), where R1(N) ≤ R2(N) ≤ · · · ≤ RL(N) in general.

Considering the various checkpoint/recovery overheads

with different numbers of cores, minimizing the wall-clock

time for a specific HPC application is actually a tradeoff

between its original speedup and increasing failure rates as

the execution scales. In general, the speedup2 of an HPC

application increases more and more slowly with more cores,

as shown in the grey curve in Figure 1. On the other hand,

the failure rates may increase with the execution scales,

shown as dash-dot lines in Figure 1. The figure illustrates

1Recovery overhead means the time cost in restarting a failed applica-
tion, so it is also known as restart overhead.

2Speedup= single-core length
parallel execution time

. For simplicity, we focus on the

HPC applications whose speedups can be characterized as a continuous
function instead of a piecewise function.

908

typical performance curves with and without regard to the

checkpoint overheads and failure events. As shown by this

figure, the optimal number of cores with checkpoint is lower

than without checkpoint. The application’s real productive

time with N cores is denoted as f(Te, N), where Te refers to

the single-core productive time (or execution length) by ex-

cluding any failure-related costs such as checkpoint overhead

and roll-back loss. We denote the speedup of the application

running with N cores as g(N). Hence, f(Te, N)= Te

g(N) . For

example, if the parallel execution follows a linear speedup,

then g(N) = κN and f(Te, N)≈ Te

κN , where κ is a constant.

�������	
��	������

�
��
��
��

����
����

����
����

��
���
��
��
�	
��
��
���
�

����
����
����

� ��

�����

 ���

����

!"�����	#�$����	����������%��&	����&��'�	�#��	(��&�����#��
�������
!"�����	#�$����	����������%��&��&��'�	�#���	(��&�����#��
�������
��������)����	����	����������#����������#������%��&��&��#������	
��	���

�����������%��&*%��&	����'����#��
�������
�������	
��	������

$�
�
��
�#
��
��
	#
��
�

����
����

����
����

�����

���!"��+�$����%��&*%��&	����'����#��
�������

�����
�����

�����
�����

Figure 1. Tradeoff between Execution Speedup and Checkpoint Overhead

The optimization of such a multilevel checkpoint model

is nontrivial because of the following factors: (1) the

entire wall-clock time of any application is synthetically

determined by checkpoint/recovery overheads and roll-back

losses at different levels; (2) the parallel execution may be

struck by different types of failures, and the failure locations

are randomly distributed; and (3) the failure probabilities

are different from level to level and are related to the

number of processes/cores. To make the problem tractable,

we introduce a key random variable called the number of

failures (denoted by Y) during the application’s execution.

Our objective is to minimize the expected wall-clock

length E(Tw) for each given application. E(Tw) can be

written as Formula (1), where L denotes the total number

of checkpoint levels, xi refers to the number of checkpoint

intervals at level i, Γij refers to the roll-back loss due to

the jth failure occurring at level i in the execution, and

Pi(Y =K) denotes the probability of experiencing K failure

events at checkpoint level i. We need to determine the

optimal values of x1,x2,· · · ,xL, and N , with minimized

E(Tw) regarding all possible overheads and roll-back losses.

E(Tw) = f(Te, N) +
L∑

i=1

Ci(N)(xi − 1)

+
L∑

i=1

[
∞∑

K=1

(
Pi(Y =K)

K∑
j=1

(Γij+A+Ri(N))

)] (1)

Key notations are summarized in Table I.

Such a multilevel checkpoint model is generic enough

to be suitable for different scenarios. For example, the key

difference between the strong-scaling scenario and weak-

scaling scenario is different speedup functions (either with

Table I
SUMMARY OF KEY NOTATIONS

Notation Description
L # of checkpoint levels each with various failure types

N # of processes (or cores) of the focused application

Te single-core productive time of the application

f(Te, N) parallel execution time with N cores

g(N) speedup function of the parallel application

Ci(N) checkpoint overhead at level i
Ri(N) restart overhead at level i
A resource allocation period (a constant)

xi # of checkpoint intervals of the application at level i
Pi(Y =K) probability of encountering K failures at level i
Γij roll-back loss in execution due to jth failure at level i

consideration of scale increase or not) and checkpoint over-

head/recovery functions. Our model is suitable for both cases

because of the generic definitions of the these functions in

our model.

III. OPTIMIZATION OF MULTILEVEL CHECKPOINT

MODEL WITH UNCERTAIN EXECUTION SCALES

In this section, we first theoretically analyze the huge

challenges in solving the multilevel checkpoint model and

then propose a method to optimize the solution.

A. Difficulty Analysis

One straightforward idea is to leverage convex optimiza-

tion theory [24]. Note that the preceding problem has L+1

variables, x1, x2, · · · , xL, N . One must prove that the

target function E(Tw) is always convex with respect to

any of these variables (i.e., ∀ i=1,2,· · · ,L,
∂2E(Tw)

∂x2
i

>0 and

∂2E(Tw)
∂N2 >0). Then, the optimal solution can be computed

based on
∂E(Tw)

∂xi
=0 and

∂E(Tw)
∂N =0. Unfortunately, E(Tw)

is not always convex with respect to its variables.

Indeed, in the following, we show that E(Tw) is not

convex even with respect to the single-level checkpoint

model and linear-speedup application and, by generalization,

to the multilevel checkpoint model with more complicated

applications. That is, g(κ)=κN holds in the following anal-

ysis.

In the single-level checkpoint model with only the PFS

used to store checkpoint files, the checkpoint overhead

and recovery overhead can be represented by Formula (2)

and Formula (3), respectively. In the two formulas, ε0,

and η0 refer to constant costs, α0 and β0 denotes two

constant coefficients, and Hc(N) and Hr(N) denotes the

increasing overhead rate with the execution scale. For in-

stance, if the checkpoint/recovery overheads increase lin-

early, then Hc(N)=Hr(N)=N holds; if they are constants,

then Hc(N)=Hr(N)=0 holds.

C(N) = ε0 + α0Hc(N) (2)

R(N) = η0 + β0Hr(N) (3)

We will show that given Hc(N)=Hr(N)=N , the problem

is already extremely difficult to solve directly. We rewrite the

problem formulation as Formula (4), where x is the number

909

of checkpoint intervals and Γj refers to the roll-back loss

upon the jth failure during the execution.

E(Tw) =
Te

κN + (ε0 +Nα0) · (x− 1)

+
∑∞

K=1

(
P (Y =K)

∑K
j=1 (Γj+A+η0+Nβ0)

)
(4)

Since the failure events occur randomly during the task ex-

ecution, the expected Γj (i.e., average rollback loss for each

failure) can be approximated as
Te/(κN)

2x , where
Te/(κN)

x
refers to the maximum rollback length1 upon a failure

event. By further leveraging the definition of mathematical

expectation (i.e.,
∑∞

K=1[K·P (Y =K)] = E(Y)), we can

convert Formula (4) to Formula (5).

E(Tw) =
Te

κN + (ε0 +Nα0) · (x− 1)

+E(Y)(Te/(κN)
2x + η0 +Nβ0 +A)

(5)

In general, the expected number of failures, E(Y), is not

a constant but is related to the whole wall-clock length,

and the expected wall-clock length is the variable E(Tw)
in the formula. If we denote the expected failure rate

of the parallel application by λ(N), then E(Y) can be

approximated as λ(N)E(Tw), which leads to the following

formula by eliminating E(Y) from Formula (5).

E(Tw) =
Te
κN+(ε0+Nα0)·(x−1)

1−λ(Te
2xκN+η0+Nβ0+A)

(6)

As long as we can derive
∂E2(Tw)

∂x2 ≥ 0 and
∂E2(Tw)

∂N2 ≥ 0,

we can compute the optimal solution based on
∂E(Tw)

∂x =0

and
∂E(Tw)

∂N =0. However, this is not a viable idea. On

the one hand, it is hard to prove that the second-order

derivatives
∂E2(Tw)

∂x2 and
∂E2(Tw)

∂N2 are always greater than 0

because of their extremely complicated representations. We

find that they are actually lower than 0 in some situations.

On the other hand, the first-order derivatives
∂E(Tw)

∂x =0 and
∂E(Tw)

∂N =0 also lead to complicated high-degree equations

(such as quartic equations), which are hard to solve [25].

B. Overview of Optimized Algorithm

We explore an efficient algorithm to optimize the solution

to the above problem. The basic idea is to introduce an extra

condition that assumes that the expected number of failures

(denoted by μi) at each specific level during the execution

is related only to the execution scale (i.e., the number of

processes/cores). That is, we can denote μi to be μi(N),
regardless of the application length. With such a condition,

the target E(Tw) can be simplified as a convex optimization

problem with respect to all its variables in general, so we can

try to resolve a convex-optimization problem instead. The

extra condition is removed later through a set of iterative

1For simplicity, we do not consider the situation in which a new failure
event occurs during recovery period. In fact, based on our analysis in
previous work [22], the failure-over-recovery situation occurs rarely because
the recovery period is usually far shorter than productive time and failure
interval.

steps: the algorithm alternatively derives optimal solution

with the given numbers of failures and computes the new

numbers of failures based on the changed expected wall-

clock length until convergence. The pseudo-code is shown

in Algorithm 1.

Algorithm 1 OPTIMIZED ALGORITHM

Input: productive time Te, estimated speedup function g(N), checkpoint
overheads, recovery overheads

1: for (level i=1→L) do
2: Compute μi based on f(Te, N) /*Initialize expected # of failures*/
3: end for
4: repeat
5: Compute optimal solution x∗

i (i=1,2,· · · ,L) and N∗, based on
convex optimization and μi (i=1,2,· · · ,L).

6: Compute expected E(Tw) based on x∗
i and N∗.

7: for (level i=1→L) do
8: μ′

i←μi. /*Save old μi*/
9: Recompute μi based on E(Tw).

10: end for
11: until (max (μ′

i − μi) ≤ δ,∀i = 1, 2, · · · , L)

In this algorithm, we first initialize the expected number

of failure events for each checkpoint level i based on the

estimated productive time f(Te, N) = Te

g(N) (line 1-3). Then,

the algorithm goes into a loop that iteratively computes

the optimal number of checkpoint intervals x∗i for each

level as well as the optimal number of cores N∗. In each

iteration step, after computing the optimal solution with

convex-optimization theory (line 5), the algorithm adopts the

solution to estimate the wall-clock length (line 6), based on

which it can recompute more accurate expected numbers of

failure events (lines 7–10). This iteration loop stops when

the expected numbers of failure events converge within a

specified error threshold δ. Obviously, the key step is line 5,

which computes the optimal solution based on the expected

numbers of failures on different levels, which are regardless

of the wall-clock length.

In the following text, we focus on this key step. We

start with the single-level checkpoint model and then present

the complete optimal solution for the multilevel checkpoint

model.

C. Optimization for the Single-Level Model

In this subsection, we investigate how to optimize check-

point intervals and the execution scale simultaneously, for

the linear-speedup and nonlinear speedup applications, re-

spectively.

1) Optimization Based on Linear Speedup: The produc-

tive time of the linear-speedup application can be approx-

imated as f(Tw, N)≈ Te

κN , where Te denotes the single-

core execution length and κ is a constant. In this case,

we set μ(N)=bN for simplicity. Similarly, for simplicity,

we suppose the checkpoint/recovery overheads (C(N) and

R(N)) are constants.

The representation of the target function E(Tw) can be

simplified as Formula (7).

E(Tw) =
Te

κN + ε0(x− 1) + bN(Te/(κN)
2x + η0 +A) (7)

910

Since
∂E2(Tw)

∂x2 = bTe

κx3>0 and
∂E2(Tw)

∂N2 = 2Te

κN3>0, there must be

an optimum point for the variables {x, N} such that the

expected wall-clock length E(Tw) is minimized. We can

compute the optimal values of x and N , as long as we solve

both Formula (8) and Formula (9) simultaneously.

∂E(Tw)
∂x = ε0 +

bTe

κ · −12x2 = 0 (8)

∂E(Tw)
∂N = −Te

κN2 + b(η0 +A) = 0 (9)

Then, we can derive the following two simple formulas to

directly compute the optimal number of checkpoint intervals

x∗ and the optimal scale N∗.

x∗ =
√

bTe

2κε0
(10)

N∗ =
√

Te

κb(η0+A) (11)

2) Optimization Based on Nonlinear Speedup: In our

model, we propose a generic method to optimize the per-

formance over the checkpoint model, which can fit different

types or functions of speedup curves. In this work we focus

mainly on quadratic nonlinear curves. However, our model

can also be easily extended to more complicated speedup

functions if needed, because of the generic definition of

the speedup function g(N). As an example, let us consider

Figure 2(a). The blue points shown in the figure are speedup

values computed based on real experiments with up to 1,024

cores on the Argonne Fusion cluster [26]. The speedup of the

Heat Distribution application1 increases like a linear curve

for the relatively small execution scale range and follows

a quadratic curve for the long range of execution scale. In

fact, some application speedups may not follow quadratic

curve in the whole execution range, as shown in Figure

2(b). The speedup of the Nek5000 eddy uv application2

increases quickly in the initial range while decreasing after

100 cores because of the increasing communication cost.

Since the optimal scale with regard to the checkpoint model

must be no bigger than the original optimal scale without

the checkpoint model, we need to focus only on the initial

scale range through the point with the maximum original

speedup. Then, we can still use the quadratic curve to fit the

speedup very well, as shown in Figure 2(b). Specifically, the

quadratic curve generated based on the initial scale range

(1–100 cores) fits the increasing speedup records best from

among all different fitting curves.

The speedup function is defined as Formula (12). We

denote the symmetrical axis of the quadratic curve to be

located at N (∗). Then, since the speedup curve must pass

1The Heat Distribution application computes the distribution of the
heat for a room over time given a set of initial heat sources. The MPI
program splits a particular space into several blocks and computes the heat
distribution for each of them in parallel with communicated messages on
the shared edges of the blocks. Such a parallel computation is commonly
used in real scientific projects such as ocean simulation [27], [28].

2This Nek5000 eddy uv application monitors the error for a 2D
solution to the Navier-Stokes equations [29].

-200

 0

 200

 400

 600

 800

 1000

 1200

 0 500
 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

Y
 =

 S
p

e
e

d
u

p

X = Number of Cores

ideal speedup = # of cores

Recorded Data
Ideal Speedup

Quadratic Curve Fitting
Log Curve Fitting

(a) Heat Distribution

 0

 5

 10

 15

 20

 25

 30

 0 50
 100

 150
 200

 250
 300

Y
 =

 S
p

e
e

d
u

p

X = Number of Cores

Recorded Data
Ideal Speedup

Quadratic Fitting (for all points)
Log Fitting (for all points)

Quadratic Fitting (for initial range)
Log Fitting (for initial range)

(b) Nek5000 eddy uv application

Figure 2. MPI Speedup and Curve Fitting

through the origin (0,0), we can derive the speedup curve

as Formula (12), where N is the number of cores and κ is

referred to as the curve’s slope at (0,0).

g(N) = − κ
2N(∗)N

2 + κN (12)

In practice, κ can be estimated by a simple test with a

small or middle execution scale. In the Heat Distribution

program, for example, the speedup is 77 when using 160

cores, so κ can be approximated as 77
160≈0.48, which is

close to the real value κ=0.46. In fact, the coefficients of

Formula (12) can also be estimated via a set of laws such as

Amdahl’s law [31], Gustafson-Barsis’s law [32], and Karp-

Flatt metric [33], which are used to predict, respectively, the

upper limit of the speedup, how long the application would

take to run on a single core, and the performance of the

application on larger execution scales.

Similar to the derivation of Formula (7), the target func-

tion with respect to the nonlinear speedup applications can

be written as Formula (13). The only difference is that the

execution speedup g(N) in Formula (13) follows a nonlinear

curve, as shown in Figure 2.

E(Tw) =
Te

g(N)+ε0(x−1)+bN(Te/g(N)
2x + η0 +A) (13)

One can easily verify that the target function Formula

(13) is always convex with respect to x and N , respectively.

Hence, there must be a unique value point for (x,N) with

the minimum value of E(Tw). We can compute the opti-

mal solution (x∗,N∗) by making
∂E(Tw)

∂x =0 and
∂E(Tw)

∂N =0.

Accordingly, we derive the following equations:

∂E(Tw)
∂x = ε0 +

bNTe

2g(N) (
−1
x2) = 0 (14)

∂E(Tw)
∂N =Te

b
2x

1
g(N)−Te

(1+bN
2x)g

′(N)

g2(N) +b(η0+A)=0 (15)

Directly solving these two equations simultaneously is

difficult because the transformed equation after eliminating

x using Equation (14) leads to an extremely complicated

equation. Instead, we use a fixed-point iteration method to

compute the solution to the equation system. More specif-

ically, we construct the following two iterative formulas

based on Equation (14) and Equation (15), where (k) refers

to the iteration index. Then, we iteratively compute x and

N until a convergence with an acceptable tiny error between

x(k) and x(k+1).

911

x(k+1) =
√

bN(k)Te

2ε0g(N(k))
(16)

Teb/x
(k)

2g(N(k+1))
−Te

(1+bN(k+1)

2x(k)
)g′(N(k+1))

g2(N(k+1))
+b(η0+A)=0 (17)

In fact, solving Equation (17) directly is still very chal-

lenging, but we can compute the approximate root N (k+1)

for Equation (17) efficiently by using a bisection method.

Specifically, there must be an ideal number of cores (de-

noted by N (∗)) for any application because of the in-

evitable synchronization/communication among processes.

Since
∂E2(Tw)

∂N2 must always be greater than or equal to 0 in

the range [0,N (∗)], and the optimal solution N∗ must be no

greater than N (∗), there must be at most one root in [0,N (∗)]
to satisfy

∂E(Tw)
∂N =0. If one root does exist in [0,N (∗)], we

can use bisection method to approximate it, because the left-

hand side of Formula (17) is a monotonically increasing

function (note that
∂E2(Tw)

∂N2 >0). Since N∗ must be an

integer, the bisection method can stop whenever the error

of N between two adjacent steps (such as step k and step

k+1) is smaller than 0.5; thus the convergence speed could

be further improved (our simulation shows there are only

about 10 iteration steps in general). On the other hand, if

no root exists in [0,N (∗)], the optimal number of processes

N∗ must be equal to N (∗). This situation occurs with very

few failures or small checkpoint overhead on the PFS.

Based on the Heat Distribution application speedup, we

perform a numerical simulation to confirm the correctness

of our optimal derivation. In the simulation, checkpoint

overheads are based on our characterization of FTI on the

Fusion cluster. The coefficients of the speedup functions are

computed by using a least squares method based on real

experimental data as shown in Figure 2. The error threshold

is set to 10−6, and x’s initial value is set to 100,000. Our

iterative method needs just 30–40 iterations to converge,

which means a fairly high convergence speed.

Figure 3 presents different wall-clock times when run-

ning the Heat Distribution application, comparing the op-

timal solution computed by our method with other solu-

tions. The workload to process is 4,000 core-days and the

original optimal execution scale N (∗) is set to 100,000

cores. In addition, b=0.005, and κ=0.46. As for the two

subfigures, the checkpoint overheads are set to constant

values (C(N)=R(N)=5 seconds) and linear-increasing val-

ues (C(N)=R(N)=5+0.005N), respectively. The optimal

number of checkpoint intervals and the optimal number of

processes/cores are 797 and 81,746, respectively, for the

case with constant checkpoint cost; and their values are 140

and 20,215, respectively, for the case with linear-increasing

checkpoint cost. Note that the original optimal execution

scale without checkpoints and failure events is 100,000

cores for the Heat Distribution application. Thus, the optimal

execution scale changes prominently because of the impact

of the failure rate that increases with the execution scale and

checkpoint overheads. More experimental evaluation results

can be found in Section IV.

 6

 8

 10

 12

 14

 16

 18

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

W
a

ll
C

lo
c
k
 T

im
e

 (
in

 h
o

u
rs

)

Number of Cores

x=199
x=399
x=598
x=797
x=996
x=1196
x=1395

 7.0

 7.2

 7.4

 7.6

 7.8

 80000

 82000

 84000

 86000

 88000

(a) constant ckpt cost

 20

 40

 60

 80

 100

 120

 0 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

W
a
ll

C
lo

c
k
 T

im
e
 (

in
 h

o
u
rs

)

Number of Cores

x=35
x=70
x=105
x=140
x=175
x=210
x=245

 22

 23

 24

 25

 26

 19000

 19500

 20000

 20500

 21000

(b) linear-increasing ckpt cost

Figure 3. Confirming the Optimal Solution via Numerical Simulation

D. Optimization of the Multilevel Model

Since multiple checkpoint levels are involved in the ap-

plication’s execution, we need to combine them in a target

function, namely, Formula (1). Compared with the single-

level checkpoint model, the multilevel checkpoint model has

two critical differences for the derivation of the expected

wall-clock length E(Tw).

• The roll-back loss in the multilevel checkpoint model

is different from that in the traditional single-level

checkpoint model. Since the application is restarted

based on a checkpoint at level i, the total roll-back loss

at this level must include all checkpoint overheads at

lower levels in addition to the lost execution time. For

example, when the application rolls back to a level-

3 checkpoint, both the level-1 checkpoint overheads

and level-2 checkpoint overheads must be counted in

the roll-back loss. On the other hand, since all failures

are unpredictable with random arrival locations and the

checkpoints are taken periodically with equal distances,

the expected value of Γij can be represented as For-

mula (18), where
f(Te,N)/(2xi)
f(Te,N)/xk

refers to the number of

checkpoints at level k during the roll-back period.

E(Γij)=
f(Te,N)
2xi

+ Ci(N)
2 +

i−1∑
k=1

(
f(Te,N)

2xi
f(Te,N)

xk

Ck(N)

)
= f(Te,N)

2xi
+
∑i

k=1
Ck(N)xk

2xi

(18)

• In the multilevel model, we need to investigate how

to represent checkpoint overhead Ci(N) and recovery

overhead Ri(N) on each level i. In general, if we save

checkpoint files to local storage devices of running

processes, the checkpoint overhead is a constant be-

cause these is no congestion; if we use the PFS to save

checkpoint files, the checkpoint overhead may increase

with the execution scale because of more checkpoint

files (thus more metadata) to be handled by the PFS

and inevitable congestion. Our characterization of the

Heat Distribution application’s checkpoint overheads on

the Argonne Fusion cluster (Table II1) shows that the

1The checkpoint overheads characterized in this work are lower than
those of our previous work [22] because of the improved FTI.

912

checkpoint overheads on level 1, 2, and 3 are stable,

whereas they increase prominently on the PFS.
Table II

CHECKPOINT OVERHEAD OF FTI (IN SECONDS)

Exe. Scale Ckpt Cost (level 1−4)
128 cores 0.9 2.53 3.7 7

256 cores 0.67 2.54 4.1 8.1

384 cores 0.67 2.25 3.9 14.3

512 cores 0.99 3.05 4.12 21.3

1024 cores 1.1 2.56 3.61 25.15

Based on the characterization of checkpoint overheads

shown in this table, we define the checkpoint overhead

Ci(N) and recovery overhead Ri(N) as Formula (19)

and Formula (20), respectively.

Ci(N) = εi + αiHc(N) (19)

Ri(N) = ηi + βiHr(N) (20)

Here i=1,2,· · · ,L refers to checkpoint level; N refers to

the number of cores; εi, αi, ηi, and βi are four constant

coefficients with respect to level i and can be derived by a

least squares fitting method; and Hc(N) and Hr(N) are two

baseline functions that always pass through (0,0). For exam-

ple, Hc(N)=Hr(N)=0 means constant checkpoint/recovery

overhead, and Hc(N)=Hr(N)=N implies linear-increasing

checkpoint/recovery overhead. All the coefficients and base-

line functions in Formula (19) and (20) are supposed to be

determined based on characterization of checkpoint/recovery

overheads with different execution scales. With respect to

Table II, since the checkpoint overheads for the first three

levels look like constants, α1 = α2 = α3 = 0 approximately

holds.

Now, let us derive the optimal solution (to determine the

optimal checkpoint intervals for each level and optimize

the execution scale) to our multilevel checkpoint model.

Combining Formula (1) and Formula (18), we derive For-

mula (21), where μi is the expected number of failures

belonging to level i, as presented by Formula (22) in which

Pi(Y =K) denotes the probability of the number of failure

events during the execution. Note that μi is actually a variate

of the execution scale N because the failure probability may

change with execution scales.

E(Tw) =
Te

g(N) +
L∑

i=1

Ci(N)(xi − 1)

+
L∑

i=1

[
μi

(
Te/g(N)
2xi

+
i∑

k=1

Ck(N)·xk

2xi
+(A+Ri(N))

)] (21)

μi = Ei(Y) =
∑∞

K=1K · Pi(Y = K) (22)

Similar to the single-level model presented in Section

III-C, we can derive
∂E2(Tw)

∂x2
i

>0 and
∂E2(Tw)

∂N2 >0, so there

must be a unique optimum point for {x1,x2,· · · ,xL,N} with

minimized E(Tw). Similar to the derivation of the optimal

solution for single-level checkpoint model, we can get the

optimal solution to such a multilevel checkpoint model as

follows (based on first-order necessary conditions):

∂E(Tw)
∂xi

= Ci − μi

2x2
i

(
Te

g(N) +
∑i−1

j=1 Cjxj

)
+Ci

2

∑L
j=i+1

μj

xj
= 0

(23)

∂E
∂N = Te

g2(N)

(
(

L∑
i=1

μ′
i

2xi
)g(N)− (1 +

L∑
i=1

μi

2xi
)g′(N)

)

+
L∑

i=1

C ′i(xi − 1)

+
L∑

i=1

[
μ′i(

i∑
k=1

Ckxk

2xi
+A+Ri)+μi(

i∑
k=1

C′
kxk

2xi
+R′i)

]
=0

(24)

Note that Formula (23) represents a set of equations, where

i=1,2,· · · ,L. For simple representation, we use Ci and Ri to

denote Ci(N) and Ri(N), respectively, which are computed

by Formula (19) and Formula (20); C ′i and R′i denote their

derivatives, respectively.

In principle, as long as we find the solution to the above

system of L+1 simultaneous equations, we find the optimal

solution to the multilevel checkpoint problem that expected

numbers of failure events at different levels are assumed to

be related only to the execution scale N (i.e., μi=μi(N)).
A direct solution is extremely difficult, however, because

of the high degrees in the equations and multiple variables

(including x1,· · · ,xL and N). Instead we can use fixed-

point iteration to obtain the solution. Specifically, based

on Formula (23) and Formula (24), we can construct their

corresponding iterative functions and alternatively compute

xi and N based on Formula (23) and Formula (24), until

each equation approximately holds with little error. The

initial values of {x1,x2,· · · ,xL} (as shown in Formula (25))

can be obtained by Young’s formula [3], in that it leads

to the suboptimal checkpoint interval result for a particular

level i without taking into account the impact of checkpoint

overheads at other levels. Based on our model, Young’s

formula can be approximately presented as Formula (25),

where Te

g(N) denotes the expected productive time without

checkpoint model and Ci(N) refers to the checkpoint over-

head at level i when running with N processes/cores.

xi =

√
μi(N)Te/g(N)

2Ci(N)
(25)

As analyzed in Section III-B, the estimated wall-clock

time may change with changed numbers of failures, which

will change the expected numbers of failures at each level in

turn. Hence, our complete solution iteratively computes the

new wall-clock time based on changing expected numbers of

failures for the application until convergence, as presented

in Algorithm 1. The experimental results are presented in

Section IV.

One critical question is whether our key algorithm (Algo-

rithm 1) can always converge eventually or in what situations

it cannot converge. In fact, this algorithm cannot converge in

one situation only, namely, when failure rates are extremely

high, which would not happen in reality. If failure rates

913

(i.e., μi) are fairly high, the new value of E(Tw) in each

iteration would become much larger than its old value

computed in last iteration, such that the new expected failure

rates μ′i may become unexpectedly larger in turn. In our

evaluation (shown in next section), the failure rate is set

up to 16+12+8+4=40 failures per day, which is already very

high. Algorithm 1 can still converge quickly in this situation,

which means that convergence issue is not a concern here.

IV. PERFORMANCE EVALUATION

In this section we frist describe the experimental setup.

We then present our results.

A. Experimental Setting

Since our fault-tolerance research is designed for ex-

ascale applications, it is best to perform the evaluation

with hundreds of thousands of real cores. However, there

are at most 128 physical nodes (with totally 1,024 cores)

available in the Argonne Fusion cluster [26] with a limited

resource usage quota, so we have to use exascale simulation

to evaluate our multilevel checkpoint model. We perform

practical experiments deployed with FTI and real MPI

programs on Fusion to validate and confirm the accuracy

of our simulation environment.

The application used in our experiment is a well-known

MPI program, called Heat Distribution, whose MPI com-

munication methods (such as the ghost array between

adjacent blocks) are commonly adopted in real scien-

tific projects such as parallel ocean simulation [27]. The

key reason we adopted this application in our evaluation

is that it is a real MPI program and it is also suit-

able to be executed with a large number of cores, as

shown in Figure 2. It involves many MPI functions, in-

cluding MPI Bcast, MPI Barrier, MPI Recv, MPI Send,

MPI Irecv, MPI Isend, MPI Waitall, and MPI Allreduce.

The checkpoint overhead and recovery overhead are both

dependent on two factors: the program’s memory sizes,

which are determined by the problem size, and the execution

scale (i.e., the number of processes)

The exascale simulation is described as follows. Each test

is performed by running the MPI program for processing an

amount of workload (Te), which corresponds to the single-

core productive time. Each test is driven by ticks (one

tick is equal to one second in the simulation), simulating

the whole procedure of running an MPI program with a

nonlinear speedup that follows Formula (12). We adopt

the real checkpoint/restart overhead characterized on Fusion

[26], and we also take into account the possible jittering

of checkpoint/restart overheads (with random error ratio up

to 30%). The checkpoint overheads are shown in Table II,

where the least-squares-fitting coefficients (εi,αi) are com-

puted as (0.866,0), (2.586,0), (3.886,0), and (5.5,0.0212),

respectively. The simulator comprehensively takes into ac-

count possible overlapping of different operations/events un-

der the checkpoint model, such as simultaneous occurrence

of taking checkpoint/recovery operations and failure events.

The whole simulation closely reproduces real experiments,

as shown in Figure 4(a) and (b) with various checkpoint

intervals on the four different levels. With the same setting,

the simulation results are similar to those on real cluster

environments, with the difference being less than 4%.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

experim
ent

sim
ulation

experim
ent

sim
ulation

experim
ent

sim
ulation

experim
ent

sim
ulation

T
im

e
 (

in
 s

e
c
o
n
d
s
)

1024512256128
number of cores

restart time
checkpoint time
rollback productive time
effective productive time

(a) ckpt intvl:1,3,5,7 min

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

experim
ent

sim
ulation

experim
ent

sim
ulation

experim
ent

sim
ulation

experim
ent

sim
ulation

T
im

e
 (

in
 s

e
c
o
n
d
s
)

1024512256128
number of cores

restart time
checkpoint time
rollback productive time
effective productive time

(b) ckpt intvl:1,2,3,4 min

Figure 4. Confirming the Effectiveness of the Simulator

We perform the evaluation for six cases each with dif-

ferent failure rates at the four checkpoint levels. Given a

certain number of cores simultaneously used as the baseline

(denoted by Nb, where the subscript b refers to baseline),

r1-r2-r3-r4 denotes that r1/r2/r3/r4 failure events occur

per day at level 1/2/3/4, respectively. For example, 8-4-2-

1 means there are 8 failure events occurring each day at

level 1, 4 failure events occurring per day at level 2, and

so forth. The real failure rates experienced actually increase

with the number of cores proportionally, as compared with

the baseline number of cores Nb which is always set to

N (∗)=106. Each failure may occur randomly at any time

in the whole wall-clock period, including productive time

and checkpoint/recovery period. The failure intervals follow

exponential distribution, because this is the behavior of the

system for most of its lifetime [37]. All results shown in the

following text are mean values based on 100 runs for each

case with random failure events.

In our evaluation we compare four solutions.

• ML(opt-scale): multilevel model with optimized
checkpoint intervals and optimized scale N∗.
- the proposed solution in this paper.

• SL(opt-scale): single-level model with optimized
checkpoint intervals and optimized scale N∗ simulta-

neously.

- improved Young’s formula based on [23].

• ML(ori-scale): multilevel model with optimized
checkpoint intervals and original optimal scale N (∗).
- the previous work proposed in [22].

• SL(ori-scale): single-level model with optimized
checkpoint intervals and original optimal scale N (∗).
- classic Young’s formula [3].

The two key indicators are wall-clock time and effi-
ciency [30]. The wall-clock time includes productive time

and all overheads. We also present different time portions,

914

including checkpoint overhead, restart overhead, and roll-

back workload time. The efficiency is also called processor

utilization, which is defined as the ratio of the wall-clock-

time based speedup1 to the number of processes/cores used.

B. Experimental Results

Figure 5 presents the four different portions of the running

time, based on different checkpoint solutions; wall-clock

time is the sum of the four portions. The original optimal

execution scale (N (∗)) is 1 million cores, and the workload

amount to process (i.e., total single-core productive time)

is 3 million core-days. We zoom in on a particular area in

Figure 5 for clear observation of the results. We also present

the number of processes/cores used by the optimized-scale

solutions (including ML(opt-scale) and SL(opt-scale)) in

Table III. The other two solutions, ML(ori-scale) and SL(ori-

scale), adopt the original optimal scale, namely, 1 million

cores, in the evaluation.

 0

 50

 100

 150

 200

 250

 300

 350

M
L(opt-scale)

S
L(opt-scale)

M
L(ori-scale)

S
L(ori-scale)

M
L(opt-scale)

S
L(opt-scale)

M
L(ori-scale)

S
L(ori-scale)

T
im

e
 (

in
 d

a
y
s
)

4-2-1-0.58-4-2-116-8-4-24-3-2-18-6-4-216-12-8-4

restart time
checkpoint time
rollback productive time
effective productive time

 0

 20

 40

 60

 80

 100

4-3-2-18-6-4-216-12-8-4

M
L(opt-scale)

S
L(opt-scale)

M
L(ori-scale)

S
L(ori-scale)

M
L(opt-scale)

S
L(opt-scale)

M
L(ori-scale)

S
L(ori-scale)

M
L(opt-scale)

S
L(opt-scale)

M
L(ori-scale)

S
L(ori-scale)

M
L(opt-scale)

S
L(opt-scale)

M
L(ori-scale)

S
L(ori-scale)

Figure 5. Time Analysis (Te=3m core-days, N(∗)=1m cores)

Table III
OPTIMIZED EXECUTION SCALES IN MULTILEVEL MODEL AND

SINGLE-LEVEL MODEL (Te = 3 M CORE-DAYS, N(∗) = 1 M CORES))

Solution 16-12-8-4 8-6-4-2 4-3-2-1 16-8-4-2 8-4-2-1 4-2-1-0.5
ML(opt-scale) 472k 564k 658k 563k 657k 734k
SL(opt-scale) 41k 78.6k 36.7k 53.6k 325k 399k

Based on Figure 5 and Table III, we have two important

findings. First, the total wall-clock time decreases with

decreasing number of failure events (e.g., from 16-8-4-

2 to 4-2-1-0.5), which is reasonable because of reduced

total checkpoint/restart overheads and roll-back losses with

less failures. Second, our solution ML(opt-scale) always

outperforms other approaches significantly. The wall-clock

times of our multilevel model with optimized execution scale

(N∗) can be reduced by 58–84%, 7–26%, and 79–88%

compared with the other three solutions, respectively.

1The speedup here refers to the ratio of the failure-free single-core
productive time to the wall-clock time (including parallel productive time
and all overheads). It is different from the original speedup, which does
not consider failures and checkpoint/recovery overheads.

We analyze as follows the key reasons why our solution

significantly outperforms other approaches, based on the

different time portions. With regard to SL(ori-scale), since

it adopts the PFS only to store checkpoint files and uses

all the 1 million processes/cores to perform the execution,

the checkpoint/recovery overheads would be higher than

those in multilevel model. On the other hand, the failure

rates would also be fairly high because of too many cores

being used simultaneously, which will cause an extremely

large amount of roll-back loss. In comparison with SL(ori-

scale), SL(opt-scale) optimizes the execution scales to avoid

too many failure events during the execution, so it suffers

from very low roll-back loss, as shown in the figure, while

its productive time is inevitably fairly long because of

significantly reduced execution scales (e.g., only 41k cores

are used for 16-12-8-4 use case).

Comparing our new solution ML(opt-scale) to our pre-

vious work on ML(ori-scale) [22], we observe that (1) the

productive time is always extended because of the smaller

execution scales used in the execution and (2) the remaining

portions of times are all significantly reduced in our new

solution, leading to performance improvements.

Arguably, however, our solution ML(opt-scale) may not

always lead to huge performance gains over our previous ap-

proach ML(ori-scale), which uses all of the available cores.

For example, when running the application with 10 million

core-days, the wall-clock length under ML(opt-scale) is less

than that of SL(ori-scale) by 4.3–42.3%. The details are

shown in Figure 6. The relatively degraded performance

gains (compared with the test with Te=3m core-days) is due

mainly to significantly longer productive time, which takes

relatively larger portions of the total wall-clock length.

 0

 100

 200

 300

 400

 500

 600

 700

..
..

..

T
im

e
 (

in
 d

a
y
s
)

4-2-1-0.58-4-2-116-8-4-24-3-2-18-6-4-216-12-8-4

restart time
checkpoint time
rollback productive time
effective productive time

 4486 4452 4470 4463 4453 4466

M
L(opt-scale)

S
L(opt-scale)

M
L(ori-scale)

S
L(ori-scale)

M
L(opt-scale)

S
L(opt-scale)

M
L(ori-scale)

S
L(ori-scale)

M
L(opt-scale)

S
L(opt-scale)

M
L(ori-scale)

S
L(ori-scale)

M
L(opt-scale)

S
L(opt-scale)

M
L(ori-scale)

S
L(ori-scale)

M
L(opt-scale)

S
L(opt-scale)

M
L(ori-scale)

S
L(ori-scale)

M
L(opt-scale)

S
L(opt-scale)

M
L(ori-scale)

S
L(ori-scale)

Figure 6. Time Analysis (Te=10m core-days, N(∗)=1m cores)

Figure 7 shows the efficiencies of the above two tests

with different workloads. We see that the single-level model

with the optimization of execution scales (i.e., SL(opt-scale))

leads to the highest efficiency, in particular because too few

cores are used in execution, as shown in Table III. This

915

solution could save a large amount of available resources

and energies like electricity power, however, it is definitely

not preferred by users because of over-long wall-clock length

induced (as shown in Figure 5 and Figure 6). In comparison

to SL(opt-scale), our ML(opt-scale) solution results in much

shorter wall-clock time and also keeps a relatively higher

efficiency than other solutions, which can satisfy both users

and system managers. Specifically, Table III shows that our

solution just uses 40-79% cores from all 1 million cores,

which significantly saves the resources and improves the

system availability.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

16-12-8-4

8-6-4-2

4-3-2-1

16-8-4-2

8-4-2-1

4-2-1-0.5

E
ff

ic
ie

n
c
y

Different Failure Cases (r1-r2-r3-r4)

ML(opt-scale)
SL(opt-scale)
ML(ori-scale)
SL(ori-scale)

(a) Te=3m core-days

 0

 0.1

 0.2

 0.3

 0.4

 0.5

16-12-8-4

8-6-4-2

4-3-2-1

16-8-4-2

8-4-2-1

4-2-1-0.5

E
ff

ic
ie

n
c
y

Different Failure Cases (r1-r2-r3-r4)

ML(opt-scale)
SL(opt-scale)
ML(ori-scale)
SL(ori-scale)

(b) Te=10m core-days

Figure 7. Efficiencies of the Four Solutions with Different Cases

We also evaluate the checkpoint model, provided that

the PFS checkpoint overhead is a constant as the storage

scale increases, which occurs when using some special file

system such as the Blue Waters File System [38]. Although

the PFS can perform parallel I/O to improve its read/write

rate, the total checkpoint overhead on the PFS will still

be much larger than that on local storage devices, because

of the much larger total checkpoint file size handled by

the PFS. Accordingly, we suppose the problem size is

huge such that checkpoint overheads on the four checkpoint

levels are relatively large: 50, 100, 200, and 2,000 seconds,

respectively. Table IV presents the evaluation results based

on the setting with Te = 2 million core-days and N (∗) = 1

million cores. We can see that ML(opt-scale) always leads to

the highest performance among all solutions. In particular,

its wall-clock time is shorter than that of ML(ori-scale) by

3.6–6.5%, and its efficiency is higher than that of ML(ori-

scale) by 12.9–22.1%. The execution scales optimized by

ML(opt-scale) are 860k–940k cores, which improves the

system availability by 6–16% in comparison with using up

all the available resources.
Table IV

EVALUATION OF THE MULTILEVEL CKPT MODEL WITH CONSTANT

CKPT COST ON THE PFS: WALL-CLOCK TIME (WCT) AND EFFICIENCY

Sol. 16-12-8-4 8-6-4-2 4-3-2-1
WCT WCT Eff WCT Eff WCT Eff

ML(opt-scale) 14.6 0.158 12.8 0.173 11.1 0.193
SL(opt-scale) 37.3 0.092 23.2 0.123 17.2 0.146
ML(ori-scale) 15.4 0.13 13.4 0.15 11.7 0.171
SL(ori-scale) 890 0.002 892 0.002 890 0.002

ML(opt-scale) 13.1 0.171 11.7 0.186 10.6 0.2
SL(opt-scale) 30.6 0.10 20.4 0.133 16 0.153
ML(ori-scale) 14.2 0.14 12.2 0.164 11.4 0.176
SL(ori-scale) 893 0.002 890 0.002 896 0.002

We alsocheck the number of iterations used to converge

the estimated failure rate with changing wall-clock length

in Algorithm 1. The error threshold is set to 10−12. For the

three evaluation cases, our algorithm just costs 8 iterations,

7 iterations, and 15 iterations, respectively, which confirms

fairly fast convergence speed.

V. RELATED WORK

Optimization of exascale parallel computing performance

based on the checkpoint/restart model is a fundamental and

challenging issue, which has been studied extensively in re-

cent years [5], [6], [7], [14], especially with ever-increasing

demand on exascale execution environments [1]. Some basic

ideas (e.g., diskless checkpoint [11], [14]) are trying to

reduce the checkpoint overheads as much as possible in the

exascale environment, such that the checkpoint/restart model

can still be kept effective with respect to the entire perfor-

mance. Many researchers have proposed different models to

address the exascale resilience issue.

The multilevel checkpoint/restart model with different

levels of checkpoint overheads has been proposed to provide

an elastic response to tolerate different types of failures. SCR

[12] was the first library that can be leveraged to checkpoint

and recover HPC applications based on four storage levels

(RAM, Flash, disk, and PFS). It also explores a Markov

model to optimize the checkpoint strategies. However, the

developers did not take into account the impact of the num-

ber of processes/cores on the execution performance; thus

the proposed Markov model is not optimized with respect

to the execution scales. FTI [13] is another outstanding

library that also supports RS-encoding technology [15], [16].

It allows the recovery of the application from lightweight

checkpoint files in case of multiple simultaneous hardware

failures. However, FTI does not help optimize the checkpoint

intervals. In our previous work [22], we proposed a multi-

level checkpoint/restart model based on FTI, in which the

checkpoint intervals are optimized for different checkpoint

levels. It took into consideration many factors such as

various checkpoint/recovery overheads and failure rates on

different levels; however, the application execution scale

(i.e., the number of processes) was not considered in the

optimization problem. In comparison with these efforts, in

this paper we propose a more comprehensive multilevel

checkpoint model that can optimize the checkpoint intervals

and the execution scales simultaneously.

In addition, other papers have discussed how to simulta-

neously optimize execution scales and checkpoint intervals

for HPC applications. A typical method was proposed by

Jin et al. [23]. We note many key differences between

their work and our worsk: (1) their optimization research

is based on single-level checkpont/restart model, which is

much simpler than the multilevel checkpoint model tack-

led by our work; (2) their work is not based on a real

checkpoint toolkit and MPI applications, whereas ours stems

916

from real-world characterization over multilevel checkpoint

toolkits; (3) their optimal checkpoint interval is derived

by assuming failure’s exponential distribution and using

first-order approximation, whereas ours is without such an

assumption and approximation; and (4) their model defines

30+ notations, whereas our model is more concise: with

only about 10 necessary notations (as shown in Table I).

Perhaps most significant, they derived the target function

E(Tw), but they did not prove that it is a convex function

with respect to the variables before using Newton’s method

to approximate the optimal solution. In that situation, the

converged result may not be globally optimized; and even

worse, the algorithm may not converge given inappropriate

initial values. In contrast, we comprehensively analyzed the

multilevel checkpoint model with uncertain execution scales,

and we conducted a set of exascale simulations to validate

its performance using real-world MPI programs and real

checkpoint/recovery overheads.

VI. CONCLUSION AND FUTURE WORK

In this paper, we improved our multilevel check-

point/restart model by optimizing the checkpoint intervals

for different checkpoint levels and the number of processes

simultaneously. Such a new problem is extremely difficult

to solve, not only because of synthetic performance related

to different types of failures, but also because of the varied

failure probability with uncertain number of processes/cores.

However, we have successfully devised an optimized al-

gorithm that works very efficiently. Some key findings are

listed below.

• Our algorithm requires just 7–15 iterations to converge.

• The optimized execution scale is smaller than the orig-

inal optimal scale by 40–95%, which can significantly

improve system availability.

• Our solution outperforms other solutions by 4.3–

88% on wall-clock length and improves efficiency by

12.9+%.

In the future, we will explore how to optimize the checkpoint

strategies for more complicated nonlinear applications.

ACKNOWLEDGMENTS

This work was supported by PRACE First implemen-

tation Phase (PRACE-1IP) as the AMFT prototype under

contract RI-261557 and by GENCI, also in part by the

U.S. Department of Energy, Office of Science, Advanced

Scientific Computing Research Program, under Contract

DE-AC02-06CH11357, and by the ANR RESCUE, ANR

G8 ECS projects and the INRIA-Illinois Joint Laboratory

for Petascale Computing.

REFERENCES

[1] A. Feinberg. (2013). An 83,000-processor supercomputer
can only match 1% of your brain. [online]. Available:
http://gizmodo.com/an-83-000-processor-supercomputer-
only-matched-one-perc-1045026757.

[2] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and
M. Snir, “Toward exascale resilience,” International Journal
of High Perform. Comput. Appl., vol. 23, no. 4, pp. 374–388,
2009.

[3] J.W. Young, “A first order approximation to the optimum
checkpoint interval,” Communications ACM, vol. 17, no. 9,
pp. 530–531, 1974.

[4] J.T. Daly, “A higher order estimate of the optimum check-
point interval for restart dumps,” Future generation computer
systems, vol. 22, no. 3, pp. 303–312, 2006.

[5] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, Y. and
F. Vivien, “Checkpointing strategies for parallel jobs,” in
Proc. International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC’11), 2011, pp.
1–11.

[6] K. Pattabiraman, C. Vick, and A. Wood, “Modeling Coor-
dinated Checkpointing for Large-Scale Supercomputers,” in
Proc. International Conference on Dependable Systems and
Networks (DSN’05), 2005, pp. 812–821.

[7] K. Ferreira, “Keeping Checkpoint/Restart Viable for Exascale
Systems,” Ph.D. thesis, Computer Science, University of New
Mexico, 2011.

[8] E. Vivek Sarkar et al., “Exascale Software Study: Software
Challenges in Exascale Systems, ” technical report, 2009.

[9] B. Schroeder and G. Gibson, “Understanding failure in
petascale computers,” Journal of Physics Conference Series:
SciDAC, vol. 78, pp. 11–22, June 2007.

[10] L. Bautista-Gomez, A. Nukada, N. Maruyama, and F. Cap-
pello, and B. Matsuoka, “Low-overhead diskless checkpoint
for hybrid computing systems,” in Proc. International Con-
ference on High Performance Computing (HiPC’10), 2010,
pp. 1-10.

[11] L. Bautista-Gomez, N. Maruyama, F. Cappello, and S. Mat-
suoka, “Distributed Diskless Checkpoint for Large Scale
Systems,” in Proc. 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing (CCGrid’10), 2010,
pp. 63–72.

[12] A. Moody, G. Bronevetsky, K. Mohror, and B.R. Supinski,
“Design, modeling, and evaluation of a scalable multi-level
checkpointing system,” in Proc. of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’10), 2010, pp. 1–11.

[13] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
and N. Maruyama, S. Matsuoka, “FTI: high performance fault
tolerance interface for hybrid systems,” in Proc. International
Conference for High Performance Computing, Networking,
Storage and Analysis (SC’11), 2011, pp. 32:1–32:32.

[14] G. Zheng, X. Ni, and L.V. Kale, “A scalable double in-
memory checkpoint and restart scheme towards exascale,”
in EEE/IFIP 42nd International Conference on Dependable
Systems and Networks Workshops (DSN-W12), 2012, pp. 1-6.

[15] I.S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, pp. 300–304, 1960.

[16] J.S. Plank, S. Simmerman and C.D. Schuman, “Jerasure: A
Library in C/C++ facilitating erasure coding for storage ap-
plications - Version 1.2,” University of Tennessee, Technical
Report, Aug. 2008, CS-08-627.

[17] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and
F. Cappello, “Modeling and tolerating heterogeneous failures
in large parallel systems,” in Proc. International Conference
for High Performance Computing, Networking, Storage and
Analysis(SC’11), 2011, pp. 45:1–45:12.

917

[18] D. Ford, F. Labelle, F.I. Popovici, M. Stokely, Murray,
V.A. Truong, L. Barroso, C. Grimes, and S. Quinlan, “Avail-
ability in globally distributed storage systems,” in Proc.
9th USENIX conference on Operating systems design and
implementation (OSDI’10), 2010.

[19] DVDIMM technology page. [online]. Available:
http://en.wikipedia.org/wiki/NVDIMM.

[20] Marvell DragonFly NVRAM: Second-generation, high-
performance non-volatile DRAM write cache. [online]. Avail-
able: http://www.marvell.com/storage/dragonfly/assets/ Mar-
vell DragonFly NVRAM-02 product brief.pdf

[21] G. Findley, C. Johnson, R. Sethi, M. Howard,
and S.S. Miguel. Panel: DDR4 mem-
ory ecosystem. (2013). [online]. Available:
https://intel.activeevents.com/sf13/connect/fileDownload/ ses-
sion/D0E05F6EFB3E53CD156AAE2DB378BD83/SF13 SP
CP001 100.pdf.

[22] S. Di, M.S. Bouguerra, L.B. Gomez, F. Cappello, “Opti-
mization of multi-level checkpoint model for large-scale HPC
applications,” in Proc. International Parallel and Distributed
Processing Symposium (IPDPS 2014), 2014.

[23] H. jin, Y. Chen, X. Sun, “Optimizing HPC Fault-Tolerant En-
vironment: An Analytical Approach,” in Proc. International
Conference on Parallel Processing (ICPP’10), 2010, pp. 525–
534.

[24] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge University Press, 2009.

[25] Solving Quatic Equation. [online]. Available:
http://en.wikipedia.org/wiki/Quartic function

[26] FUSION Cluster. [online]. Available: http://www.lcrc.anl.gov/

[27] R. Smith et al. “The Parallel Ocean Program (POP) reference
manual: Ocean component of the Community Climate System
Model (CCSM),” Technical Report, Los Alamos National
Laboratory (LAUR-10-01853), 2010.

[28] Community Earth System Model (CESM). [online]. Avail-
able: http://www2.cesm.ucar.edu

[29] O. Walsh, “Eddy solutions of the Navier-Stokes equations, ”
Navier-Stokes Equations II - Theory and Numerical Methods,
vol. 1530, pp. 306–309, 1992.

[30] M. Quinn, Parallel Programming in C with MPI and
OpenMP. McGraw-Hill Science/Engineering/Math. ISBN
0072822562, 2005.

[31] G. Amdahl, “Validity of the Single Processor Approach to
Achieving Large-Scale Computing Capabilities, ” in AFIPS
Conference Proceedings, vol. 30, 1967, pp. 483–485.

[32] J Gustafson, “Reevaluating Amdahl’s law,” Communication
of the ACM, vol. 31, no. 5, pp. 532–533, 1988.

[33] A. Karp, and H. Flatt, “Measuring parallel processor per-
formance,” Communication of the ACM, vol. 33, no. 5, pp.
539C543, 1990.

[34] P.F. Fischer, J.W. Lottes, and S.G. Kerkemeier. nek5000 Web
page. [online]. Available: http://nek5000.mcs.anl.gov, 2008.

[35] Jacobi method in solving linear equestions. [online]. Avail-
able: http://en.wikipedia.org/wiki/Jacobi method

[36] S. Di, Y. Robert, F. Vivien, D. Kondo, C-L. Wang, and
F. Cappello, “Optimization of cloud task processing with
checkpoint-restart mechanism,” in Proc. International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis (SC’13), 2013, pp. 64:1–64:11.

[37] D.L. Snyder and M.I. Miller, Random Point Processes in Time
and Space. Springer-Verlag. ISBN 0-387-97577-2, 1991.

[38] K. Chadalavada and R. Sisneros, “Analysis of the Blue Waters
file system architecture for application I/O performance,”
Cray User Group Meeting (CUG 2013), Napa, CA, May
2013.

The submitted manuscript has been created by UChicago

Argonne, LLC, Operator of Argonne National Laboratory

(“Argonne”). Argonne, a U.S. Department of Energy Office

of Science laboratory, is operated under Contract No. DE-

AC02-06CH11357. The U.S. Government retains for itself,

and others acting on its behalf, a paid-up nonexclusive,

irrevocable worldwide license in said article to reproduce,

prepare derivative works, distribute copies to the public, and

perform publicly and display publicly, by or on behalf of the

Government.

918

