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ABSTRACT

Dragonflies are recent network designs that are one of the
most promising topologies for the Exascale effort due to their
scalability and cost. While being able to achieve very high
throughput under random uniform all-to-all traffic, this type
of network can experience significant performance degrada-
tion for other common high performance computing work-
loads such as stencil (multi-dimensional nearest neighbor)
patterns. Often, the lack of peak performance is caused by
an insufficient understanding of the interaction between the
workload and the network, and an insufficient understanding
of how application specific task-to-node mapping strategies
can serve as optimization vehicles.
To address these issues, we propose a theoretical perfor-

mance analysis framework that takes as inputs a network
specification and a traffic demand matrix characterizing an
arbitrary workload and is able to predict where bottlenecks
will occur in the network and what their impact will be on
the effective sustainable injection bandwidth. We then focus
our analysis on a specific high-interest communication pat-
tern, the multi-dimensional Cartesian nearest neighbor ex-
change, and provide analytic bounds (owing to bottlenecks
in the remote links of the Dragonfly) on its expected perfor-
mance across a multitude of possible mapping strategies.
Finally, using a comprehensive set of simulations results,

we validate the correctness of the theoretical approach and
in the process address some misconceptions regarding Drag-
onfly network behavior and evaluation, (such as the choice
of throughput maximization over workload completion time
minimization as optimization objective) and the question of
whether the standard notion of Dragonfly balance can be
extended to workloads other than uniform random traffic.
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1. INTRODUCTION
High-Performance Computing (HPC) and datacenter net-

works are continuously growing in scale as larger problems
are tackled, with several large scale systems already in use,
especially in the HPC space. Technological advances in
switch and cabling technology enabled Dragonfly, a new
economic and efficient network topology developed indepen-
dently by IBM (as the interconnection fabric of the PERCS
system [2]) and Kim et al. [13]. Dragonfly networks combine
high-radix switches and a mix of copper and electrical cables
into a hierarchical two-tier topology. Both tiers are logically
fully connected, a structure that guarantees low latency and
high bisection bandwidth.

Dragonfly networks are scaled in practice to more than
5,200 nodes in Europe’s most powerful supercomputer Piz
Daint. Their theoretical scalability exceeds tens of thou-
sands of nodes while achieving nearly full bandwidth for
random uniform traffic patterns and shortest path routing.
However, for deterministic patterns, a common characteris-
tic of scientific applications, the bandwidth depends largely
on the routing scheme employed (e.g., indirect random or
adaptive) and the task-to-node mapping (e.g., random, blocked,
or block-cyclic). The exact tradeoffs between routing and
mapping for specific communication patterns are not well
understood for Dragonfly topologies.

Cartesian nearest neighbor exchanges are very common
in scientific computations [12]. They often represent a dis-
cretization of a physical system, which is modeled by a set
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of elements that are arranged in a grid. A typical simula-
tion, e.g., a heat propagation, then solves PDEs and ODEs
on this grid to advance the simulated system time. The re-
sulting computational structures are most often Cartesian
structures called stencils. Stencils combine neighboring val-
ues of a grid point to compute its state in the next iteration.
A distribution of this scheme requires communication in a
Cartesian structure. This pattern is so typical that parallel
programming schemes, such as the Message Passing Inter-
face, provide explicit support [9].
Any deterministic traffic pattern may exhibit poor per-

formance if the computation is mapped unfavorably to a
Dragonfly [1, 3, 6, 13]. For example, we show in this paper
that the completion time for randomly mapped stencil com-
putations can be between 50% to 10 times larger than the
best achievable completion time. Several related studies em-
pirically analyzed the impact of routing [6, 13], topology [6]
and task mapping [3] to support applications with determin-
istic communication patterns such as stencil. Those studies
report significant improvements for random indirect routing
or random task mapping. However, indirect routing reduces
the available global network bandwidth by utilizing more
links and random task mapping loses communication local-
ity because neighborhoods are spread throughout the sys-
tem. Both schemes increase the network load and the exact
tradeoffs of the routing and mapping selections remain un-
clear in general.
In this work, we provide a clear set of guidelines how to

configure the network for a given workload. For this, we
derive a general theoretical model of communication perfor-
mance of multi-dimensional stencil computations on arbi-
trary Dragonfly networks considering different domain de-
compositions and task placements. Our general model al-
lows us to co-design the application decomposition for the
class of Cartesian stencil applications with the ideal Drag-
onfly network configuration.
In summary, we guide the user to select the optimal values

of the parameters

• domain decomposition,

• task placement (sparsity and randomization), and

• routing approach.

We also validate our theoretical results against detailed
simulations of the targeted scenarios and conclude with a
summary of practical recommendations on how to (1) con-
figure an application to run on a Dragonfly network and (2)
optimize the design of a Dragonfly network to achieve higher
performance for the nearest neighbor exchange.

2. BACKGROUND AND RELATED WORK
Dragonfly topologies are highly scalable high-radix two-

level direct networks with a good cost-performance ratio,
used for example in the PERCS interconnect [2] and in the
Cray Cascade [5] and likely to be one of the options chosen
for many of the future Exascale systems.
A dragonfly is a two-level hierarchical network, where

fully-connected groups of lower-radix switches at the first
level form a virtual high-radix switch. These virtual high-
radix switches form another fully-connected graph of groups [13].
The ports that the virtual high-radix switches use to con-
nect to the other virtual switches are distributed across the
physical switches that make up the virtual switch.

Dragonflies can be uniquely described by means of three
parameters: p, the number of nodes connected to each switch,
a, the number of switches in each first level group, and h,
the number of channels that each switch uses to connect to
switches in other groups. For certain values of these param-
eters it can be shown that close to ideal throughput can be
achieved for uniform traffic.

For the Dragonfly networks studied here, shortest paths
between pairs of nodes are unique1. The longest possible
shortest path is made up of a traversal of a local (L) link in
the first level group to get to the switch that has a global (R)
link towards the destination group, a traversal of the R link
and a second local link traversal in the destination group to
get to the switch directly connected to the destination node.
Figure 1 illustrates the topological layout of a Dragonfly
network and the meaning of the (p, a, h) parameters.

Figure 1: Example of a (p = 2, a = 3, h = 1) Dragonfly
topology. Every switch is connected to p = 2 nodes, there
are a = 3 switches in every group and every switch has h = 1
links connecting it to switches outside its group.

However, this lack of shortest path diversity can lead to an
extreme degradation in performance for certain adversarial
traffic patterns [3, 6]. One option to alleviate this degrada-
tion is to use Valiant’s algorithm [18]. This algorithm routes
a packet to a randomly chosen intermediate node first, be-
fore routing it to the actual destination. The expectation is
that, by using a different random intermediate node for each
packet, the original nature of the traffic is shifted towards
a uniform random distribution of traffic. However, this is
done at the expense of longer paths and results in roughly a
doubling of the load for an original traffic that is sufficiently
dense (such as originally random uniform traffic [4]).

The longer paths in Valiant routing also have the disad-
vantage of requiring the use of additional virtual channels
to guarantee deadlock freedom. In particular, the Valiant
routing variant for dragonflies as described in [13], which
we will call Valiant [Kim:2008] , requires 3 virtual channels
(instead of 2 for shortest paths) for the L links and 2 virtual
channels (instead of 1 for shortest path) for the R links, to
guarantee deadlock freedom [2]. Valiant [Kim:2008] can be
described as follows: when a source s in first-level group S
sends a message to destination d in first-level group D, an
intermediate misroute group is chosen (I). A minimal route
(consisting of at most one L and one R hop) is taken to ar-
rive to a switch in group I. Once the packet arrives to this
intermediate group I, the packet follows the unique mini-

1More generally, there may be multiple such shortest paths,
especially for networks that are smaller than the maximum
possible scale.
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mal route from the arriving switch at I to the destination d
(requiring at most two L hops and one R hop).
The nearest neighbor exchange (NNE) is a common ex-

change pattern in many HPC applications. This pattern
arises as the result of a decomposition of the domain of a
problem into smaller elements. The computation for each el-
ement depends on a number of neighboring elements, where
the neighborhood definition is dependent on both the spe-
cific problem and the specific way of performing the decom-
position. In this work, we will consider Cartesian decom-
positions along a variable number of dimensions, and ad-
ditionally we will consider that an element only exchanges
data with elements with which it shares a (D-1)-dimensional
contact plane. We will also make the assumption that the
amount of exchanged data needed is proportional to the size
of the (D-1)-dimensional contact plane.
A large fraction of HPC applications make use of the

multi-dimensional nearest neighbor exchange pattern [12].
Relevant examples are Cactus [8], which uses a grid decom-
position to solve Einstein’s equations to study astrophysical
phenomena, GTC [14] (Gyrokinetic Toroidal Code), which
solves the gyrophase-averaged Vlasov-Poisson equations on a
3D toroidal domain, LBMHD [19] (Lattice Boltzmann meth-
ods for the problem of magneto-hydrodynamics (MHD)),
which uses either a 2D or 3D lattice, or MILC, a 4D lat-
tice QCD code. These represent only a small, but relevant
fraction of the many codes which, with variations, rely on
efficient nearest neighbor exchanges to achieve performance.
A recent paper [3] analyzed the performance achieved

in dragonfly networks when executing such communication
patterns with several task-placements and routing schemes
(shortest path and Valiant). This work showed how a ran-
domization of the task placement using shortest path rout-
ing achieved similar performance to a contiguous task place-
ment using Valiant routing. Another work [11] also explored,
for other patterns, the alternative of Valiant routing and
of randomized task placement, and concluded that, while
randomization improves performance over a naive contigu-
ous placement, the performance achieved is still low when
compared to the peak obtained for uniform random traf-
fic, both with direct and indirect routing. Neither of these
works studied in detail how the domain decomposition and a
structured task placement influences the NNE performance
on a dragonfly, and neither has provided a model that is able
to predict NNE performance given the topology parameters,
the domain decomposition, and the task placement onto a
dragonfly.

3. THEORETICAL ANALYSIS
In order to explore the optimization opportunities for multi-

dimensional near neighbor communication patterns in Drag-
onfly networks, we will provide theoretical estimates for the
performance of applications executed as a set of concurrent
tasks exhibiting arbitrarily shaped Cartesian multi-dimensional
nearest neighbor communication patterns and being exe-
cuted on a system interconnected via arbitrary Dragonfly
networks. We will explore different task placement strate-
gies and their effect on network utilization and performance.
The end goal is to be able to determine guidelines as to how
to map such applications onto the different nodes in the sys-
tem such that communication performance is maximized.
This section provides the step by step derivation of these

guidelines and is fairly technical. The reader that is inter-

ested mainly in the end result should read Section 3.2 where
we introduce the main notations and then skip directly to
Section 3.5.

3.1 Arbitrary workload performance in Drag-
onflies

We consider an arbitrary workload given by a traffic de-
mand matrix T , with as many columns and rows as concur-
rent tasks perform the workload. Each element tsd of the
matrix represents the total number of bytes sent by task s
to task d. We denote by T̂ the normalized traffic demand
matrix, where every element t̂sd is the corresponding ele-
ment in T divided by the total number of bytes sent by
source task s.

t̂sd = tsd/
∑

d

tsd (1)

The goal of this subsection is to formalize the effective
injection throughput that will be sustainable at the nodes by
estimating the demand that the workload will impose on the
network. We will denote this effective injection bandwidth
for node n by Bn

P,eff . If a link in the network receives more
demand than it can sustain, then all sources whose messages
periodically use that link will see their effective throughput
eventually decreased, to the point at which the demand on
the link no longer exceeds its capacity.

The exact distribution of demand to network links will
intrinsically be linked to the routing approaches used in the
network. Therefore, the routing approach will in turn be
a significant factor that will determine the effective perfor-
mance of the network. For the Dragonfly, we will consider
two routing approaches:

1. Dragonfly direct routing, where messages are always
sent through the network across shortest paths;

2. Dragonfly indirect routing, where messages are always
sent through the network across indirect paths and the
indirect paths between any given (source,destination)
pair are used evenly via randomization. This includes
the case where the source and destination belong to
the same group.

Let us consider the entire duration of a workload, or, for on-
going workloads, a large enough amount of time such that
all sources inject a statistically significant amount of traffic
in the network, i.e., an amount of traffic that roughly obeys
the distribution expressed by T̂ . We define the demand exer-
cised on a given link as being the total number of bytes that
need to cross that link in the considered amount of time.

Let us consider a remote link Rij connecting the Dragonfly
group Gi to the Dragonfly group Gj , i 6= j. The demand

∆R,direct
ij of that link under the direct routing approach will

be equal to the total fraction of traffic sent by sources in Gi

that have as a destination any of the tasks in Gj .

∆R,direct
ij =

∑

s∈Gi

∑

d∈Gj

t̂sd ·Bs
P,eff . (2)

The demand ∆R,indirect
ij of the same link under the indi-

rect routing approach has two distinct components. The
first component consists of traffic sent by sources in Gi to
any destination outside of Gj and Gi, using Gj as an inter-
mediate routing point. The second component consists of
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traffic sent by sources anywhere outside of Gi and Gj that
is sent to destinations in Gj using Gi as an intermediate
routing point.

∆R,indirect
ij =

∑

p 6=i,j

∑

s∈Gi

∑

d∈Gp

t̂sd · P (i
j
−→ p) ·Bs

P,eff

+
∑

p 6=i,j

∑

s∈Gp

∑

d∈Gj

t̂sd · P (p
i
−→ j) ·Bs

P,eff

(3)

where P (i
p
−→ j) denotes the probability that the indirect

route via group p is chosen when routing from group i to
group j.
Concerning the demand imposed on the intra-group links,

In contrast to the inter-group network structure, current
Dragonfly systems do not exhibit a unique intra-group struc-
ture (e.g., the original Dragonfly design uses a standard full
mesh, the PERCS interconnect uses a non-uniform (from
the bandwidth and latency points of view) full mesh whereas
the Cray Cascade interconnect uses a two dimensional Ham-
ming graph). This, coupled to the fact that in practice it is
generally the inter-group bottlenecks that determine over-
all system performance, would make thoroughly analyzing
the intra-group demand an unnecessarily complex endeavor.
Nonetheless, we will take into account the possibility of bot-
tlenecks shifting inside the groups and will analyze this sce-
nario in detail in Section 4.3.
We will assume that all nodes and switches in the network

are identical and thus we can denote by:

• BP → the injection bandwidth available to any node
in the network,

• BL → the bandwidth of each local link,

• BR → the bandwidth of each remote link.

We will further make a simplifying assumption that the
workload does not induce or is not allowed to induce un-
fairness in the system, that is, every node will be able to
effectively inject the same amount of traffic as any other
node. Then, BP,eff can also be considered uniform across
nodes and we can introduce the notion of relative demand δ
as being the demand ∆ defined above divided by the effec-
tive injection bandwidth BP,eff .

δR,direct
ij =∆R,direct

ij /BP,eff

δR,indirect
ij =∆R,indirect

ij /BP,eff

(4)

Given that the demand ∆ on a link cannot exceed the
bandwidth of that link, the achievable effective bandwidth
is consequently upper bounded by the ratio between a link’s
bandwidth and the relative demand induced on the link.
The throughput limitation that the network imposes on the
nodes can thus be formally expressed by Eq. (5) for direct
routing and Eq. (6) for indirect routing.

Bdirect
P,eff ≤ min



BP ,
BL

max
Llinks

(δL,direct)
,

BR

max
Rlinks

(δR,direct)



 (5)

Bindirect
P,eff ≤ min



BP ,
BL

max
Llinks

(δL,indirect)
,

BR

max
Rlinks

(δR,indirect)





(6)

Eq. (5) and (6) coupled to the load formulations (Eq. (2)
and (3)) and to a particular traffic demand matrix allow us
to predict network performance for arbitrary workloads in
arbitrary dragonflies.

3.2 Formal description of targeted workloads
The workload we focus on in this work are is the multi-

dimensional Cartesian nearest neighbor communication. We
will assume that the concurrent tasks are solving a problem
pertaining to a d-dimensional domain that is intrinsically
split (along directions parallel to the coordinate axes) into
equally sized d-dimensional elements in a way that is consis-
tent with the domain’s structure (e.g., if the domain is larger
in one dimension, it will have proportionally more elements
along that dimension). The number of elements in each di-
mension is given by a vector α ∈ N

d, for a total number of
elements |α| = Πd

k=1αk. The assignment of the elements to
computation tasks is also done along a Cartesian grid, such
that the number of tasks in each dimension is given by a dif-
ferent vector β ∈ N

d. Every task will thus be assigned one
or several elements, the number of elements per dimension
assigned to each task being α divided element by element
by β. The total number of tasks is |β| = Πd

k=1βk. Any
task can be naturally identified via a d-dimensional vector
x ∈ N

d such that 0 ≤ xk < βk, ∀1 ≤ k ≤ d. These concepts
are illustrated in Fig. 2 for a two-dimensional application
domain.

Figure 2: Application domain for a two-dimensional nearest
neighbor exchange. The domain admits an intrinsic decom-
position into identical elements (the small squares in the
figure) along the axes of the Cartesian domain. This de-
composition is characterized by the two-dimensional vector
α which in the example figure takes the value α = (16, 18).
The application is run as a set of concurrent tasks that is
each assigned a Cartesian subset of the element grid (the
2 × 3 rectangles in the figure). Each subset assigned to a
task has the same size along every dimension (in the figure,
size 2 in the first dimension and size 3 in the second). The
sub-decomposition is determined by a second vector β that
determines how many tasks there are in each dimension (in
the figure, β = (8, 6)).
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The inter-task communication pattern considered is the
nearest neighbor exchange of distance 1 on the d-dimensional
Cartesian grid, where a task that is identified by the vector
x communicates with a task identified by the vector y if and
only if x and y share d− 1 coordinates, while the remaining
coordinate values xk and yk satisfy the relationship (βk +
xk − yk) mod βk = 1. We will call two such tasks neighbors
along the k dimension. We define the function νk

x,y which
takes a value of 1 if tasks corresponding to x and y are
neighbors along the k dimension and 0 otherwise, as follows:

νk
x,y =







1 if (βk + xk − yk) mod βk = 1
and ∀i 6= k, xi = yi

0 otherwise.
(7)

A very important design choice is the exact manner in
which to map the application domain to the network topol-
ogy. We will consider two task-to-node mapping strategies.
The first assumes a regular grouping of tasks in the groups
of the Dragonfly. A set of tasks corresponding to a Carte-
sian application sub-domain is assigned to any given group
such that this sub-domain will contain γ ∈ N

d tasks along
each of the d axes. This leads to a total of |γ| = Πd

k=1γk
tasks in each Dragonfly group. We further define the vec-
tor λ in N

d as the coordinate by coordinate ratio of β and
γ: ∀1 ≤ k ≤ d, λk = ⌈βk/γk⌉. λ will thus represent the
d-dimensional decomposition of the application domain into
Dragonfly groups. It entails that |λ| = Πd

k=1λk Dragonfly
groups will be needed to host the entire set of tasks. The
second strategy will assume a random placement of tasks
within the Dragonfly, keeping however the task count per
group to the same |γ| value as in the Cartesian case, to al-
low for fair comparison.
This formalization of the traffic pattern allows us to ex-

plore two important performance affecting factors: the shape
of the Cartesian intra-group sub-domains (in terms of num-
ber of dimensions and ratios between sizes along each dimen-
sion) and the level of sparsity (the proportion of nodes used
to host the workload in every group). We consider sparse
placements as they are becoming more and more common in
practice, and are the default strategy in some of the more re-
cent HPC systems [5]. Under a sparse allocation, the higher
amount of network resources at the disposal of the applica-
tion is balanced by an increased probability of interference
with other simultaneously running applications. Our model
estimates the impact of the placement decision under the
assumption that interference from other applications is min-
imal. The resulting performance metric is a useful baseline
for inter-application interference analysis, but the latter is
out of the scope of this work.
We will also operate under the assumption that the as-

signment of tasks to nodes within a group is random (under
the constraint that a node will be assigned at most one task),
as is the assignment of Cartesian groups of tasks to specific
Dragonfly groups. This is a reasonable choice to make as
the structure of both the intra-group and inter-group net-
works is vertex-symmetric. Furthermore, such a placement
can prove useful in practice as the randomization has the
benefit of disrupting regular patterns that may otherwise
cause load imbalance [16].

3.3 Performance evaluation metrics
Two typical metrics are used for evaluating the perfor-

mance of a fixed-size workload (where a fixed amount of data

needs to be exchanged across the network) such as the near-
est neighbor exchange. One metric is the completion time,
i.e., the time between the moment when the first message
enters the network and the moment when the last message
is delivered. The second is the average effective throughput,
defined as the total number of bytes exchanged divided by
the completion time and averaged across the total number
of communicating tasks.

Finally, as we are dealing with different shapes of the ap-
plication domain (as expressed by the α vector) and different
ways of partitioning the domain into tasks (as expressed by
the β vector), the messages exchanged between tasks will
vary in size. Specifically, they will be proportional to the
size of the surface separating the communicating tasks. This
entails that messages exchanged along the k-th axis, when
such an exchange takes place, will have a size µk given by

µk = µ ·Πd
i=1,i 6=k

αi

βi

= µ ·
|α|

|β|
·
βk

αk

. (8)

3.4 Nearest neighbor communication perfor-
mance in dragonflies

Two sets of factors determine the theoretical performance
of a workload: the t̂sd coefficients of the normalized traf-
fic demand matrix and the P (i

p
−→ j) routing probabilities

in the case of indirect routing. Given the indirect routing
assumption stated in 3.1 the value of the latter is

P (i
p
−→ j) =

1

ah− 1
. (9)

For the nearest neighbor exchange, we compute the traf-
fic matrix as follows. We denote by mk the proportion of
messages (out of a task’s entire communication workload)
sent to a neighbor along the k-th axis. Due to the way we
perform the decomposition of the domain into elements, the
way we assign elements to tasks and the way we define the
neighborhood of a task (7), it follows that a given task either
does not exchange any messages along axis k (when βk = 1),
or it exchanges messages across two surfaces. If we denote
by 1condition the indicator function that takes a value of 1
when the condition is true and a value of 0 otherwise, then
the value of this ratio is

mk =
µk · 1βk>1

2
∑d

i=1
µi · 1βi>1

=
µ · |α|

|β|
· βk

αk
· 1βk>1

2
∑d

i=1
µ · |α|

|β|
· βi

αi
· 1βi>1

=
βk · 1βk>1/αk

2
∑d

i=1
βi · 1βi>1/αi

.

(10)

These proportions are completely determined by the α and
β domain characterization d-dimensional vectors.

Taking into account that if βk = 2 for some k, then two
tasks that are neighbors along axis k communicate across
two surfaces, we obtain:

t̂sd =

d
∑

i=1

mi · ν
i
s,d · (1 + 1βi=2) (11)

Cartesian placement.
The case where the tasks assigned to any fixed group form

a Cartesian sub-domain is of interest because it allows keep-
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ing as much of the communication local as possible. For this
strategy, we defined the γ vector characterizing the mapping
of tasks to groups. For a fixed γ, we have all the information
necessary to compute the demand that the workload induces
in the network as described by Eqs. (2) and (3).
Indeed, in the case of direct routing, we would need to esti-

mate the sum of the individual demands induced by sources
in a Dragonfly group i sending to destinations in another
Dragonfly group j on the remote link connecting the groups.
Similarly to how we assigned coordinate vectors to tasks,
we can now assign coordinate vectors to groups of Cartesian
sub-domains of tasks. A group g will be assigned a coor-
dinate vector xg in N

d, where every coordinate xg
k satisfies

0 ≤ xg
k < λk, ∀1 ≤ k ≤ d. Similarly to the neighborhood

relationship for tasks defined by (7) we can define a neigh-
borhood relationship for groups as

ν̃k
i,j =







1 if (λk + xi
k − xj

k) mod λk = 1

and ∀l 6= k, xi
l = xj

l

0 otherwise.
(12)

For two neighboring groups along direction k, the traffic
exchanged across the common boundary is the aggregate
traffic sent to one neighbor along dimension k by all the tasks
forming that boundary. Given the shape of the task domain,
there are exactly (1+1λk=2) · |γ|/γk tasks on the boundary.
Eq. (13) shows the resulting direct routing demand.

δR,direct
ij = ∆R,direct

ij /BP,eff

=
∑

s∈Gi

∑

d∈Gj

t̂sd

=

d
∑

k=1

(1 + 1λk=2) · |γ|/γk ·mk · ν̃k
i,j

(13)

In the case of indirect routing, we start by expressing
δR,indirect from Eq. (3) and (4).

δR,indirect
ij =

∑

p 6=i,j

∑

s∈Gi

∑

d∈Gp

t̂sd · P (i
j
−→ p)

+
∑

p 6=i,j

∑

s∈Gp

∑

d∈Gj

t̂sd · P (p
i
−→ j)

=
1

ah− 1
·





∑

p 6=i,j

∑

s∈Gi

∑

d∈Gp

t̂sd

+
∑

p 6=i,j

∑

s∈Gp

∑

d∈Gj

t̂sd





(14)

The two triple sums each evaluate to the same value for
reasons that are linked to the symmetry of the communica-
tion pattern. Indeed, the amount of traffic sent by tasks in
a group i to tasks in all groups p 6= i, j (first triple sum)
is equal to the aggregate external nearest neighbor traffic
of i minus the traffic that i sends to group j if i and j are
neighbors along some dimension. Similarly, the amount of
traffic sent by all groups p 6= i, j to tasks in group j (sec-
ond triple sum) is equal to the aggregate external nearest
neighbor traffic received by j minus the traffic that i sends
to group j if i and j are neighbors along some dimension.
Due to the fact that from the point of view of any individual
sub-domain of tasks mapped to a group, the communication

pattern is symmetric (same messages received and sent along
each dimension), the two triple sums are equal.

The aggregate nearest neighbor traffic sent (or received)

by any group is equal to 2
∑d

k=1
(|γ|/γk ·mk · 1λk>1) where

the indicator function only serves to take into account the
corner case where the intra-group domain would be so large
along dimension k that it would completely cover the entire
application domain along that direction and thus eliminate
any inter-group traffic along that dimension. Eq. (15) shows
the resulting indirect routing demand.

δR,indirect
i,j = (4

d
∑

k=1

(|γ|/γk ·mk · 1λk>1)

− 2δR,direct
i,j )/(ah− 1)

(15)

To be able to now derive performance estimations (via
Eq. (6)) we maximize the demand. For direct routing, using
the fact that Eq. (12) implies that task domains mapped to
two groups can only be neighbors in at most one direction
and Eq. (13), we obtain the bound in Eq. (16)

max
i,j

(δR,direct
i,j ) = max

k
((1λk>1 + 1λk=2) · |γ|/γk ·mk) (16)

Similarly, Eq. (17) shows the bound obtained when max-
imizing indirect routing induced demand

max
i,j

(δR,indirect
i,j ) = 4

d
∑

k=1

(|γ|/γk ·mk ·1λk>1)/(ah− 1). (17)

As expressed by Eq. (6), maximizing performance is equiv-
alent to minimizing the maximum demand. The previous
equations express the maximum demand when the choice
of a γ vector defining the mapping of tasks to the system
topology has already been made. The same equations can
however also be used to reason about what the mapping
vectors γ, β themselves should be such that performance is
maximized. This can be achieved by shifting the maximiza-
tion domain to include the domain of possible values for γ
and β as well (in addition to the values of k).

Random placement.
The second placement strategy we analyze is one where

elements are assigned at random to nodes in the system
under the constraints of having at most one element assigned
to a given node and exactly 0 or |γ| elements per group. This
leads to there being exactly |λ| groups hosting tasks. This
strategy sacrifices communication locality in exchange for
more uniform-like traffic that is amenable to direct routing.

Given an arbitrarily chosen group to which tasks are as-
signed, and given a certain dimension k and direction in
which the tasks exchange messages, there will be exactly γ
messages that the tasks in the group need to exchange. Due
to the placement strategy described above, each of these γ
messages have an equal chance to be destined to tasks in
each of the |λ| groups, including the source group itself. In
the case of direct routing, according to Eq. (5), what we are
interested in is the expected maximum remote link demand.
To estimate it, we note that the problem of assigning mes-
sages to destination groups is an instance of the balls-and-
bins problem [10], where messages are the balls (nballs = |γ|)
and the groups are the bins (nbins = |λ|) What we are in-
terested in is the expected number of balls that the bin that
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(a) Throughput (higher is better)

(b) Communication Volume

(c) Completion time (lower is better)

Figure 3: Comparison of the measured effective throughput, communication data volume, and completion time for a balanced
dragonfly topology under indirect routing for a collection of all possible application domain decompositions into 64 tasks. The
x axis of every subfigure shows the β vector defining the decomposition. For a fixed β vector, several task-to-node placement
strategies (shown on the charts from denser to sparser left to right) are benchmarked to illustrate the variability of achievable
performance. For figure c), the best completion time per domain decomposition is highlighted by means of horizontal lines.
This best case performance is shown to be highly correlated with the decomposition type, and as such the same figure shows
the clusters of decompositions that share similar characteristics.

has the most balls will have. As proven in [7, 17], for large
balls-to-bins ratios, this is given by Eq. (18).

nballs

nbins

·
log nbins

log log nbins

(18)

This leads to the expected maximum demand induced by
messages exchanged in the chosen direction of the chosen
dimension k to be:

|γ|

|λ|
·

log |λ|

log log |λ|
·mk. (19)

Summing over all dimensions and both directions we ob-
tain

max
Rlinks

(δR,direct) = 2
d

∑

k=1

|γ|

|λ|
·

log |λ|

log log |λ|
·mk

=
|γ|

|λ|
·

log |λ|

log log |λ|
· 2

d
∑

k=1

mk

=
|γ|

|λ|
·

log |λ|

log log |λ|
.

(20)

This applies when the ratio of messages to groups is large.
Since this is not necessarily the case in several of the config-
urations we take into account, we can expect the accuracy of
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Figure 4: Comparison of the completion time (estimated and measured) for a balanced dragonfly topology under direct
routing for a collection of all possible task-placements γ for a 3-dimensional β = (8, 8, 4) nearest neighbor exchange of 256
tasks (Figure a)) and a β = (16, 8, 8) nearest neighbor exchange of 1024 tasks (Figure b)). The x axis lists the task-placements
from least-sparse (each group is fully occupied) to most-sparse (each group contains the minimum number of nodes that still
allows for the workload to be scheduled on the Dragonfly system) and within each sparsity level, every possible γ placement
whose |γ| corresponds to the sparsity level. The first row of the x axis labels defines γ while the second row defines λ.

the random placement model to be somewhat poorer than
that of the Cartesian placement model.
Random placement and random indirect routing are two

solutions to similar issues arising in Dragonfly networks,
each with its advantages and disadvantages. Using the two
techniques in conjunction would yield very little benefit be-
yond the benefits already attainable by employing one or
the other separately, and additionally incur the drawbacks
of both strategies. Thus, there is little motivation for model-
ing performance for indirectly routed randomly placed work-
loads and therefore we will restrict our analysis of randomly
placed nearest neighbor exchanges to the direct routing case.

3.5 Summary
In this Section we have introduced a formal performance

model for nearest neighbor communication over Dragonfly
networks, under i) Cartesian and ii) random task placement
and using a) direct or b) Valiant [Kim:2008] indirect rout-
ing. The results of this analysis are the following.
For Cartesian placement and direct routing, we have shown

(Eq. (16) and (5)) that effective injection bandwidth is lim-
ited by

BP,eff ≤
BR

maxk,γ,β((1λk>1 + 1λk=2) · |γ|/γk ·mk)
. (21)

By substitutingmk using Eq. (10) we obtain the optimiza-
tion criterion for this configuration: optimal performance is
obtained by minimizing

max
k,γ,β

[

(1λk>1 + 1λk=2) ·
|γ|

γk
·
βk · 1βk>1

αk

]

. (22)

Strictly speaking this optimizes the performance bound,
but we expect it to also optimize performance since the
bounds should be tight given our assumption that other lim-
itations on performance are removed.
For Cartesian placement and Valiant [Kim:2008] indirect

routing, we have shown (Eq. (17) and (6)) that effective

injection bandwidth is limited by

BP,eff ≤
BR

maxγ,β(4
∑d

k=1
(|γ|/γk ·mk · 1λk>1)/(ah− 1))

.

(23)
By substitutingmk using Eq. (10) we obtain the optimiza-

tion criterion for this configuration: optimal performance is
obtained by minimizing

max
γ,β

[

d
∑

k=1

(

1λk>1 ·
|γ|

γk
·
βk · 1βk>1

αk

)

]

. (24)

For random placement and direct routing, we have shown
(Eq. (20) and (5)) that effective injection bandwidth is lim-
ited by

BP,eff ≤
BR

maxγ,β

[

|γ|
|λ|

· log |λ|
log log |λ|

] . (25)

Optimal performance is thus obtained by minimizing

max
γ,β

[

|γ|

|λ|
·

log |λ|

log log |λ|
.

]

(26)

In all cases, given that the parameter space is not very
large, minimization can be achieved by exhaustive explo-
ration.

Thus, the analytical model we introduce has a two-fold
use. First, in the context of one of the three routing and
placement strategies described, it provides straightforward
criteria allowing the selection of the most efficient assign-
ment of domain elements to tasks (β) and assignment of
tasks to network nodes (γ,λ). Second, due to its capabil-
ity to estimate not only the circumstances in which perfor-
mance is maximized but also actual expected performance,
the model allows selecting the (routing, placement) strategy
itself. Thus, overall, it allows for the identification of the
complete configuration of a workload such that that work-
load completes in a minimum amount of time.
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Figure 5: Comparison of the completion time (estimated and measured) for a balanced dragonfly topology under
Valiant [Kim:2008] indirect routing for a collection of all possible task-placements γ for a 3-dimensional β = (8, 8, 4) nearest
neighbor exchange of 256 tasks (Figure a)) and a β = (16, 8, 8) nearest neighbor exchange of 1024 tasks (Figure b)). The x axis
lists the task-placements from least-sparse (each group is fully occupied) to most-sparse (each group contains the minimum
number of nodes that still allows for the workload to be scheduled on the Dragonfly system) and within each sparsity level,
every possible γ placement whose |γ| corresponds to the sparsity level. The first row of the x axis labels defines γ while the
second row defines λ.

4. SIMULATION RESULTS
The results that we present in this section were obtained

by means of a simulation framework that is able to accu-
rately model custom networks (including Dragonflies) at a
flit level [15]. The simulator is characterized by a high level
of customization and modularity, allowing the configuration
of the desired model in detail. Given that the parameter
space to explore was already very large, we have chosen a
fixed representative system scale of 1056 end nodes. Specifi-
cally, we have chosen a system interconnected by a balanced
DF (4, 8, 4) Dragonfly network, where groups are made up of
a = 8 switches interconnected in a fully connected mesh and
each switch has p = 4 nodes attached and h = 4 ports to-
wards other groups. The bandwidth of every link was chosen
to be 40 Gbit/s. The routing approaches used were direct
routing and Valiant [Kim:2008] .
The traffic pattern is that of a single, 1D, 2D or 3D, near-

est neighbor exchange as described in Section 3.2. The ap-
plication domain was considered to be made up of 227 el-
ements shaped according to the vector α = (512, 512, 512).
The per-element per-neighbor message size was chosen to be
1 KB. This means that if a task shares with a neighboring
task a surface made up of E elements, the total amount of
data sent by the task to that neighbor will be E KB.

4.1 Optimal application domain to task map-
ping

We will start by exploring the trade-offs that are associ-
ated with the selection of the β vector, expressing the map-
ping of application domain elements to computational tasks.
The selection is done along two dimensions:

1. The total number of tasks.

2. The shape of the element sub-domain assigned to a
task. By shape we refer to whether the sub-domain is
one, two or three-dimensional as well as to the ratios
between the elements of β.

As Eq. (8) shows, the larger the number of tasks the
smaller the communication footprint per task will be. Also,
regarding the sub-domain shape, similar dimensions of the
task sub-domain lead to similar contact surfaces in each di-
mension, and therefore to more balanced sizes of the mes-
sages exchanged along each axis. Given the broad range in
which the workload size can vary when choosing different el-
ement to task mappings, we will consider for this subsection
both the effective completion time of the communication
pattern, which is the most relevant performance indicator,
and the effective throughput, which is often used as a per-
formance indicator in practice.

We will start by choosing a fixed number of tasks, |β| = 64,
and analyzing all possible domain decompositions. For a
given domain decomposition, we will include multiple con-
figurations with respect to parameters such as task-to-node
mapping strategy, but we will not analyze them in detail
in this subsection. What we will focus on is what perfor-
mance can be obtained for a fixed domain decomposition (β
vector) in the best case. The measured performance is illus-
trated in Fig. 3; the measured effective throughput is shown
in Figure 3a the total volume of exchanged data is shown
in Figure 3b and the effective completion time is shown in
Figure 3c.

Several conclusions can be drawn from this experiment.
First, we notice that there is a clear correlation between the
best achievable completion time and the domain decomposi-
tion (Figure 3c). Indeed, decompositions that preserve both
a higher number of dimensions and a symmetric distribution
of tasks across dimensions perform consistently better than
decompositions that are at the other end of the spectrum.
The completion time of the best decomposition is more than
twice as small as the completion time of the worst decom-
position, with several performance levels for intermediate
decompositions.

Second, the most widely used metric to measure network
performance is the throughput that the network can sustain.
However, if we were to have based our performance analysis
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Figure 6: Comparison of the completion time (estimated and measured) for a balanced dragonfly topology under direct routing
and random task placement for three 3-dimensional nearest neighbor exchanges (β ∈ {(4, 4, 4), (8, 8, 4), (16, 8, 8)}). The x axis
lists the 3 exchanges from left to right (identifying them by the total number of tasks |β|), and within each exchange lists
several levels of sparsity from least-sparse (each group is fully occupied) to most-sparse (each group contains the minimum
number of nodes that still allows for the workload to be scheduled on the Dragonfly system). For each of these configurations,
the completion time of the same workload, but this time Cartesian-mapped and indirectly routed, is also shown to allow
comparison between the two strategies. The y axis has a logarithmic scale.

on this measure, our conclusions would have been the exact
opposite. Indeed, as shown in Figure 3a, judging strictly by
maximum achievable throughput, the best decomposition is,
by a significant margin, exactly the one that actually takes
the longest to complete. Using throughput to measure per-
formance is thus questionable in this context, where the high
throughput is actually a direct consequence of the decom-
position requiring significantly larger volumes of exchanged
data (Figure 3b) to account for the significantly larger con-
tact surfaces between communicating tasks.
Finally, although the correlation between best case com-

pletion time and domain decomposition (β choice) is clear,
the variability in the performance achieved for a fixed de-
composition is extremely high. In fact, it is much higher
than the variability across decompositions. This makes the
choice of the intra-group task-to-node mapping (γ choice) of
the utmost importance.

4.2 Optimal task to network topology map-
ping and validation of theoretical estimates

Across tested decompositions of the application domain,
the best performance was obtained for a domain that is as
close to a cube as possible (a β vector with elements as
close to equal as possible). Furthermore, from the point of
view of the variability induced by the intra-group placement
(γ-choice), the different domain decompositions exhibited a
similar behavior. Thus, in this subsection we will set the
decomposition of the application domain to the decomposi-
tion closest to a cube and benchmark all possible intra-group
placements (γ choices) under the fixed β vector.
We will consider, instead of the 64 task decomposition, a

256 and a 1024 task decomposition of the same domain to
be able to examine the scale dependence of the results we
obtain. For the former, we will consider β = (8, 8, 4) while
for the latter we will consider β = (16, 8, 8).
For the vector γ, which completely defines a Cartesian

task-to-node mapping, we will limit our analysis to values
for which the individual elements divide the corresponding β
elements. For each choice, we measure the completion time
of the workload and compare it against the theoretical pre-

dictions of the model introduced in Section 3. In addition to
validating our theoretical framework, by analyzing all possi-
ble γ values, we are able to study the impact of the shape of
the domains chosen to be mapped to individual groups, as
well as the impact of workload sparsity. The measured and
predicted performance is shown in Figure 4 for direct routing
and in Figure 5 for Valiant [Kim:2008] indirect routing.

In order to be able to compare the predicted effective
bandwidth induced by remote link bottlenecks to measured
performance, for this experiment we consider a high enough
bandwidth for the local links, such that the bottleneck does
not shift towards them, especially for the sparser mappings.

The main conclusion we can draw from the simulation re-
sults is that the theoretical framework is able to accurately
capture the behavior of the system. This is particularly true
for Cartesian task placements under both direct (Figure 4)
and indirect (Figure 5) routing, where the predictions of the
model are practically indistinguishable from the measure-
ments. An immediate consequence of this fact is that the
model can be used in a standalone fashion not only to select
the best configuration to run a particular workload but can
also to produce accurate estimates of the absolute perfor-
mance of arbitrary configurations.

For random task placement (Figure 6), the predictions
follow well the evolution of the performance across tested
configurations, but the model experiences nonetheless fairly
large deviations compared to the absolute measured values.
This is due to the fact that the statistical analysis the model
is based on in this case relies on the assumption of exchang-
ing a large number of messages relative to the number of
occupied Dragonfly groups |λ| and this is not always the
case in all tested configurations. That being said, the per-
formance trends are captured faithfully and the decision of
which configuration suits a particular workload best can still
be taken based solely on the model.

Finally, Figure 6 also shows that, for all tested configura-
tions, random task placement with direct routing is consis-
tently outperformed by Cartesian task placement with indi-
rect routing. Indeed, on the configurations that we bench-
marked, the former took between 3 and 15 times more time
to complete for a fixed β and γ configuration.
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Figure 7: Effective throughput upper bound for nearest neighbor exchange among |β| = 256 tasks mapped on a 3-dimensional
domain of size β = (8, 8, 4) for increasingly higher local link bandwidths. The routing used is indirect routing and the
placement is Cartesian: the first line of the x axis shows the vector γ while the second line shows the vector λ. By increasing
the local link bandwidth, bottlenecks in the local links become less important, up to a point where a balance is reached
between the limitations caused by remote links and limitations caused by local links. Further increasing the L link bandwidth
will yield practically no further increase of the effective throughput.

4.3 Dragonfly balance for nearest neighbor ex-
changes

To conclude this section, we revisit the notion of Dragonfly
balance in the context of nearest neighbor exchanges. A
Dragonfly system is considered balanced if the limitation on
effective injection bandwidth imposed by the three system
bandwidth parameters BP , BL and BR is the same under
uniform random all-to-all traffic. Ensuring this property
translates into a set of constraints on what the bandwidth
per each type of link should be.
For traffic patterns that do not have a uniform random

all-to-all structure and that exhibit poor performance in bal-
anced Dragonfly systems under direct routing, it is generally
assumed that a uniform distribution of load in the network
can be achieved via indirect routing. It is further assumed
that for this new load distribution, the balance of the Drag-
onfly is similar to that of indirectly routed uniform traffic.
In the case of the nearest neighbor exchange, we study the

balance between the local and remote link bandwidth. We
look at two extreme cases, one where the bandwidth of the
local links is set to a very high value, such that the through-
put limitation is the effect of solely a remote link bottleneck,
and the other where the dragonfly is balanced for uniform
traffic (at 5 GB/s with direct routing). Figure 7 shows that
in the latter case, the bottleneck has clearly shifted towards
the local links. As such, we benchmarked several L band-
width values to identify what the tipping point is in terms of
bandwidth, and implicitly what the balance of the Dragonfly
is when considering nearest neighbor traffic.
We observe that, while for the mapping strategies that

exhibit low sparsity, the balance of the system is very close
to the uniform traffic balance, as we move toward sparser
and more efficient mappings, the local bandwidth required
to balance the traffic pattern increases as well, becoming up
to a factor of 4 larger in the sparsest case.

4.4 Guidelines for application-network joint
configuration and design

In Section 3.5 we have summarized the analytical perfor-
mance model introduced in this work, which has the ability
to i) determine the configuration options that would enable

a Cartesian nearest neighbor exchange to achieve optimum
performance on a Dragonfly network and ii) estimate that
level of optimum performance. In the current section, we
have shown this model to be accurate in both aspects.

Thus, this model can be used in practice as follows. For
each of the three routing and placement strategies presented,
i.e., Cartesian placement with direct routing, Cartesian place-
ment with indirect routing, and random placement with di-
rect routing, one would use the model (namely Eq. (22),
Eq. (24) and Eq. (26) respectively) to determine the config-
uration of the workload parameters β and γ. Then, one
would use these parameters to determine for each (rout-
ing,placement) strategy (via Eq. (21), Eq. (23) and Eq. (25)
respectively) the expected completion time for the workload,
and select the strategy with the lowest one.

Concerning the optimization of the network design, the
previous subsection has shown that the generally accepted
guidelines for designing balanced, near optimal performance
Dragonfly networks [13] (derived for uniform traffic), do not
typically hold in the context of Cartesian nearest neighbor
exchanges. Indeed, the intra-group aggregate bandwidth
should be over-provisioned (relative to the balanced case),
for optimal performance by as much as a factor of 4.

5. CONCLUSIONS
In this work we analyze communication workload perfor-

mance in systems where the interconnect fabric is a Drag-
onfly network. We introduce a theoretical framework that
is able to identify the bottlenecks that appear in the net-
work under arbitrary workloads (specified via their traffic
demand matrix), assuming either direct or indirect routing
approaches, as well as to determine how those bottlenecks
impact the effective injection throughput of the nodes.

With the help of this framework, we analyze Cartesian
multi-dimensional nearest neighbor exchanges, a communi-
cation pattern that is prevalent in multiple high performance
computing applications. Using the resulting theoretical es-
timates, as well as a wide array of simulations results that
validated and augmented the analytical model, we quan-
tify the performance of different nearest neighbor workloads
coupled to a variety of mapping strategies. We are able to
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pinpoint mapping-related performance trends such as the
advantages of workload fragmentation and of assigning con-
vex application sub-domains with low surface-to-volume ra-
tios to Dragonfly groups. This enables us to co-design ap-
plication decomposition, routing, and mapping in order to
achieve optimal overall performance.
Finally, we were able to unveil common misconceptions

regarding Dragonfly network design and evaluation. We
showed that optimizing for throughput and not workload
completion time is often misleading. Furthermore, the no-
tion of system balance that is often cited as a Dragonfly
design parameter is not directly applicable to all workloads.
We present a network-application co-design effort between

one of the most promising topologies from a scalability and
cost point of view, the Dragonfly, and one of the most widely
used communication patterns in scientific applications, the
Cartesian nearest neighbor exchange. Our theoretical mod-
els capture important application and network character-
istics and can be solved optimally. We showed substantial
performance improvements of up to 10x and expect that our
model will soon become a standard technique. For example,
a batch system could inform a self-optimizing application
about the task mapping and a solver could automatically
determine the best decomposition and routing strategy.
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