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Abstract—We propose a cluster scheduling technique for com-
pute clusters with Xeon Phi coprocessors. Even though the Xeon
Phi runs Linux which allows multiprocessing, cluster schedulers
generally do not allow jobs to share coprocessors because
sharing can cause oversubscription of coprocessor memory and
thread resources. It has been shown that memory or thread
oversubscription on a manycore like the Phi results in job crashes
or drastic performance loss.
We first show that such an exclusive device allocation policy

causes severe coprocessor underutilization: for typical workloads,
on average only 38% of the Xeon Phi cores are busy across
the cluster. Then, to improve coprocessor utilization, we propose
a scheduling technique that enables safe coprocessor sharing
without resource oversubscription. Jobs specify their maximum
memory and thread requirements, and our scheduler packs as
many jobs as possible on each coprocessor in the cluster, subject
to resource limits. We solve this problem using a greedy approach
at the cluster level combined with a knapsack-based algorithm
for each node. Every coprocessor is modeled as a knapsack and
jobs are packed into each knapsack with the goal of maximizing
job concurrency, i.e., as many jobs as possible executing on each
coprocessor. Given a set of jobs, we show that this strategy of
packing for high concurrency is a good proxy for (i) reducing
makespan, without the need for users to specify job execution
times and (ii) reducing coprocessor footprint, or the number
of coprocessors required to finish the jobs without increasing
makespan. We implement the entire system as a seamless add-
on to Condor, a popular distributed job scheduler, and show
makespan and footprint reductions of more than 50% across a
wide range of workloads.

Index Terms—Middleware, coprocessors, processor scheduling,
high performance computing

I. INTRODUCTION

The Xeon Phi, is a PCIe device with 60 cores capable of

supporting 240 hardware threads. It runs the Linux operating

system and supports OpenMP, a popular parallel programming

model. Consequently, the Xeon Phi is widely perceived to be

more usable across a range of parallel applications, especially

when compared to other manycore offerings in the recent past

[1], [2]. Many OEM vendors are releasing Xeon Phi-based

high-performance servers and several application kernels have

achieved a speedup on these systems [3]. Clusters based on

the Phi such as Stampede at TACC and a Xeon Phi-based

data center by the DoE’s NREL are also being commissioned.

Such clusters already occupy several spots in the Top500

supercomputer list.

Despite these advances on the hardware side, specialized

management software that take advantage of Xeon Phi’s

unique capabilities have not been proposed. Existing cluster

managers such as Torque [4] and Condor [5] can be used

for Xeon Phi clusters. However, they treat the Xeon Phi

as yet another resource and do not take into consideration

one its key differentiating factors: the Phi runs Linux and

therefore can support execution of multiple jobs concurrently.

Recent work [6] has shown that when multiple processes

concurrently execute and share the Xeon Phi coprocessor on a

single server, overall performance improves. At the same time,

sharing can also cause coprocessor resource oversubscription.

In contrast to a multicore processor, oversubscribing resources

like threads and memory in a manycore coprocessor (like the

Phi) can cause arbitrary process crashes and drastically reduce

performance [6].

To avoid oversubscription, today’s cluster managers gener-

ally dedicate Xeon Phi coprocessors to a job for its lifetime

[7]. This approach is also prevalent in GPU- and other

coprocessor-based clusters. Our experiments show that, for

typical workloads, average Xeon Phi core utilization under

this policy across a modestly-sized cluster is as low as 38%.

This is because typical Xeon Phi offload jobs, which are

launched on the host and intermittently offload to the Phi,

do not continuously utilize all the Phi resources. Portions of a

job run on the host leaving the Phi idle. Furthermore, offloads

do not always use all 60 cores (240 threads) all the time [6].

Therefore, if each Xeon Phi is dedicated to a single offload

job until its completion, idle periods and not using all cores

result in decreased overall coprocessor utilization.

Low coprocessor utilization implies opportunities for shar-

ing. With sharing, two offload jobs that together require 60

or fewer cores can run on one Xeon Phi device without

oversubscription. Two jobs that need more than 60 cores can

also run concurrently if their offloads do not overlap in time.

But such device sharing even without oversubscription is

itself not useful unless it results in something more practical

and measurable. In this paper, we investigate if safe Xeon Phi

sharing can provide two tangible benefits at the cluster level:

(i) makespan reduction and (ii) coprocessor footprint reduction

across the cluster.

Specifically, we relax the exclusive coprocessor allocation

policy and allow concurrent jobs to run on each Xeon Phi. To
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achieve this, we augment existing cluster management soft-

ware with a sharing-aware scheduler which uses memory and

thread requirements specified by the user to safely share each

Xeon Phi coprocessor across several jobs without overrunning

resource limits, i.e., without resource oversubscription. We

formulate this as a resource constrained packing problem, and

use the knapsack algorithm to pack as many jobs as possible on

each Xeon Phi. This approach directly increases concurrency.

We find that this is a good proxy for reducing makespan
without knowledge of job execution times. This is a key dif-
ference from earlier related work in makespan minimization.

Reducing makespan for a set of jobs also allows us to use this

approach to reduce coprocessor footprint in the cluster, i.e.,

reduce the number of Xeon Phi’s required to process a set of

jobs in a certain time. If all jobs are coprocessor-intensive,

reducing the number of coprocessors directly reduces cluster

size. We evaluate our method for different Xeon Phi job sets,

both synthetic and real, across different resource requirement

distributions, and find that makespan and coprocessor footprint

can be reduced by more than 50%.

In summary, the key contribution of this paper is as follows.

We explore how sharing coprocessors could result in makespan

and footprint reduction at the cluster level. We build and

evaluate a sharing-aware scheduler for Xeon Phi-based com-

pute clusters. The scheduler runs on top of existing software,

and is completely transparent to user applications and the

underlying software. We devise a knapsack-based algorithm

to pack jobs into coprocessors such that job concurrency

is maximized under resource constraints. We show that this

approach is a good proxy for reducing makespan as well as

reducing footprint without knowledge of job execution times.

We integrate our solution with Condor [5], COSMIC [6] and

Intel’s standard Xeon Phi software stack. We present detailed

evaluations on real job sets as well as several controlled

experiments on synthetic job sets where we study the effects

of Xeon Phi job sharing across several distributions of job

resource requirements, demonstrating significant makespan

and footprint reductions.

The remainder of the document is organized as follows.

We discuss background and motivational data in Sections II

and III, our proposed framework and implementation in Sec-

tion IV. Evaluation results are presented in Section V, related

work in Section VI and the conclusion in Section VII.

II. BACKGROUND

In this section, we introduce the Xeon Phi coprocessor, its

offload programming model, thread and memory oversubscrip-

tion in coprocessors, and finally Condor.

A. The Xeon Phi and Offload Programming

The Xeon Phi coprocessor has around 60 cores connected

via a 512-bit bidirectional ring interconnect. It is packaged as

a separate PCIe device, external to the host processor. Each

Xeon Phi device has 8-16 GB of RAM that serves as the

memory and file system storage for every user process, the

Linux operating system, and ancillary daemon processes. A

#pragma o f f l o a d t a r g e t ( mic : 1 ) \
i n ( a : l e n g t h ( SIZE ) ) \
i n ( b : l e n g t h ( SIZE ) ) \
i n o u t ( c : l e n g t h ( SIZE ) )
f o r ( i n t i = 0 ; i < SIZE ; i ++)

c [ i ] = a [ i ] + b [ i ] ;

Fig. 1. Offload pragma example.

Xeon Phi core is dual-issue, in-order, and includes sixteen 32-

bit vector lanes. Each core supports 4 hardware threads which,

although individually slower than multicore threads, provide

good aggregate performance for highly parallelized and vector-

ized kernels. This makes the offload model, where sequential

code runs on the host processor and parallelizable kernels are

offloaded to the Xeon Phi, an effective programming model.

Offload programming model: A programmer annotates code
with offload pragmas [8] to identify regions to be offloaded

to the Xeon Phi. An offload pragma can be placed before any

statement, including compound statements such as loop nests

or an OpenMP parallel block. Fig. 1 shows the use of an of-

fload pragma to offload a for loop to the coprocessor. The
pragma specifies the keyword mic followed by an optional
integer to indicate a target Xeon Phi. The compiler builds the

offload block (in this case, the for loop) to run on both
the host and the coprocessor. The variables used by the code

block are specified in the pragma statement as inputs, outputs

or inouts. Lengths of pointer variables, such as the arrays a,

b and c in Fig. 1, must be specified.

B. Xeon Phi software stack (MPSS)

The Xeon Phi software stack, called the MPSS (Many

Integrated Core Platform Software Stack), consists of a portion

that executes on the host, and a portion that executes on the

coprocessor. The host portion includes stock Linux running

along with PCI and card drivers. A Symmetric Communication

Interface (SCIF) is provided by Intel for communicating

between Xeon Phi devices or between the host and a Xeon

Phi processor. On top of SCIF, the Coprocessor Offload

Infrastructure (COI) [9] is a higher level framework providing

a set of APIs to simplify development of applications using

the offload model. COI includes APIs for launching device

code, asynchronous execution and data transfer between the

host and Xeon Phi.

The other part of the stack executes on the coprocessor,

and includes a modified Linux kernel and drivers, the standard

Linux /proc file system that can be used to query device state
(for example, the load average), and the coprocessor side of

the SCIF driver and the COI library.

For every host process that offloads work to the coprocessor,

the COI middleware creates a process on the Xeon Phi that will

execute offloaded code sections sent from the host process.

Linux on the coprocessor is only aware of processes, but

MPSS is aware of offloads within a COI process. However,

while scheduling offloads, MPSS does not take into account

thread or memory oversubscription.
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C. Thread and Memory Oversubscription

Thread oversubscription occurs when the total number of

threads across all jobs concurrently using the Xeon Phi

exceeds the number of hardware threads. In a manycore

processor, this results in performance loss due to the high

cost of context switching [10] primarily owing to the large

processor state (such as many wide vector registers).

Memory oversubscription occurs when the physical copro-

cessor memory is oversubscribed. This can result in process

crashes since Linux’s out-of-memory (OOM) killer randomly

terminates processes when physical memory is oversubscribed.

Memory oversubscription on the Xeon Phi is a bigger problem

than it is on host processors since the coprocessors physical

memory (maximum 16GB) is much smaller than the typical

host physical memory in a server (100s GB to a few TB).

Consequently, a large number of jobs can crash under mem-

ory oversubscription. Handling memory oversubscription by

accurately monitoring available memory is nearly impossible

since memory in Linux is not committed during allocation. In

addition, thread stacks are also small when applications enter

a parallel region, but can grow with time. This means that two

jobs could concurrently run on the manycore without memory

oversubscription, but once their stacks or committed memory

blocks grow, they may oversubscribe memory and crash at

some point in the future.

D. HTCondor (“Condor”)

Condor [5] is a cluster job scheduler for compute-intensive

jobs. Users submit their jobs to Condor which places them

in a queue and chooses when and where to run them based

on policies. Condor provides a framework for matching job

resource requests with available resources. Its ClassAd mech-

anism allows each job to specify requirements (such as the

amount of memory used) and preferences (such as a processor

with more than 4 cores). It also allows cluster nodes to specify

requirements and preferences about jobs they are willing to

accept and run. Based on the ClassAds, Condor’s matchmaking
matches a pending job with an available machine.

A Condor pool comprises a single machine that serves as

the central manager and all other cluster nodes. The central

manager collects status information from all cluster nodes, and

orchestrates matchmaking. To collect status information, it ob-

tains ClassAd updates from each node. These updates include

the state of the node such as currently available resources and

load, and jobs that are executing on the node. The central

manager then initiates a negotiation cycle during which all

pending jobs are examined in FIFO order, and matched with

machines. Negotiation cycles are triggered periodically. Once

a match is made, a shadow process is started on the machine

where the job was submitted, and a starter process on the target

machine. The shadow process transfers the job and associated

data files to the target machine, where the starter process

spawns the user application. When the job completes, the

starter process removes all processes spawned by the user job

and frees any temporary scratch spaces, leaving the machine

in a clean state.

III. MOTIVATION

In this section, we identify and quantify the opportunity for

sharing. We set up an 8-node Xeon Phi-based cluster with

each server containing 1 Xeon Phi coprocessor, and use a job

set consisting of 1000 independent job instances from Table I.

All jobs use a single server and offload to a single Xeon Phi

on that server. Each job is guaranteed to fit within one Xeon

Phi, i.e., each job uses less threads and memory than available

on one device. The table shows the jobs, the number of Xeon

Phi threads, the range of memory requests across all instances

of that job, and the problem size.

We use Condor 7.8.7 and MPSS to process the 1000 job

instances on the Xeon Phi cluster. If the system is Xeon Phi

agnostic, thread and memory oversubscription of the Xeon

Phi occur. [6] showed that performance is impacted by as

much as 800% with thread oversubscription on the Phi. It

also showed unpredictable job terminations and performance

degradations of up to 650% under memory oversubscrip-

tion. In our experiment with Condor and MPSS, we prevent

oversubscription by allowing the servers to advertise Xeon

Phi resources (devices and memory), and allowing jobs to

request those Xeon Phi resources. Following the exclusive

allocation policy, we allocate entire Xeon Phi devices to each

job through its lifetime. Since there is no job concurrency on

the coprocessors, there is no oversubscription-related crash or

performance loss. Therefore at any given time, the maximum

number of running jobs on the 8-node cluster with a total of

8 Xeon Phi coprocessors is 8.

We monitored the activity of each processing core on the

manycore coprocessor during this experiment. Overall, average

core utilization was measured to be only around 50%. That
is, each coprocessor core was busy for only around half

the time. There are two reasons for this. First, each job

offloads only intermittently to the coprocessor. Second, and

more importantly, a job may not use all 60 cores for all its

offloads, thereby leaving some cores idle1.

We also took synthetic Xeon Phi jobs (details in Section V)

with different memory and thread requirements. For several

different distributions of memory and thread requirements

(e.g., most jobs having high memory and high thread re-

quirements versus most jobs having low memory and thread

requirements), we measured coprocessor core activity. We

again observed low core utilizations ranging from 38% to 63%.

The fact that the manycore processing unit is utilized at
around half its capacity quantifies the opportunity for sharing.
If jobs share coprocessors, idle cores can be utilized better. We

seek to explore this opportunity using our proposed sharing-

aware cluster scheduler in order to reduce overall coprocessor

footprint in the cluster.

IV. THE PROPOSED FRAMEWORK

In this section, we describe our framework by first illustrat-

ing the benefits of coprocessor sharing, then formulating the

1For many jobs, performance saturates at a lower level of parallelization
with fewer than 60 cores [6]
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Name Description Threads Memory Problem Size
KM Computing K-means using Lloyd clustering algorithm 60 300-1250MB 4M points/3 dimensions/32 means

MC Monte Carlo simulation of N paths and T time steps 180 400-650MB N = 32M, T = 1000

MD Molecular dynamics simulation 180 300-750MB 25000 particles, 5 time steps

SG A series of matrix-matrix multiplications (SGEMM) 60 500-3400MB 8Kx8K matrices, 10 iterations

BT A CFD application using block tri-diagonal solver [11] 240 300-1250MB Grid: 162x162x162, 200 iterations

SP A CFD application using scalar penta-diagonal solver [11] 180 300-1850MB Grid: 162x162x162, 400 iterations

LU A CFD application using lower-upper Gauss-Seidel solver [11] 180 400-1250MB Grid: 162x162x162, 250 iterations

TABLE I
XEON PHI WORKLOADS USED FOR JOB GENERATION.

problem before presenting the solution. Finally, we describe

the implementation of our module as a transparent add-on to

Condor [5].

A. Benefits of Sharing Coprocessors

We focus on Xeon Phi offload jobs, which launch from

the host and intermittently offload to the coprocessor. Sharing

opportunities arise due to two reasons. First, a job might have

completed an offload and is running on the host leaving the

coprocessor free. Second, a job’s offload may not be using

all of the cores on the coprocessor, allowing another job to

potentially use the free cores.

Fig. 2 shows the coprocessor usage profile of jobs J1 and
J2. J1 (top of figure) has two offloads both of which use
240 threads (all available hardware threads across 60 cores).

Between the two offloads is a portion of time spent on the

host during which the coprocessor is free. J2, whose profile
is shown in the middle chart of Fig. 2, has three offloads all

using 240 threads. The bottom chart shows the profile when J1
and J2 run concurrently and share the Xeon Phi. Since each
offload uses all available hardware threads, two offloads cannot

run simultaneously due to thread oversubscription. However,

“gaps” during which one job runs on the host can be utilized

by the other job. Because of this, the overall makespan or

execution time of the two jobs running concurrently is less

than the sum of the execution times of the jobs (i.e., the

sequential makespan). This assumes a simple scheduler at the

node to ensure offloads from different jobs do not overlap

when there is a possibility of thread oversubscription.

Fig. 3 shows the coprocessor usage profile of two jobs

that do not use all coprocessor hardware threads, and whose
offloads can overlap without thread oversubscription. J3 has
two offloads each of which uses 120 Xeon Phi threads (or 50%

of the total available in hardware). J4 has three offloads also
using 120 threads each. The bottom chart in the figure shows

J3 and J4 running concurrently. Unlike the previous case
where an offload had to wait for the previous offload to finish

in order to avoid thread oversubscription, these offloads can

overlap without oversubscribing thread resources. Specifically,

“Offload C” from J3 can start even before “Offload 4” from
J4 has completed. Similarly, “Offload 5” and “Offload C”,
and “Offload 6” and “Offload D” can run simultaneously.

This overlap not only takes advantage of idle periods between
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Fig. 2. Two offload jobs using maximal resources running concurrently.
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Fig. 3. Two offload jobs using partial resources running concurrently.

offloads, but also partial core occupancy. Consequently, the

makespan of the concurrent run is significantly better than the

sequential makespan as shown in the bottom of Fig. 3.

B. The Problem

Given a set of jobs and a cluster of Xeon Phi-based compute

servers, we decide a schedule that attempts to get as much

job concurrency on each Xeon Phi as possible. We show that
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this is a good proxy for minimizing makespan, especially

since job execution times are not given. Compared to prior

work on minimal makespan scheduling such as [12], [13], our

formulation has the following important differences:

• We specifically target clusters with coprocessor-based

servers;

• We allow concurrent job execution by sharing the Xeon

Phi coprocessor while classical makespan minimization

scheduling is restricted to one job executing on a server

at any given time;

• We impose coprocessor resource constraints (memory and

number of threads) on concurrent jobs: no resource can

be oversubscribed;

• We do not assume knowledge of job execution times

since users usually cannot specify them accurately and

therefore they cannot be relied upon;

• We use job concurrency as a proxy for minimizing

makespan. Our approach is to schedule multiple jobs to

a compute server concurrently and leverage coprocessor

sharing in order to achieve low makespan.

We assume the user provides two pieces of information for

each job: a maximum Xeon Phi memory requirement, and a

maximum thread requirement. This could be relaxed this with

tools that automatically estimate jobs’ resource requirements.

However that is outside the scope of this paper. Assuming

users specify this information distills the contribution of this

paper, namely sharing-aware coprocessor scheduling. Thus,

given n jobs J1, J2...Jn with Xeon Phi memory requirements
m1, m2...mn and thread requirements t1, t2...tn, and N iden-

tical compute servers each having D Xeon Phi coprocessors

with memory limit M and thread limit T , we pack as many
jobs as possible on each coprocessor subject to its memory

and thread limits.

C. 0-1 Knapsack-based Approach

Traditional minimum makespan scheduling approaches use

list scheduling, bin packing or their variants since they con-

sider sequential jobs without resource constraints. We allow

jobs to concurrently run on the servers with memory and

thread resource constraints. The physical memory is a hard

limit that concurrent jobs must not exceed since that will result

in undesirable effects such as process crashes and extreme

performance loss as reported in [6].

Given a set of jobs, the exhaustive approach would be con-

struct all possible subsets that fit in each coprocessor’s mem-

ory. Then the subset with most jobs that uses the maximum

number of threads (under the coprocessor hardware limit)

could be picked, and its jobs scheduled on the coprocessor.

Afterwards the subsets must be reconstructed, and the process

repeated.

Clearly, such an exhaustive approach would be prohibitively

time consuming. We use a greedy knapsack-based approach to

arrive at a schedule quickly. Given a job set and the cluster, we

model each coprocessor as a knapsack and pack jobs into each

knapsack one after another, with the goal of maximizing job

concurrency, i.e., the number of jobs in the knapsack. Once

for each Xeon Phi device D in cluster do
pack jobs in D using knapsack algorithm

end for
while jobs remaining do

for each Xeon Phi D with free memory do
create knapsack: capacity = free memory in D
pack jobs in D using knapsack algorithm

end for

end while

Fig. 4. Greedy knapsack-based method for sharing-aware scheduling.

we pack a knapsack, we move on to the next coprocessor and

repeat the process with the remaining jobs.

The knapsack-based approach allows us to consider both

memory and thread constraints. We model the coprocessor-

based cluster as a set of knapsacks each with a capacity,

and schedule jobs such that the value of the filled knapsacks

is maximized. Each Xeon Phi coprocessor in a compute

server is a knapsack, and the items in it represent jobs that

are concurrently running on that coprocessor. The knapsack

capacity is the physical memory of the coprocessor. We set

the value of each job such that it decreases with the number

of its threads. The value of a knapsack is the sum of the values

of the jobs packed in it. Therefore, in trying to maximize the

value of the knapsack, the algorithm will try to pack many

jobs with few threads into one coprocessor. This maximizes

job concurrency, increasing core and device utilization. The

value vi of job Ji in our knapsack formulation is given by:

vi = 1−
(

ti
240

)2

(1)

where ti is number of Xeon Phi threads requested by the job.
Our objective is to use concurrency to minimize makespan

since we do not have knowledge of job execution times. In

addition, we also do not know the profile of a job (such as

the ones illustrated in Figs. 2 and 3). Knowledge of these

could result in an optimal makespan, but is not realistic.

Therefore, our method is to set the value of each job such

that the knapsack approach tries to have as many concurrent

jobs as possible subject to resource constraints. Having more

jobs running at the same time on the same coprocessor will

increase the chances of the Phi cores being well utilized and

the gaps in Xeon Phi usage of any job being filled. In addi-

tion, having many concurrently executing jobs also improves

chances that a long running job (which affects final makespan)

will overlap with several other short jobs. In order to avoid

oversubscription, the number of threads of all concurrent jobs

must not exceed the number of hardware threads supported by

the Xeon Phi. Unlike the memory however, this is not a hard

limit. If the total number of threads exceed the coprocessor’s

hardware limit, we make the knapsack value zero.

We use the standard dynamic programming method to solve

the 0-1 knapsack problem. 0-1 indicates items are indivisible:

jobs cannot be partially scheduled. Given n jobs (items)

J1, J2...Jn with Xeon Phi memory requirements (weights)

m1, m2...mn and values v1, v2...vn, and a knapsack of ca-
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pacity M , the maximum value of the knapsack for n jobs

V (n, M) depends on the solution obtained for n − 1 jobs.
More generally for i jobs and knapsack capacity m:

V (i,m) = 0 if i = 0 or m = 0

= MAX(V (i− 1,m), vi + V (i− 1,m−mi))

Complexity: Thus the solution to the knapsack of capacity
m with i jobs is either the solution obtained for the knapsack
without the i’th job, or the solution obtained for a knapsack
whose size is reduced by the size of the i’th job mi. For n
jobs with w different sizes, the complexity is O(nw). Typically
w is not large: if jobs can request memory in increments of

50MB, then w is 8GB/50MB = 160, which is smaller than
the number of typical jobs on a large cluster. This makes the

complexity nearly linear with the number of jobs.

The overall knapsack-based scheduling approach at the

cluster-level is shown in Fig. 4. We start by creating a

knapsack for each Xeon Phi device in each server and set

the knapsack capacity to the full physical device memory. We

fill all knapsacks one after another. While each knapsack is

filled using the dynamic programming algorithm, filling one

knapsack before starting another makes the approach greedy

at the cluster level. When any device completes a job, we

create a new knapsack whose capacity is set to the device

memory that was freed up by the completed job. As long

as unscheduled jobs exist, we fill each such new knapsack.

This process continues until all jobs have been scheduled and

completely executed.

D. System Implementation

Fig. 5 shows the overall implemented system. We integrate

our scheduling module with the Condor distributed frame-

work [5]. Many cluster users are already familiar with Condor.

Our Xeon Phi sharing-aware scheduler is a transparent add-on

to Condor. We use Condor’s job submission formats as well

as its mechanisms to negotiate with the cluster compute server

nodes and dispatch jobs.

Our module interfaces with Condor at the cluster level, and

uses COSMIC [6] at each node. We require no changes to, or
sources of, either Condor or COSMIC.

1) Augmenting HTCondor: Here we describe how we in-

tegrate the proposed methods with Condor and COSMIC. As

shown in Fig. 6, we set up Condor 7.8.7 in a master-worker

configuration with a central manager and compute nodes. Each

host processor on a compute node is represented as a slot that

can be claimed to run a job. Only one job can run on one slot

at a time. Each compute node obtains the number of Xeon

Phi cards available as well as the card memory through the

Xeon Phis micinfo utility, and advertises this in its ClassAd.
Each job specifies its preferences for the number of Xeon Phi

devices and memory in its job script.

Our cluster scheduler obtains the list of pending jobs from

Condor. It then uses the knapsack-based method from Fig. 4 to

create a job-to-node mapping. Using the utility condor qedit,
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Fig. 5. Proposed overall Xeon Phi cluster middleware.
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Fig. 6. Augmenting Condor with the proposed scheduler.

we then change each job’s requirements by specifying the

compute node obtained by the knapsack method as the only

node on which the job can run. Specifically, we change

the “Requirement” field in the job script and assign the

selected compute node using “Name ==< slotId > @ <
NodeName >”. This forces Condor to subsequently dispatch
the job to the compute node selected by our cluster component.

Because the job is dispatched using Condor, we must wait

for Condors next negotiation cycle which is triggered when

the Condor collector obtains the changed job requirements.

In order to reduce overheads, we submit the edited job

requirements in a batch. That is, we process the entire list

of pending jobs and submit the new requirements together to

the Condor collector.

2) COSMIC on the Compute Node: At the node level,

we use the COSMIC Xeon Phi middleware proposed in [6].

COSMIC is a transparent add-on to MPSS to handle thread and

memory oversubscription when multiple processes compete

for the Xeon Phi within a single server node. While not

absolutely necessary, a middleware such as COSMIC on each

node helps achieve the following:

• It terminates jobs whose memory exceeds the user spec-

ified limit. COSMIC does this using Linux containers

[6]. Even though our knapsack formulation guarantees
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adherence to user-specified memory limits, it cannot

compensate for a user’s mistakes such as underestimating

the memory of a job.

• It manages accidental thread oversubscription by schedul-

ing Phi offloads from different jobs in such a way that

thread oversubscription is minimized, i.e., offloads that

require more than the available threads in hardware will

not be allowed to execute. The knapsack algorithm uses

threads to determine the value of each job, and Xeon Phi

memory as the knapsack capacity. COSMIC schedules

Xeon Phi offloads within the jobs to prevent thread

oversubscription.

• It balances load across the Xeon Phi cores. For instance,

if two jobs require 120 threads (or 30 Xeon Phi cores

supporting 4 threads per core) each, COSMIC automati-

cally affinitizes threads to cores such that the jobs do not

overlap and core utilization is maximized. Each job will

run on its own set of 30 cores, utilizing all 60 cores

on the device. Without COSMIC, such thread-to-core

affinitization is not possible resulting in performance loss

since two offloads with conflicting affinities may overlap

and use the same cores leaving other cores idle.

Limitations: Our scheduling approach is static, and applies
to a set of jobs waiting to execute. The set could represent

a snapshot in a dynamic scenario with continously arriving

jobs. Our approach is mainly beneficial if there are far more

jobs than coprocessors: if the number of jobs is very small,

naive scheduling approaches will likely perform equally well.

We note however that our approach can also be used in a

dynamic context, but that is outside the scope of this work.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the effect of coprocessor sharing

at the cluster-level. We use the workloads from Table I, as well

as several synthetic workloads on an 8-node Xeon Phi-based

cluster containing 1 Xeon Phi device per server node, each

with 8GB of memory. All servers have 2 Xeon host processors

with 8 cores each, and run RHEL 6.2 with Intel MPSS gold.

We use Condor 7.8.7.

Our goal is to evaluate the proposed ideas in terms of

makespan and coprocessor footprint reduction. In each ex-

periment, we compare the following three cluster software

configurations, abbreviated as MC, MCC and MCCK:
1) MC (MPSS + Condor): This is the baseline using
MPSS and Condor, where jobs are run sequentially on

each Xeon Phi with no concurrency or sharing.

2) MCC (MPSS + Condor + COSMIC): We add COS-
MIC to MPSS+Condor in order to allow job concurrency

on the Phi’s. COSMIC allows safe sharing without

oversubscription, but is restricted to a compute node

and unaware of the cluster level. Jobs are selected

randomly at the cluster level: they are packed arbitrarily

to Xeon Phi coprocessors and COSMIC prevents them

from oversubscribing memory and threads.

3) MCCK (MPSS + Condor + COSMIC + Knapsack
Cluster Scheduler):We add our proposed cluster sched-

uler to MPSS+Condor+COSMIC. The cluster scheduler

decides which jobs should share Xeon Phi’s for mini-

mizing makespan thereby reducing footprint.

The rest of this evaluation section is organized as follows:

• Makespan and Footprint Reduction: We first show

makespan and footprint reduction for a large set of real

Xeon Phi jobs. We compare makespan obtained by MC,

MCC and MCCK for the 8-node cluster. Then we show

footprint reduction for MCC and MCCK, i.e., how much

the cluster size can be reduced for MCC and MCCK and

still achieve the same makespan that was obtained by MC

on the 8-node cluster. Reduction in cluster size is obtained

because the sharing-aware scheduler reduces the number

of Xeon Phi’s required. Since the jobs are coprocessor

intensive, this directly results in overall cluster footprint

reduction.

• Sensitivity: We show that our approach is beneficial across
job sets with different memory and thread resource dis-

tributions. This is important since sharing a coprocessor

is contingent on job resource requirements. Too many

“big” jobs will force less sharing. Therefore we create

synthetic job sets with different resource distributions,

i.e., job sets skewed towards jobs with high memory

and thread requirements to jobs sets skewed towards low

memory and thread requirements. We perform controlled

experiments to evaluate makespan and footprint reduction

across these distributions for MC, MCC and MCCK.

A. Makespan and Footprint Reduction

We generate 1000 instances from the real Xeon Phi work-

loads listed in Table I, and measure the makespan for each

of the above cases.

Table II shows the makespan on an 8-node cluster using

MC, MCC and MCCK. With MC (MPSS+Condor) as the

baseline, introducing COSMIC from [6] improves makespan

by 27% because COSMIC allows jobs to share the Xeon

Phi. However this uses random job selection at the cluster

level. Introducing our knapsack-based job scheduling at the

cluster level further improves the makespan to achieve a total

improvement of 39% over the baseline.

Table II also shows cluster footprint reduction, i.e., for

MCC and MCCK, the cluster size required to achieve the

same makespan as the baseline (MC) on an 8-node cluster.

We see that introducing COSMIC allows us to achieve the

same makespan with a cluster of size 6 server nodes. The

proposed cluster scheduling technique together with COSMIC

can achieve the same makespan as an 8-node cluster with

only 5 nodes. This is a 37.5% reduction in cluster size.

This assumes coprocessor-intensive jobs and that there is no

contention for the host by reducing cluster size: therefore

reducing the number of coprocessors results in overall cluster

size reduction.

Makespan and footprint reduction occur as a direct con-

sequence of coprocessor sharing. The baseline case has no

sharing while COSMIC allows sharing resulting in some

improvement. But the sharing-aware cluster scheduler suitably
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Configuration
MAKESPAN FOOTPRINT

On 8-node
cluster

Reduction
compared to MC

Cluster size to achieve same
makespan as 8-node cluster

Reduction from 8-node
cluster

MC 3568 - - -

MCC 2611 27% 6 25%

MCCK 2183 39% 5 37.5%

TABLE II
MAKESPAN AND FOOTPRINT REDUCTION.

Resource (Memory, Thread) Requirement

# 
Jo

bs

Normal

High
Resource

Skew

Low
Resource

Skew

Uniform

Fig. 7. Resource distributions of the synthetic job sets.

chooses jobs at the cluster level, and significantly increases

coprocessor sharing.

B. Sensitivity to Job Resource Requirements

The ability to share jobs is based on job resource (memory

and thread) requirements. If most jobs have small memory and

thread requirements, significant concurrency can be achieved

on the Xeon Phi. On the other hand, if most jobs have high

memory and thread requirements, only limited concurrency is

possible, resulting in smaller improvements.

In order to study sensitivity of our cluster scheduling

technique to job resource requirements, we construct 4 sets

of 400 synthetic Xeon Phi offload jobs with the following

different distributions (Fig. 7):

• Uniform: Jobs are equally distributed across different
resource requirements.

• Normal: The distribution curve is normal, i.e., most jobs
are in the mid-resource range.

• Low Resource Skew: Jobs are skewed towards having low
memory and thread resource requirements. The mean is 1

standard deviation from the normal mean towards lower

resources.

• High Resource Skew: Jobs are skewed towards having
high memory and thread resource requirements. The

mean is 1 standard deviation from the normal mean

towards higher resources.

Fig. 7 shows the 4 distributions, with the horizontal axis

representing both memory and thread resources. We assume

that jobs with low Xeon Phi memory requirements also have

low thread requirements, and vice versa.

We now evaluate makespan for a cluster of size 8 nodes for

the four different distributions. Fig. 8 shows the sensitivity of

makespan improvements. The chart shows the distributions on
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Fig. 8. Makespan reduction for different job distributions.

the horizontal axis, and makespans for MC, MCC and MCCK

on the vertical axis. For uniform, normal and low resource

skew distributions, we see big improvements in makespan

due to our scheduling approach. This is because in these

cases, there are several jobs with low to medium resource

requirements and therefore many jobs can be concurrently

scheduled resulting in considerable Xeon Phi sharing. How-

ever, the high resource skew distribution has many big jobs

which cannot concurrently execute without oversubscribing

resources. Therefore, the improvement in makespan is smaller.

But our scheduling approach does not degrade makespan

significantly compared to MCC (which uses random job selec-

tion). The small degradation seen is due to our module having

to externally integrate with Condor, and having to wait for

Condor’s scheduling cycle (see Section IV-D1). Furthermore,

even with a distribution skewed towards high resource jobs,

Xeon Phi sharing always improves makespan compared to the

baseline MC where jobs run exclusively on the coprocessor.

Now we evaluate how our technique reduces cluster foot-

print across different job distributions, i.e., if our technique can

produce the same makespan with a smaller cluster containing

fewer Xeon Phi coprocessors for job sets with different re-

source demands. In order to do this, we measure makespan on

clusters of progressively increasing sizes for the 400 synthetic

jobs across the 4 resource usage distributions. The overall

results are shown in Fig. 9. For large cluster sizes, we see that

MCC and MCCK show smaller improvements than on small

clusters when compared to the baseline MC where jobs run one

after another. However, MCCK provides a large improvement

over MCC for large clusters. This shows that the knapsack-

based scheduling approach makes a difference when the cluster

size is large, since a large cluster requires more decision

making about where each job must be scheduled. For very
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Configuration

Footprint (Cluster Size)

Uniform Normal Low
Resource
Skew

High
Resource
Skew

MC 8 8 8 8
MCC 6 (25%) 6 (25%) 4 (50%) 6 (25%)
MCCK 5 (37.5%) 5 (37.5%) 3 (67.5%) 6 (25%)

TABLE III
FOOTPRINT REDUCTION FOR DIFFERENT JOB DISTRIBUTIONS.

small clusters (e.g., 2 nodes), any form of sharing is beneficial

over sequential, even random sharing provided by MCC.

Therefore for such clusters, naive scheduling approaches are

equally effective.

Table III shows the cluster footprint reduction summarized

from the earlier experiments. MC has the same footprint

regardless of distribution since it executes all jobs sequentially

on each Xeon Phi. For the other distributions, we see an effect

similar to makespan: for the uniform, normal and low resource

skew distributions, MCCK reduces footprint by 37.5% to

67.5%, while for the high resource skew distribution, footprint

is still reduced by 25%.

From Fig. 9, we observe that for very small clusters, any

sharing is beneficial. So even MCC, in which random jobs

share coprocessors, performs just as well as the knapsack-

based approach. However, that is due to high “job pressure”

or jobs per node for small clusters since we keep the number

of jobs constant at 400. At high job pressure with very few

nodes to decide between, intelligent job scheduling has little

effect.

Therefore we now examine if our technique is effective

at high job pressures but with more cluster nodes, so that

cluster-level scheduling can make a difference. Therefore we

examine what happens at high job pressures for larger clusters.

Specifically, we increase the number of jobs from 400 to 1600

as we increase the cluster size from 2 to 8. Fig. 10 shows

the makespan for this experiment under the normal resource

usage distribution. We note that for large clusters, even at high

job pressure, MCCK improves makespan by 11% over MCC

and by 40% over MC. This demonstrates that cluster-level

scheduling and coprocessor sharing together are beneficial
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Fig. 10. Makespan with constant job pressure.

across different job distributions and at high job pressures.

VI. RELATED WORK

Considerable prior research exists in cluster scheduling.

In [14], the authors propose delay scheduling to address the

problem of scheduling for fairness and data locality in Hadoop

clusters. When a job or its task that should be scheduled

according to fairness cannot find a local node, it waits for a

small amount of time, letting other jobs launch tasks instead.

Quincy [15] also addresses the problem of scheduling with

fairness and data locality for clusters where application data

is stored on the compute nodes. They formulate the problem

using a graph with associated costs and solve for min-cost

flow. [16] presents a weighted max-min fair sharing approach

in grids where tasks are assigned resources as close as possible

to their fair shares. [17] describes a strict fairness technique

for HPC systems: jobs used to backfill are preempted if their

runtime predictions are incorrect and they delay high priority

jobs. Since this guarantees fairness, their scheme aggressively

starts jobs to backfill vacant slots in order reduce performance

loss caused by the preemption. There is also considerable work

in bag-of-tasks workloads [18]. In [19], the authors present a

scheme to optimize cost when scheduling such applications

on commercial clouds by learning to estimate task completion

times. [20] proposes a scheduling method for bag-of-tasks

applications on an auction-based grid where users bid to gain

more resource shares.

Closer to our core scheduling method exist many efforts in

minimum makespan scheduling [12], [13]. Compared to these
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traditional approaches to solving this problem, ours has the

following fundamental differences, as described earlier: (i) we

specifically target coprocessor-based clusters, (ii) we do not

assume jobs are sequential, but allow concurrency, (iii) we

assume no knowledge of job execution times, while classical

makespan minimization requires this information, which is

often hard to specify accurately, (iv) we maximize concurrency

as a proxy for minimizing makespan and (v) we consider

coprocessor resource constraints.

VII. CONCLUSION

In this paper, we propose a scheduling method for Xeon

Phi manycore coprocessor-based clusters. Existing cluster

managers generally implement an exclusive allocation policy

where coprocessors are not shared across jobs. This is primar-

ily due to unpredictable effects of resource oversubscription

in manycores.

We find that the exclusive allocation policy results in

serious under-utilization of the Phi: for typical workloads,

we measured average core utilization across the cluster to be

only 38%. In order to address this, our framework relaxes

the constraint that coprocessors cannot be shared across jobs.

To avoid resource oversubscription, we use job resource re-

quirements specified by the user, and propose a knapsack-

based algorithm to pack as many jobs as possible on each

Xeon Phi coprocessor while adhering to resource constraints.

By increasing job concurrency, we find that we can reduce

makespan for a set of jobs, or equivalently reduce cluster

size for a set of jobs if makespan is constant. The knapsack

framework simultaneously considers memory as well as thread

constraints, and the proposed formulation is able to reduce

makespan without requiring users to specify job execution

times.

We implement and integrate our module with Condor,

the distributed job scheduler, COSMIC, a recently proposed

node-level Xeon Phi middleware that allows jobs to safely

share a coprocessor, and MPSS, Intel’s Xeon Phi software.

Our integration is completely transparent to users and the

underlying software, and requires no sources of Condor, COS-

MIC or MPSS. We test the end-to-end system on real Xeon

Phi workloads, as well as synthetic workloads in controlled

experiments. Makespan and footprint reductions of more than

50% due to coprocessor sharing are observed.
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