
Models for scheduling on large scale platforms:
which policy for which application?∗

Pierre-François Dutot, Lionel Eyraud, Grégory Mounié and Denis Trystram
ID-IMAG

51 avenue Jean Kuntzmann
38330 Montbonnot Saint Martin, France

Abstract

In the recent years, there was a huge development of low
cost large scale parallel systems. The design of efficient
parallel algorithms has to be reconsidered by the influence
of new parameters of such execution supports (namely, clus-
ters of workstations, grid computing and global comput-
ing) which are characterized by a larger number of hetero-
geneous processors, often organized by hierarchical sub-
systems.

Alternative computational models have been designed in
order to take into account new characteristics. Parallel
Tasks model – PT in short – (i.e. tasks that require more
than one processor for their execution) is a promising al-
ternative for scheduling parallel applications, especially in
the case of slow communication media. The basic idea is
to consider the application at a rough level of granularity.
Another way of looking at the problem (which is somehow
a dual view) is the Divisible Load model (DL) where an ap-
plication is considered as a collection of a large number
of elementary – sequential – computing units that will be
distributed among the available resources.

As the main difficulty for scheduling in actual systems
comes from handling efficiently the communications, these
two new views of the problem allow us to consider them
implicitly or to mask them, thus leading to more tractable
problems.

This paper aims first at presenting some examples of ap-
proximation algorithms for parallelizing applications for
the PT model with a special emphasis on new execution
supports. Then, we will show how to mix these results with
the DLT model in order to integrate them into the previous
model for managing the resources of an actual computa-
tional grid composed by more than 600 machines built in
Grenoble (CiGri project).

1. Introduction

1.1. Parallel Processing today

In the Parallel Processing area, scheduling is a crucial
problem for determining the starting times of the tasks and
the processor locations. Many theoretical studies were con-
ducted [2] and some efficient practical tools have been de-
veloped for old generation shared-memory systems [9, 19].

Scheduling in modern parallel and distributed systems
is much more difficult because of new characteristics of
these systems. These last few years, super-computers
have been replaced by collections of large number of
standard components, physically far from each other and
heterogeneous [7]. The need of efficient algorithms for
managing these resources is a crucial issue for a more
popular use. Today, the lack of adequate software tools is
the main obstacle for using these powerful systems in order
to solve large and complex actual applications.

The classical scheduling algorithms that have been de-
veloped for parallel machines of the nineties are not well
adapted to new execution supports. The most important fac-
tor is the influence of communications. The first attempt
that took into account the communications into computa-
tional models was to adapt and refine existing models into
more realistic ones (delay model with unitary delays [12],
LogP model [6]). However, even the most elementary prob-
lems are already intractable [18], especially for large com-
munication delays. The other characteristics of the new ex-
ecution supports are heterogeneity of processors or com-
munication media, several levels of hierarchy (from SMP
nodes to clusters and grids), versatility of the system com-
ponents (some nodes can appear or disappear, new jobs can
be created at any moment depending of the results of a job,
etc.).

Our view of the problem is to consider the notion oflight
grid as a collection of few clusters in a same geographical
area. It is an intermediate step for a better understanding of

general grid and global computing. we propose a pragmatic
approach which is based on several years of experience us-
ing a 225 PC cluster at IMAG and the regional grid CiGri
gathered more than 600 machines [5]. We describe briefly
in the next section the corresponding architectural model.

1.2. Description of the Platform model

The target execution support that we consider here is a
few clusters composed each by a collection of a medium
number of SMP or simple PC machines (typically several
tenth or several hundreds of nodes). Such a system may
be highly heterogeneous between clusters (different kind of
processors, different numbers of processors, different Oper-
ating Systems, etc.), but weakly heterogeneous inside each
cluster (different generations of processors running under
the same Operating System with different clock speeds).
No specific topology is assumed, but the interconnection
network is fast and may be hierarchical.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Figure 1. A light grid.

The submissions of jobs is done by some specific nodes
by the way of several priority files. No other submission is
allowed. Each cluster is administrated by a separate system
engineer but of course, these internal managing rules have
been established after many exchanges between the com-
munities.

1.3. How to manage the resources?

There is no global consensus today for an universal way
of looking at the resource management problem on grids.
Adequate computational models have to be developed for
designing and analyzing scheduling algorithms.

The delay models, based on explicit handling of com-
munications, should be forgotten because of their intrinsic
intractability. Two alternative models have been proposed,
namely the Divisible Load Tasks model (DLT) and the Par-
allel Tasks model (PT).

We believe that there is no issue for determining a stan-
dard solution for managing the resources. As the objectives
may be different from one community to another one, it
seems impossible to formalize the global problem as a clas-
sical combinatorial optimization problem. Thus, leading to
well-founded algorithms with some guaranties.

2. Alternative models

2.1. Divisible Load – DLT

A Divisible Load Task can be seen as a (usually large)
set of computations that can be partitioned in every pos-
sible way, each part being completely independent of the
other parts. This model was first introduced in [4] for the
processing of big data files.

As each part has to be completely independent, the jobs
modeled with the DLT model cannot have data dependen-
cies or communication within the task. With the partition-
ing property, the atomic computations of the job have to be
very small with respect to the total work (fine grain). Since
the introduction of this model, many kinds of applications
have been considered as Divisible Load Tasks, such as para-
metric executions or image and signal processing.

The DLT model is well suited for heterogeneous plat-
forms, and slow communications, as no communications
occur after the distribution of the task. The difficulty of
scheduling lies in the distribution of the task to the avail-
able processors. This distribution can be made in one, sev-
eral rounds or dynamically with a work stealing strategy
[3]. Simple problems as the single round distribution on
processors connected by a common bus are polynomial, but
the complexity becomes quickly NP-hard with more gen-
eral network topologies.

At the end of the computation, if we are for example
searching something in a database there is only one proces-
sor which have to send back data. However, if all the data
processing produces output, the communications gathering
the results can be done as a mirror image of the data distri-
bution.

2.2. Parallel Tasks – PT

Informally, a Parallel Task (PT) is atask that gathers
elementary operations, typically a numerical routine or a
nested loop, which contains itself enough parallelism to be
executed by more than one processor.

We consider PT as independent jobs (applications) sub-
mitted in a multi-user context. Usually, new PT are sub-
mitted at any time (on-line). The time for each PT can be
estimated or not (clairvoyant or not) depending on the type
of applications. We will consider mainly the first case in
this paper: we have an estimation of the characteristics of

2

the submitted jobs (expected running times, parallel profile
– at least qualitatively, etc.).

The PT model seems particularly well-adapted to grid
and global computing because of the intrinsic characteris-
tics of these new types of supports: large communication
delays which are considered implicitly and not explicitly
like they are in all standard models, the hierarchical char-
acter of the execution support which can be naturally ex-
pressed in PT model. The heterogeneity of computational
units or communication links can also be considered by uni-
form or unrelated processors for instance.

We usually distinguish between three types of Parallel
Tasks (PT):

• Rigid jobs when the number of processors to execute
the PT is fixed a priori. In this case, the PT can be rep-
resented as a rectangle in a Gantt chart. The allocation
problem corresponds to a strip-packing problem [13].

• Moldablejobs when the number of processors to exe-
cute the PT is not fixed but determined before the ex-
ecution. As in the previous case this number does not
change until the completion of the PT.

• Malleable jobs when the number of processors may
change during the execution (by preemption of the
tasks or simply by data redistributions).

For historical reasons, most of submitted jobs are rigid.
However, intrinsically, most parallel applications are mold-
able. An application developer does not know in advance
the exact number of processors which will be used at run
time. Moreover, this number may vary with the input prob-
lem size or number of nodes availability. This is also true
for many numerical parallel library. Most of the main re-
strictions are the minimum number of processors that are
needed because of time, memory or storage constraints.

The main restriction in a systematic use of the moldable
character is the need for a practical and reliable way to esti-
mate (at least roughly) the parallel execution time as func-
tion of the number of processors. Most of the time, the
user has this knowledge but this is an inertia factor against
the more systematic use of such models. Most parallel pro-
gramming tools or languages have some malleability sup-
port, with dynamic addition of processing nodes support.
Modern advanced parallel programming environments, like
Condor, Globus or Mosix implement advanced capabilities,
like resilience, preemption, migration, or at least the model
allows us to implement these features.

Malleability is much more easily usable from the
scheduling point of view but requires advanced capabilities
from the runtime environment, and thus restrict the use of
such environments and their associated programming mod-
els. In the near future, moldability and malleability should

be used more and more. We will not consider malleability
here.

3. Optimization criteria

The main objective function used historically is the
makespan. This function measures the ending time of the
schedule, i.e., the latest completion time over all the tasks.
However, this criterion is valid only if we consider the tasks
altogether and from the viewpoint of a single user. If the
tasks have been submitted by several users, other criteria
can be considered. Let us review briefly various possible
criteria usually used in the literature:

• Minimization of themakespan(Cmax = max(Cj)
where the completion timeCj is equal toσ(j) +
pj(nbproc(j))). pj represents the execution time of
taskj, σ function is the starting time andnbproc func-
tion is the processor number (it can be a vector in the
case of specific allocations for heterogeneous proces-
sors).

• Minimization of the average completion time (ΣCi)
[16, 1] and its variant weighted completion time
(ΣωiCi). Such a weight may allow us to distinguish
some tasks from each other (priority for the smallest
ones, etc.).

• Minimization of the meanstretch(defined as the sum
of the difference between completion times and release
dates:ΣCi−ri). In an on-line context it represents the
average response time between the submission and the
completion.

• Minimization of the maximum stretch (i.e. the longest
waiting time for a user).

• Maximum throughput (or steady state) defined as the
maximum number of elementary tasks to execute in a
given amount of time or for asymptotically long times.
It is well-suited for some types of jobs like parametric
computations.

• Minimization of the tardiness. Each task is associated
with an expected due date and the schedule must min-
imize either the number of late tasks, the sum of the
tardiness or the maximum tardiness.

• Other criteria may include rejection of tasks or nor-
malized versions (with respect to the workload) of the
previous ones.

3

4. Some results about Parallel Tasks

We concentrate in this section on the PT model. We will
show some interesting results that can be combined together
in order to construct realistic scheduling algorithms.

In the PT model, communications are considered by
a global penalty factor which reflects the overhead for
data distributions, synchronization, preemption or any
extra factors coming from the management of the parallel
execution. The penalty factor implicitly takes into account
some constraints, when they are unknown or too difficult
to estimate formally. It can be determined by empirical or
theoretical studies (benchmarking, profiling, performance
evaluation through modeling or measuring, etc.).

We consider first the case of a single cluster. Indepen-
dent jobs have been submitted to a file and are ready to be
executed. More formally, we consider the off-line schedul-
ing of a set ofn independent moldable jobs onm identi-
cal processors for minimizing the makespan. Most of the
existing methods for solving this problem have a common
geometrical approach by transforming the problem into 2
dimensional packing problems. It is natural to decompose
the problem in two successive phases: determining first the
number of processors for executing the jobs, then solve the
corresponding scheduling problem with rigid jobs.

4.1. A good off-line approximation algorithm

We recall briefly the principle on the best known algo-
rithm for solving this problem [8]. The idea is to determine
the job allocation with great care in order to fit them into a
particular packing scheme that is inspired from the shape of
the optimal one.

The MRT algorithm has a performance ratio of3/2 + ǫ
[8]. It is obtained by stacking two shelves of respective
sizesλ and λ

2
where λ is a guess of the optimal value

C∗

max. This guess is computed by a dual approximation
scheme [11]. A binary search onλ allows us to refine the
guess with an arbitrary accuracyǫ.

The guessλ is used to bound some parameters on the
tasks. We give below some constraints that are useful for
proving the performance ratio. In the optimal solution, as-
sumingC∗

max = λ:

• ∀j, pj(nbproc(j)) ≤ λ.

•
∑

wj(nbproc(j)) ≤ λm.

• When two tasks share the same processor, the execu-
tion of one of these tasks is lower thanλ

2
. As there are

no more thanm processors, less thanm processors are
used by the tasks with an execution time larger thanλ

2
.

This algorithm is the basis of an on-line algorithm de-
scribed in the next section.

4.2. On-line batch scheduling

An important characteristic of the new parallel and
distributed systems is the versatility of the resources: at
any moment, some processors (or groups of processors)
can be added or removed. On another side, the increasing
availability of the clusters or collections of clusters involved
new kind of data intensive applications (like data mining)
whose characteristics are that the computations depend on
the data sets. The scheduling algorithm has to be able to
react step by step to arrival of new tasks and thus, off-line
strategies can not be used. Depending on the applications,
we distinguish two types of on-line algorithms, namely,
clairvoyant on-line algorithms when most parameters of
the Parallel Tasks are known as soon as they arrive, and
non-clairvoyant ones when only a partial knowledge of
these parameters is available.

Most of the studies about on-line scheduling concern in-
dependent tasks, and more precisely the management of
parallel resources. We invite the ready to look at the sur-
vey [15] for more details about on-line algorithms. In this
section, we consider the clairvoyant case, where an estimate
of the task execution time is known.

We recall first a generic result aboutbatch scheduling. In
this context, the jobs are gathered into sets (called batches)
that are scheduled together. All further arriving tasks are
delayed to be considered in the next batch. This is a nice
way for dealing with on-line algorithms by a succession
of off-line problems. We will use the result of Shmoys
et al. [17] which proposed how to adapt an algorithm for
scheduling independent tasks without release dates (all
tasks are available at date 0) with a performance ratio of
ρ into a batch scheduling algorithm with unknown release
dates with a performance ratio of2ρ.

Now, using the off-line algorithm with a performance
ratio of 3/2 + ǫ, it is possible to schedule moldable inde-
pendent tasks with release dates with a performance ratio of
3 + ǫ for Cmax. The algorithm is a batch scheduling algo-
rithm, using the independent tasks algorithm at every phase.

The makespan criterion has not always a clear meaning,
especially for very long execution windows. The users usu-
ally prefer to have a guaranty that in average, their jobs are
performed in the minimum time.

4

4.3. Batch scheduling for average completion time

Scheduling to minimize the average completion times is
very different than scheduling to minimize the makespan.
Good scheduling algorithm for one criterion usually have
a very big performance ratio for the other criterion. The
single machine problem has a polynomial optimal solution
which consists of sorting the tasks with increasing sizes
and schedule them in this order. In the weighted case,
where each task is given a weight (defining its priority), the
scheduling is made according to the ratio time/weight.

In the off-line multi-processor case, scheduling with
batches (or shelves) allows us to return to this simple sin-
gle machine problem. Each batch has a time length and a
weight (the sum of the weight of their tasks) and finding
the optimal order of batches is exactly the single machine
problem. Schwiegelshohn et al. [14] proposed for rigid PTs
to use shelves (where all the tasks start at the same time)
filled with tasks of approximately the same length (shelves
sizes are powers of 2). The performance ratio is 8 for the
unweighted case and 8.53 for the weighted case.

The shelves here were just filled with a first fit algorithm.
We will see that this ratio can be improved using more com-
plex scheduling algorithms within batches instead of stack-
ing tasks on shelves.

4.4. Bi-criteria analysis

As said before, several criteria could be used to describe
the quality of a schedule. The choice of which criterion
to choose depends on the users view of the problem or the
system administrators point of view.

However, one could wish to take advantage of several
criteria in a single schedule. We present here such an anal-
ysis for the two most popular criteria (which are somehow
antagonistic). With the makespan and the sum of weighted
completion times, it is easy to find examples where there
is no schedule reaching the optimal value for both criteria.
We can try to study how far the solution of a schedule is
from the optimal one for each criterion. In this section, we
will present a specific family of scheduling algorithms for
independent on-line moldable jobs.

There exists an approach for obtaining a bi-criteria algo-
rithm starting from two algorithms for each criterion. It is
also possible to design an ad hoc bi-criterion algorithm just
by adapting an algorithmACmax

designed for the makespan
criterion [10]. This solution is better and is detailed below.

The main idea is to use algorithmACmax
(with perfor-

mance ratioρCmax
on the makespan) as a procedure to build

a schedule which has a performance guaranty on the sum
of the completion times. The makespan algorithmACmax

takes as input a set of (possibly weighted) tasks and a dead-
lined, and outputs a schedule of length at mostρCmax

d with

as many tasks as possible (or the maximum weight).
Running thisACmax

algorithm iteratively in batches of
doubling sizes (d, 2d, 4d, . . .) gives a schedule where the
total makespan is at most4ρCmax

C∗

max as the last batch
is smaller than2ρCmax

C∗

max. The performance ratio on
the sum of completion times is also4ρCmax

. The techni-
cal proofs are in the original article [10].

5. Integration into an actual environment

In this section, we discuss several directions for integrat-
ing the previous ideas in order to build an operational light
grid management system. A simulated implementation of a
variation of the bi-criteria algorithm has been realized, and
yields the encouraging results of fig. 2, where the simula-
tion assumed a cluster of 100 machines, parallel and non-
parallel jobs, and two criteriaCmax and

∑
ωiCi.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 200 400 600 800 1000

W
iC

i r
at

io

Number of tasks

Non Parallel
Parallel

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 200 400 600 800 1000

C
m

ax
 r

at
io

Number of tasks

Non Parallel
Parallel

Figure 2. Simulation results.

5

5.1 Single cluster issues

Rigid Jobs The scheduling algorithms presented in sec-
tion 4 are targeted formoldablejobs. Even though most
jobs are intrinsically moldable, some of them need to stay
rigid, or at least can not accept every allocation. The rea-
son can be a lack of time to re-code the program to make it
moldable, memory constraints which set a minimum num-
ber of processors, or the job can be a benchmarking job that
requires a preset number of processors. So that means we
actually have to deal with a mix of moldable and rigid jobs.

There are different possible ideas to solve this problem.
The first trivial idea is to separate rigid and moldable jobs
and schedule one category after the other. Another solution
is to calculate a-priori an allocation for the moldable jobs,
and then apply a rigid scheduling algorithm on the resulting
rigid jobs. The last solution is to modify the bi-criteria al-
gorithm in order to schedule each rigid job in the first batch
in which it fits. These ideas probably lead to an increased
performance ratio.

Reservations An important point for a management sys-
tem is the ability to perform reservations. This would allow
a user to ask for a given number of processors in a given
time window. Such a possibility is necessary for demon-
stration purposes, or in order to set up a wide-area experi-
ment with other computing centers. The scheduling algo-
rithm must then cope with this additional constraint, which
makes a certain number of nodes unavailable during a pe-
riod of time.

Including support for such reservations into a scheduling
algorithm is a difficult a problem. A batch algorithm could
try to ensure that batch boundaries match the beginning and
the end of the reservations, but that would likely be ineffi-
cient.

5.2 Dealing with several clusters

This section focuses on the additional problems raised
when trying to have several clusters operate together. We
will first present the light grid context we are interested on.

The CIMENT project The system we are working on is
a part of the CIMENT [5] project, in which the academic
computing resources of Grenoble are connected. This re-
sults in the realization of a light grid, containing quite het-
erogeneous machines, more than 500 in total (see fig. 3).
The goal of the project is to make different research commu-
nities (Numerical Physicists, Astrophysicists, Medical Re-
searchers, Computer Scientists, ...) share their computing
resources, leading to an overall better use of these resources.

Joining different communities raises several issues.
First, every community has its own behavior, either for

104 Bi−Itanium 2

Myrinet

48 Bi−P4 Xeon

Giga Eth Submission
queues

40 Bi−Athlon
Eth 100

Eth 100
24 Bi−Athlon

Figure 3. 4 largest clusters of the CIMENT
project.

historical reasons or for reasons linked to the type of re-
search the community performs. For example, the numer-
ical physicists have long (up to several weeks), sequential
jobs to perform, while the computer scientists’ jobs are
shorter, focusing mainly on debug. Scheduling jobs with
such a disparity is an issue in itself.

Furthermore, these disparities have implied differences
in scheduling choices. It is important to point out that each
community has habits about scheduling policy, manage-
ment system, submission rules, and so on. The light grid
management system should try not to disturb these habits
by a too large extent.

Another important point is to guarantee a kind of fair-
ness between the different communities. Each computing
resource was bought by its respective community because
they wanted to use that computing power, so we should
make sure that making it available to others does not make
them loose too much.

A majority of the jobs submitted in this context aremulti-
parametricjobs. Such a job consists of a large number (up
to several hundreds of thousands) of runs of the same pro-
gram, each having with different parameters. Each run takes
a relatively short time to complete, this time being often the
same for every run. This kind of jobs are related to the di-
visible tasks model (see section 2.1). For this kind of jobs,
the theory of asymptotic behavior shows that optimal solu-
tions can be computed in polynomial time. This allows the
use of these jobs in order to fill the holes in the Gantt chart
(using the same idea as conservative backfilling).

We propose two different ways of linking several clusters
together. The first one is the current system in use in Greno-
ble, and the second version is rather an attempt to address
the problem more globally.

6

Centralized In the first vision of this problem, each clus-
ter keeps its own submission system used only for jobs that
are to be processed locally. Additionally, there is a cen-
tralized server to which all grid jobs are submitted. In this
setting, grid jobs are only multi-parametric jobs, which the
centralized server submits on the local clusters in order to
fill the holes of their respective schedules. This is achieved
through the notion ofbest-effortjobs: the local scheduler
gives no warranty that the job will be finished. If a lo-
cally submitted job requires a processor currently in use by
a best-effort job, the latter will be killed. The central server
then has to submit it once again. Since there are a large
number of relatively small runs, the cost of killing one of
them is not too big. Furthermore, this ensures that local
users of the clusters will not be disturbed by grid jobs: they
have the same submission interface as before and cannot
have their job delayed by a grid job.

Decentralized In this vision, all jobs – grid and local
ones – are submitted to local scheduling systems. These
systems then have the possibility to exchange work in or-
der to balance the load. The protocol for exchanging work
still has to be defined, but it would have to take care of both
fairness and performance issues at the same time. There are
several directions to address this problem: graph coupling
which would aim at minimizing data transfers, an economi-
cal approach which would have each cluster try to optimize
its own jobs, consensus-driven algorithms, view it as a big
global optimization problem, ...

6. Conclusion

We presented in this paper our view of how to manage
a grid. We developed most the pieces of the puzzle (clas-
sical approach), we are now focusing on the hard problem
of integrating all parts together. Most interesting parts to
integrate are: fixed reservations, rigid tasks, and supportfor
light grids.

We do not believe that it is possible to formalize it as a
global combinatorial optimization problem, we focus on al-
ternative methods at the interface of existing local methods.

References

[1] F. Afrati, E. Bampis, A. V. Fishkin, K. Jansen, and
C. Kenyon. Scheduling to minimize the average completion
time of dedicated tasks.Lecture Notes in Computer Science,
vol. 1974, 2000.

[2] J. Błażewicz, K. Ecker, E. Pesch, G. Schmidt, and
J. Weglarz.Scheduling in Computer and Manufacturing Sys-
tems. Springer-Verlag, 1996.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing. In S. Goldwasser,

editor, Proceedings: 35th Annual Symposium on Founda-
tions of Computer Science, November 20–22, 1994, Santa
Fe, New Mexico, pages 356–368, 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA, 1994. IEEE Computer
Society Press.

[4] Y. Cheng and T. Robertazzi. Distributed computation fora
tree network with communication delays.IEEE Trans. on
Aerospace and Electronic Systems, 24(6):700–712, 1988.

[5] Ciment project. http://ciment.ujf-grenoble.fr.
[6] D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos,

K. Schauser, R. Subramonian, and T. von Eicken. LogP:
A practical model of parallel computation.Communications
of the ACM, 39(11):78–85, 1996.

[7] D. E. Culler, J. P. Singh, and A. Gupta.Parallel Com-
puter Architecture: A Hardware/Software Approach. Mor-
gan Kaufmann Publishers, inc., San Francisco, CA, 1999.

[8] P.-F. Dutot, G. Mounié, and D. Trystram.Handbook of com-
binatorics, chapter 26. CRC Press, to appear.

[9] A. Gerasoulis and T. Yang. PYRROS: static scheduling and
code generation for message passing multiprocessors. In
Proceedings of the 6th ACM International Conference on
Supercomputing, pages 428–437. ACM, July 1992.

[10] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein.
Scheduling to minimize average completion time: Off-line
and on-line approximation algorithms.Mathematics of Op-
erations Research, 22:513–544, 1997.

[11] D. Hochbaum and D. Shmoys. Using dual approximation al-
gorithms for scheduling problems: theoretical and practical
results.Journal of the ACM, 34:144–162, 1987.

[12] J. Hwang, Y. Chow, F. Anger, and C. Lee. Scheduling prece-
dence graphs in systems with interprocessor communication
times. SIAM Journal on Computing, 18(2):244–257, Apr.
1989.

[13] A. Lodi, S. Martello, and M. Monaci. Two-dimensional
packing problems: A survey.European Journal of Oper-
ational Research, 141(2):241–252, 2002.

[14] U. Schwiegelshohn, W. Ludwig, J. Wolf, J. Turek, and P. Yu.
Smart SMART bounds for weighted response time schedul-
ing. SIAM Journal on Computing, 28, 1998.

[15] J. Sgall. Chapter 9: On-line scheduling.Lecture Notes in
Computer Science, 1442:196–231, 1998.

[16] H. Shachnai and J. Turek. Multiresource malleable task
scheduling to minimize response time.Information Process-
ing Letters, 70:47–52, 1999.

[17] D. Shmoys, J. Wein, and D. Williamson. Scheduling parallel
machine on-line.SIAM Journal on Computing, 24(6):1313–
1331, 1995.

[18] D. Trystram and W. Zimmermann. On multi-broadcast and
scheduling receive-graphs under logp with long messages.
In S. Jaehnichen and X. Zhou, editors,The Fourth Inter-
national Workshop on Advanced Parallel Processing Tech-
nologies - APPT 01, pages 37–48, Ilmenau, Germany, Sept.
2001.

[19] M.-Y. Wu and D. Gajski. Hypertool: A programming aid for
message-passing systems.IEEE Transactions on Parallel
and Distributed Systems, 1(3):330–343, 1990.

7

