Digital sufficiency behaviors to deal with intermittent energy sources in data center GreenDays2024 @ Toulouse

Jolyne Gatt, Maël Madon, Georges Da Costa

March 27, 2024

Introduction: rebound effect

What is the average annual PUE for your largest data center? (n=669)

Global trends in digital and energy indicators, 2015-2022

	2015	2022	Change
Internet users	3 billion	5.3 billion	+78%
Internet traffic	0.6 ZB	4.4 ZB	+600%
Data centre workloads	180 million	800 million	+340%
Data centre energy use (excluding crypto)	200 TWh	240-340 TWh	+20-70%
Crypto mining energy use	4 TWh	100-150 TWh	+2300-3500%
Data transmission network energy use	220 TWh	260-360 TWh	+18-64%

Source: International Energy Agency

• Efficiency is not enough: sufficiency

Sufficiency policies (IPCC, 2022)

A set of measures and daily practices that **avoid demand** for energy, materials, land and water **while delivering human well-being** for all within planetary boundaries.

- What would "sufficiency" mean for data centers?
 - \rightarrow voluntary limitation, empower and involve the user

Data center model

Sufficiency behaviors

- job final state = $n \times see_you_later + b$
- $b \in \{ \text{ rigid, degrad (space), degrad (temp), renounce, reconfig } \}$

Renewable energy production

• Solar panels:

3-state energy model

- 3-color state for energy production:
 - green state: everything is fine (production $\geq 100\%$ max conso)
 - yellow state: some disturbance (production $\geq 50\%$ max conso)
 - red state: system critical (production < 50% max conso).

3-state energy model

- 3-color state for energy production:
 - green state: everything is fine (production $\geq 100\%$ max conso)
 - yellow state: some disturbance (production \geq 50% max conso)
 - red state: system critical (production < 50% max conso).

Energy-aware behaviors

Energy-aware behaviors

• choice of behavior at random depending on the state

Experimental setup

• Software: Batsim + Batmen

• IT workload: filtered version of MetaCentrum from Parallel Workload Archive

- June 1 to November 11, 2014 (4.5 months)
- 650000 jobs and 500 users

• Energy production data:

- 145 m² solar panels
- weather data Toulouse 2019 from Renewable Ninja (days aligned with IT)

• IT platform:

- 42 18-core machines
- Scheduler: bin-packing scheduler which shutdown machine when idle.

Experimental campaign

- $\bullet \ \alpha = {\rm probability} \ {\rm of} \ {\rm modifying} \ {\rm a} \ {\rm job} \ {\rm in} \ {\rm red} \ / \ {\rm yellow}$
- 6 scenari:
 - full rigid ($\alpha = 0$)
 - low effort ($\alpha = .25$)
 - medium effort ($\alpha = .5$)
 - big effort ($\alpha = .75$)
 - max effort ($\alpha = 1$)
 - full renounce/degrad/reconfig in red
- each scenario run 30 times to minimize the effect of randomness

Results

- How much does user effort impact energy consumption?
 - \rightarrow if 50% jobs modified in red/yellow (medium effort), underproduction reduced by 8%
 - \rightarrow if 100% jobs modified in red/yellow (max effort), underproduction reduced by 18%

- How much does user effort impact energy consumption?
 - \rightarrow if 50% jobs modified in red/yellow (medium effort), underproduction reduced by 8%
 - \rightarrow if 100% jobs modified in red/yellow (max effort), underproduction reduced by 18%
- Energy savings linear with effort

Results: ratio energy/effort

Results: ratio energy/effort

 \rightarrow marginal gains increase with α : "the more people who make an effort, the greater the impact of a user's additional effort"

ightarrow gains with yellow windows of the same scale than with red

• 3-state energy model and user behaviors to adapt job to energy consumption

- 3-state energy model and user behaviors to adapt job to energy consumption
- Possible improvements:
 - thresholds on instantaneous available energy
 - collaboration with the scheduler
 - more realistic replay method
 - social science studies (willingness to adopt behaviors, impact of eco-feedback)

- 3-state energy model and user behaviors to adapt job to energy consumption
- Possible improvements:
 - thresholds on instantaneous available energy
 - collaboration with the scheduler
 - more realistic replay method
 - social science studies (willingness to adopt behaviors, impact of eco-feedback)
- First step towards studying sufficiency and not efficiency

- 3-state energy model and user behaviors to adapt job to energy consumption
- Possible improvements:
 - thresholds on instantaneous available energy
 - collaboration with the scheduler
 - more realistic replay method
 - social science studies (willingness to adopt behaviors, impact of eco-feedback)
- First step towards studying sufficiency and not efficiency
- Simulation campaign reproducible

- 3-state energy model and user behaviors to adapt job to energy consumption
- Possible improvements:
 - thresholds on instantaneous available energy
 - collaboration with the scheduler
 - more realistic replay method
 - social science studies (willingness to adopt behaviors, impact of eco-feedback)
- First step towards studying sufficiency and not efficiency
- Simulation campaign reproducible
- Article in review:
 - J. Gatt, M. Madon, and G. Da Costa, "Digital sufficiency behaviors to deal with intermittent energy sources in data center."

- Come to my PhD defense: April 30, 14:00 (link to come) !!
- Do not hesitate to contact me :-)
 - www.irit.fr/~Mael.Madon
 - mael.madon@irit.fr