FLOC: Un Système de Mesure Énergétique pour les infrastructures d'analyse de Big Data

Humberto VALERA (Domolandes), **Philippe ROOSE (LIUPPA)**,

Frank RAVAT (IRIT)

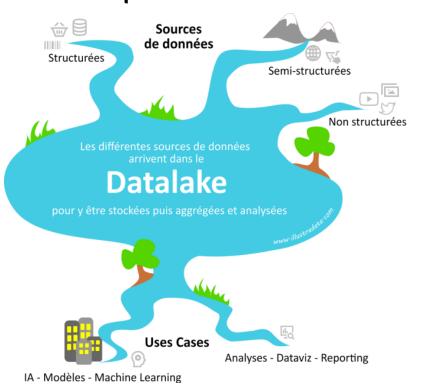
Jiefu SONG (IRIT)

Nathalie VALLES-PARLANGEAU (LIUPPA)

Contexte

UNIVERSITÉ TOULOUSE 1 CAPITOLE

- Chaire Industrielle « Bien vivre et bien vieillir »
 - LIUPPA: 3 E/C
 - o IRIT: 2 E/C
 - Domolandes: 1 Postdoc + 1 à venir
 - 3 PhD (dont 2 CIFRE)
 - Gestion et analyse écoresponsable de flux de données (CIFRE)
 - DataLake (plus) éco-responsable (CIFRE)
 - Trajectoires sémantiques du bien vivre et bien vieillir
 - + CC MACS; Région NA; + Entreprises (FMS, Digital Max, etc.)
 - Début 09/2022 (5 ans)



Constat

- Pour faire du « Bien vivre et bien vieillir », il faut
 - des données, beaucoup de données
 - Collecter/Ingérer, Stocker, Analyser
 - des Outils
 - Entrepôts de données Data Lakes
 - Pas très éco-responsable... c'est même un peu orthogonal!
 - Mais alors...Combien ça coute?

C'est quoi un lac de donnees?

Collecter/Ingérer; Stocker (dans format natif), Traiter de grandes quantités de données

- ⇒ Propose aussi:
 - ⇒ Catalogue de métadonnées (qualité des données)
 - ⇒ Politique et outils de gouvernance des données
 - ⇒ Ouverture à tous types d'utilisateurs
 - ⇒ Intégration de tous types de données
 - ⇒ Organisation conceptuelle, logique et physique

http://www.illustradata.com/data-lake-faire-simple/

Principaux objectifs d'amélioration des lacs de données aujourd'hui

Gestion des données, des métadonnées, de la qualité des données **sont prioritaires**.

Logique ELT (et pas ETL)

L'analyse de la consommation d'énergie de toutes ces opérations est souvent négligée.

Négligée ? Non... Même pas abordée !

Et que dire de l'implémentation + déploiements

⇒ Efforts fait sur l'efficacité ... oui, mais pas énergétique

Que faut-il?

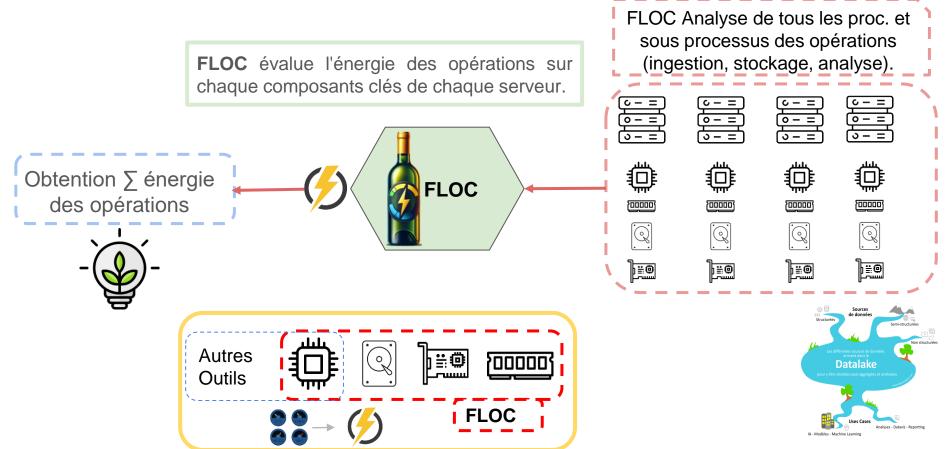
 \Rightarrow **Collecte** : NET, RAM, HD

 \Rightarrow **Stockage** : HD

 \Rightarrow **Analyse** : CPU, RAM, HD

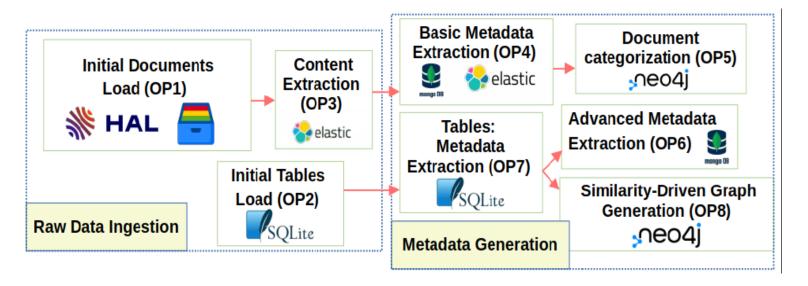
Enfin...pas tout à fait quand même!

- ⇒ Principaux outils existants tiennent compte du CPU, parfois un peu de la RAM (cache)... mais c'est tout.
- ⇒ II faut tenir compte du stockage (HD), du réseau (NET) et de l'usage de la RAM


Bref...Il nous faut du FLOC*!

* Du pif...mais pas que!

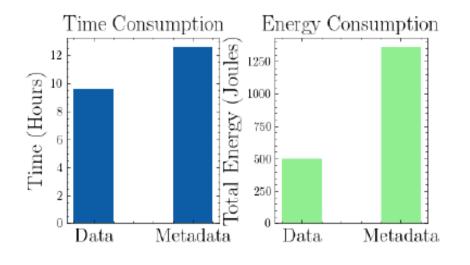
Genèse...

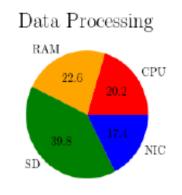

- Thèse de doctorat d'Humberto Valera
- PISCO An energy saving perspective for distributed environments:
 Deployment, scheduling and simulation with multidimensional entities for Software and Hardware
- Prototype:
 - Simulateur d'infra (Datacenter, PC, Smartphone, etc.) + Réseau
 - o Déploiments dynamiques de MS en vue de diminuer la conso énergétique globale
- Breveté + Plusieurs transferts de techno (universités, entreprises)

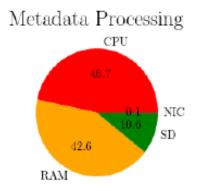
Donc, c'est quoi le premier pas vers un data lake? Mesurer avec FLOC!

Comment on a testé FLOC?

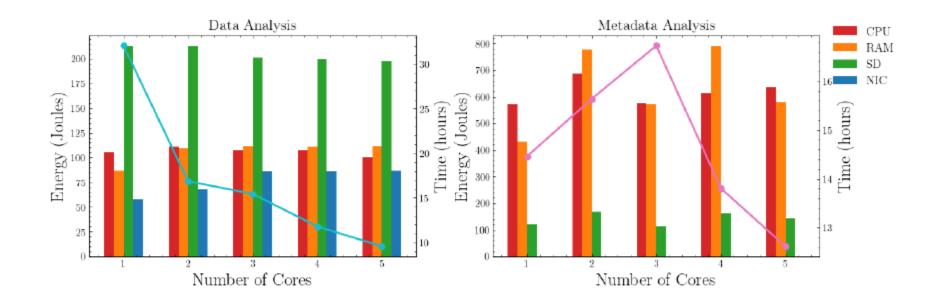
- Lac de données (AUDAL*)
- Benchmark (DLBench+)
- ... depuis **min.io** est sorti (Infra DataLake + Benchmark)
- Objectif: mesurer l'efficacité des opérations (Opx) sur les données et les métadonnées.


^{*} P.N. Sawadogo, J. Darmont, C. Nous, « *Joint Management and Analysis of Textual Documents and Tabular Data within the AUDAL Data Lake* », 25th European Conference on Advances in Databases and Information Systems (ADBIS 2021)


Comment on a testé FLOC?


Etape 1 : Analyse de la consommation énergétique de la partie ingestion de DLBench+ dans un serveur avec les configurations suivantes:

HARDWARE SETUP				
Hardware	Spec.	Power Params.		
CPU	Intel Core I7-850H 2.20GHZ (12 vcores)	TDP: 45W		
RAM	samsung M471A2K43CB1-CRC	Values in section XX		
NIC	Cannon Lake PCH CNVi WiFi	Dowload Power: 0.55W Upload Power: 1.029 W		
SD	Samsung MZVLW512HMJP	Write Power: 6.1 W Read Power: 5.1 W		
SOFTWARE SETUP				
Software	Spec.			
O.S.	Ubuntu Linux - Kernel V. 6.2.0-26			
Frameworks	∽eo4j 	mongoDB. SOLite		

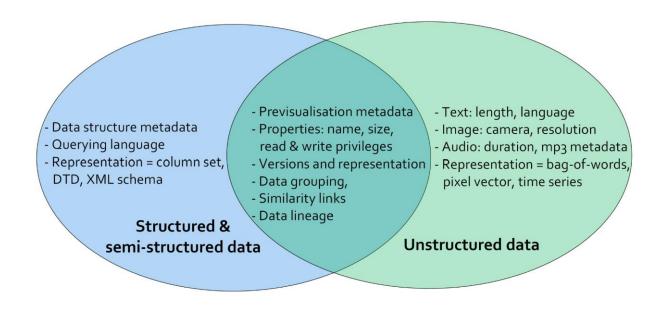

La consommation d'énergie: Data - Metadata

L'analyse du parallélisme

FLOC

FLOC est générique

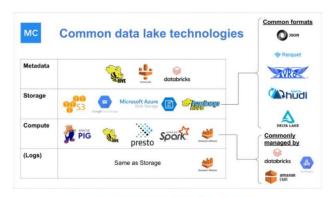
- o Créé pour...mais...pas que pour les Datalakes!
- Open-source : https://github.com/labDomolandes/FLOC
- Linux: Arch, Ubuntu (pour l'instant)
- Mesure: CPU, RAM, NET, HD (+GPU Nvidia à venir)
- o Par appli (+sous processus), par processus, par liste de processus
- Sur une durée en temps ou une durée d'exécution
- Fourni des résultats pour identifier quels composants consomment le plus d'énergie au fil du temps
- Focaliser sur les points de consommations => appliquer la loi de Pareto

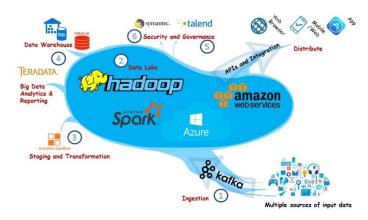

Meta-Data

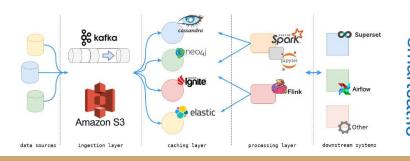
Métadonnées intra-objet	Exemples
Propriétés	Nom de fichier, taille, date de création
Prévisualisations/résumés	Schéma, nuage de mots
Versions et représentations	Transformation des données
Métadonnées sémantiques	Description, catégorie

Métadonnées inter-objets	Exemples
Regroupements	Thématiques, par langue
Similarités	Via des mesures de similarité
Parentés	Jointures, unions

Métadonnées globales	Exemples
Ressources sémantiques	Ontologies, taxonomies
Index	Index inversés
Journaux	Logs


Structure des données


Techno


7wdata.be

www.montecarlo.com

kms-world.com

