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Sturmian Words: 3 equivalent definitions

Consider an infinite word:

00101001001010010100100 . . .

minimal complexity : n + 1 factors of length n.
example: 4 factors of length 3: 001, 010, 100 and 101.
balanced : number of 1 only differ by 1 in factors of same length.

I length 3: 1 or 2.
I length 4: 1 or 2.
I . . .

mechanical:
I for all i : wi = bα(i + 1) + θc − bαi + θc

or for all i : wi = dα(i + 1) + θe − dαi + θe
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Construction using a billiard sequence

0

1

1

m = 

0

B. Gaujal, N. Gast (INRIA) Balanced Trees Aussois, 2008 3 / 28



Construction using a billiard sequence

θ

0

1

1

m = 

0

B. Gaujal, N. Gast (INRIA) Balanced Trees Aussois, 2008 3 / 28



Construction using a billiard sequence

θ

0

1

1

m = 

s
0

B. Gaujal, N. Gast (INRIA) Balanced Trees Aussois, 2008 3 / 28



Construction using a billiard sequence

0

1

1

m = 0

0

B. Gaujal, N. Gast (INRIA) Balanced Trees Aussois, 2008 3 / 28



Construction using a billiard sequence

0

1

1

m = 0 0

0

B. Gaujal, N. Gast (INRIA) Balanced Trees Aussois, 2008 3 / 28



Construction using a billiard sequence

0

1

1

m = 0 0 1

0

B. Gaujal, N. Gast (INRIA) Balanced Trees Aussois, 2008 3 / 28



Construction using a billiard sequence

0

1

1

m = 0 0 1 0

0

B. Gaujal, N. Gast (INRIA) Balanced Trees Aussois, 2008 3 / 28



Application to mapping

Consider a scheduling problem with two processors, one bag of tasks
with stationary release times and stationary service times,
independent of the release times.

A simple deterministic case is when the tasks are released at every
time unit and the service times are S1 and S2 on both processors
respectively (with 1/S1 + 1/S2 > 1 ).
The objective is to minimize the (expected) flow-time of the tasks.

The solution is given by a Sturmian sequence with density
α = f (S1,S2). (Altman, G., Hordijk, 2001).
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Computing the optimal density
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Application to Polling

Consider a scheduling problem with one processor, two bags of tasks
with stationary release times (common to the two bags of tasks) and
stationary service times.

A simple deterministic case is when the two bags release one task at
every time unit and the service times are S1 and S2 respectively (with
S1 + S2 < 1).
The objective is to minimize the (expected) flow-time of the tasks.

The solution is given by a Sturmian sequence with density
α = g(S1,S2). (G., Hordijk, Van der Laan, 2007).
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Several extensions

Sturmian sequences in dimension higher than 1 have been studied in
(Cassaigne, 2000, Fernique, 2007, Vuillon, 2005, Berthé 2005) on a
theoretical point of view.

As for scheduling problems, it is rather natural to extend this notion to
other dependency structures.

Here we consider the case where tasks are released according to a
partial order forming a binary tree. All inter-release times are i.i.d.
Two processors with different speeds can execute the tasks.

Question: how to allocate the tasks to the processors in order to
minimize the expected flow time?
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Problem

Can we extend balancedness to trees?
Sturmian
balanced
mechanical
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Previous Work

Definition (Berstel, Boasson, Carton and Fagnot, 2007)
A Sturmian tree is a tree with n + 1 subtrees of size n.

Simple example:

Example: The uniform tree corresponding to 0100101 . . .

B. Gaujal, N. Gast (INRIA) Balanced Trees Aussois, 2008 9 / 28



Properties

Link with language theory
Interesting examples:

Example: Dyck Trees

But
the balanced property is lost (important in optimization problems)
no simple equivalent characterization
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Infinite Labeled Non-Planar Trees

Here, trees are:

rooted

labeled by 0 or 1

infinite

Non-ordered
( 6= Original definition
for Sturmian Trees)

≡
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What are Subtrees and Density?

We define:
Factor of height n (subtree).
Factor of width k and height n

Density of a factor = average
number of 1.

If dn is the density of the factor
of height n:

I density = limn dn
I average density =

limn
1
n

∑n
k=1 dk
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First simple case

What is a non-planar Rational Tree?
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Rational Trees: Definition

We call P(n) = number of factors of size n.

Rational Trees: 3 equivalent definitions:

P(n) bounded.
∃n/P(n) = P(n + 1)

∃n/P(n) ≤ n.

A

B

C C

C

A B
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Rational Tree: average Density

Theorem 1.
A rational Tree has an average density α which is rational.

α is not necessarily a density but:

If the associated Markov chain is aperiodic then α is a density.
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Example of density

Periodic = average density daverage = 1
2
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Second case

Balanced and Mechanical Trees
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Balanced Trees and Strongly Balanced Trees

Balanced tree: number
of 1 in factors of height
n only differ by 1.

Strongly balanced tree:
same property with
factors of height n and
width k .

Example: Balanced tree not strongly balanced
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Balanced Trees and Strongly Balanced Trees

Balanced tree: number
of 1 in factors of height
n only differ by 1.

Strongly balanced tree:
same property with
factors of height n and
width k . Example: Strongly balanced tree
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Density of a Balanced Tree

Theorem 2.
A balanced tree has a density.

Sketch of the proof.
1 A tree of size n has a density αn or αn + 1

2n−1

2
If blue has density α2 and red
α2 + 1

3 then α2 ≤ α4 ≤ α2 + 1
3

3 Take limit
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Mechanical Trees

Subtree of size n has 2n − 1 nodes.
We want density α

Mechanical tree of density α:
For all node i , there is a phase
φi ∈ [0; 1) such that the number of 1
in a subtree of height n and root i is
b(2n − 1)α+ φic
(resp. for all i: d(2n − 1)α+ φie)

α = 0.3, φ = 0.55.
n (2n − 1)α+ φ

1 0.85
2 1.45
3 2.65
4 5.05
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Uniqueness of a mechanical Tree

Theorem 3.
There exists a unique mechanical tree if (α, φ0) is fixed.

φ0

φ1 φ2

⇒

φ0

α+φ
2 − bα+ φc α+φ+1

2 − bα+ φc

The phase of the root φ0 is unique for almost all α.
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Equivalences?

What are the equivalences between definitions?
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Equivalences between Definitions

Theorem 4: Mechanical ∼ strongly balanced.
A mechanical tree is strongly balanced
A strongly balanced tree with irrational density is mechanical
A strongly balanced tree with rational density is ultimately
mechanical.

Example: Ultimately mechanical tree
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Sketch of Proof

Mechanical implies strongly balanced.
The number of 1 in a factor of size n and width k is bounded by
b(2n − 2k )αc and b(2n − 2k )αc+ 1

Strongly Balanced implies mechanical.
∀τ ∈ [0; 1), if hn is the number of 1 in the subtree of size n, at least one
of these properties is true:

1 for all n: hn ≤ b(2n − 1)α+ τc,
2 for all n: hn ≥ b(2n − 1)α+ τc.

Choose φ the maximal τ such that 1 is true.
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Theorem 5.
An irrational mechanical tree is a Sturmian tree: it has n + 1
subtrees of height n.

Proof.
A subtree of size n depends only on its phase
In fact, it depends on ((21 − 1)α+ φ, . . . , (2n − 1)α+ φ) which
takes n + 1 values when φ ∈ [0; 1).
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Limit of the Equivalences

Balanced ; strongly
balanced (no matter
whether the density is
rational or not).

Sturmian ; balanced.

Irrational Balanced tree
; Sturmian. Example: Balanced tree not str.

bal.
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Limit of the Equivalences

Balanced ; strongly
balanced (no matter
whether the density is
rational or not).

Sturmian ; balanced.

Irrational Balanced tree
; Sturmian.

Example: Dyck Tree
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Limit of the Equivalences

Balanced ; strongly
balanced (no matter
whether the density is
rational or not).

Sturmian ; balanced.

Irrational Balanced tree
; Sturmian.

α+ ε, 0.6 α+ ε, 0.8

Example: Balanced tree non
Sturmian
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Optimization Issues
Let g : R+ → R+ be a convex function. For each node n and each
height k > 0, we define a cost C[n,k ]:

C[n,k ] = g(d(An,k )).

cost of order k of the tree is:

Ck = lim sup
`→∞

∑
n∈A0,`

C[n,k ]

2` − 1
.

If g has a minimum in α, Ck is minimized when the number of 1 in a
tree of height k is between bα(2k − 1)c and dα(2k − 1)e. That means
that a balanced tree will minimize any increasing function of all Ck .

This has potential applications in optimization problem in distributed
systems with a binary causal structure.
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Conclusion

Non-planar definition better?
Constructive definition
Strong inclusions
Good characterization

but:
What are exactly balanced trees?
How many balanced trees of size n?
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