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In the “old
days” it was:
each year
processors
would become
faster

Today the clock
speed is fixed or
getting slower

Things are still
doubling every
18 -24 months

Moore’s Law
reinterpretated.

= Number of cores
double every
18-24 monEhs
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500 Fastest Computers Over Time
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Accelerated Roadrunner

Hybrid Design (2 kinds of chips & 3 kinds of cores)

L In aggregate:
Connected Unit” cluster g 640 dual-core Opterons + 16,560 eDP Cell chips

144 quad-socket 76 TeraFlops Opteron + ~1.7 PetaFlops Cell
dual-core nodes

(138 w/ 4 dual-Cell blades) 172,800 cores
InfiniBand interconnects

N
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.

2nd stage InfiniBand interconnect
(1518 links to 8 switches)

RR-14 T ===

1152 AMD cores / cluster each core with a Cell processor



Performance Development & Projections
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ORNL/UTK Computer Power Cost Projections
2007-2012

Over the next 5
years ORNL/UTK
will deploy 2 large
Petascale systems
Using 4 MW today,

going to 15MW
before year end

By 2012 could be
using more than
50MW!!

Cost estimates
based on $0.07 per
KwH
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‘What’s Next?

Mixed Large

All Large Core and
Small Core
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Many Small Cores

Different Classes of Chips

Home
| Games / Graphics
ii Business
Scientific
Many Floating- + 3D Stacked
Point Cores Memory

The question is not whether this will
happen but whether we are ready




( - What Will a Petascale System Looks Like?

Possible Petascale System

1. # of cores per nodes 10 - 100 cores,
possibly hybrid

2. Performance per nodes 100 - 1,000 GFlop/s
3. Number of nodes 1,000 - 10,000 nodes
4. Latency inter-nodes 1 pysec

5. Bandwidth inter-nodes 10 GB/s

6. Memory per nodes 100 - 1,000 GB

* In general would like high...
2. performance per node 5. bandwidth inter-nodes 6. memory per nodes
« Algorithms for multicore and need for latency avoiding
algorithms

1. Num(lj)er of cores per node 2. performance per node 4. Latency inter-
nodes

* Issues involving fault tolerance

= Motivation in:
1. Number of cores per node 3. number of nodes
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< Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

e Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

e Numerical libraries for example will
change

= For example, both LAPACK and
ScalLAPACK will undergo major changes
to accommodate this
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< LAPACK and ScaLAPACK

ScalLAPACK

‘ parallelism ’ Global

Local

parallelism

PThreads

Mess Passing
(MPI', PVM, ...)

About 1 million lines of code
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“* Coding for an Abstract Multicore

Parallel software for multicores should have

two characteristics:

* Fine granularity:
* High level of parallelism is needed

« Cores will probably be associated with relatively small local
memories. This requires splitting an operation into tasks that
operate on small portions of data in order to reduce bus traffic
and improve data locality.

* Asynchronicity:
« As the degree of thread level parallelism grows and granularity
of the operations becomes smaller, the presence of

synchronization points in a parallel execution seriously affects
the efficiency of an algorithm.



¢. ManyCore - Parallelism for the

IcLOr"

Masses

 We are looking at the following
concepts in designing the next
numerical library implementation
* Dynamic Data Driven Execution
= Self Adapting
= Block Data Layout
= Mixed Precision in the Algorithm
= Exploit Hybrid Architectures
» Fault Tolerant Methods

12
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Steps in the LAPACK LU

DGETF2
(Factor a panel)

DLSWP
(Backward swap)

DLSWP
(Forward swap)

- DTRSM
(Triangular solve)

DGEMM |
(Matrix multiply)
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13



£ LU Timing Profile (4 core system

Threads — no lookahead
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£ e\daetive Lookahead - Dznamic
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Event Driven
Multithreading

Ideas not new.

Many papers use the
DAG approach.
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while (1)

fetch_task();
switch (task.type) {
case PANEL:
dgetf2 () ;
update_progress () ;
case COLUMN:

dlaswp () ;

dgemm () ;
update_progress () ;

case END:

for ()

dlaswp();
return;

Reorganizing
algorithms to use
this approach
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< Achieving Fine Granularity

Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks

of data.
Column-Major
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< Achieving Fine Granularity

Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks

of data.
Column-Major Blocked
N
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NN
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Cholesky —— 2—way Quad Clovertown
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e Cholesky on the CELL

Cholesky - CELL Processor

" Je 1 CELL (8 SPEs)

e 186 Gflop/s

e 91 % peak

e 97 % SGEMM peak
+ 2 CELLs (16 SPEs)

e 365 Gflop/s

e 89 % peak
i e 95 % SGEMM peak

4 CELL Cholesky — 16 cores

400 UT Tile Cholesky — one CELL (8SPEs) |~
s |JT Tile Cholesky —- two CELLs (16 SPEs}
LAPACK & IBM CELL BLAS
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Single precision results on the Cell
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““ |If We Had A Small Matrix Problem

 We would generate the DAG,
find the critical path and
execute it.

 DAG too large to generate ahead
of time
= Not explicitly generate
= Dynamically generate the DAG as
we g0
* Machines will have large
number of cores in a distributed
fashion

= Will have to engage in message
passing

= Distributed management

= Locally have a run time system
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< Each Node or Core Will Have

4 some dependencies
satisfied

BIN 1 ¢ waiting for all dependencies

0000 .... 000000000
0000:0000 00000:0000
00006 000 00000:0000

¢ all dependencies 3355 22230008 000 431101

satisfied Sisarsenssesanses SSEimsssutacses
¢ some data delivered m"m;ﬁio:o:sﬁ ses §§§§§§
00°00000-:00000000

BIN 2 4 waiting for all data 000 000000 ©

09°9000° 0
4 all data delivered
& waiting for execution

BIN 3

23
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DAG and Runtime

Bin 1: Waiting for dependencies to be satisfied
Bin 2: All dependencies satisfied, waiting for

data

Bin 3: dependencies and data available; ready to

execute

Execute task in Bin 3
= Task with all data and dependencies satisfied

= After execution report to children done and
dependencies satisfied and send data

= Steal task if none
Check Bin 1 to see if new dependencies
satisfied for tasks

= If new dependency satisfied update and post
receive of data

= If all dependencies and data available satisfied
move to Bin 2
Check Bin 2 to see data arrival
= Check for data arrival; If all data available
move to Bin 3

If needed place new task from my part of the
DAG into Bin 1

oS5%

1 Some dependencies
satisfied; waiting for all

,: e
g@ ¢ 6@

2 All dependencies
satisfied; waiting for data

%0

3 Waiting for execution

24
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< DAG and Scheduling

e DAG is - R?m time
dynamicall - Bin 1
y y e Exec a task that’s ready
generated and - Notify children of
'Impl'IC'It completion |
) e Send data to children
e Everything - If no work do work
designed for " St;a""g
. . ® PbIn
d]StnbUted e See if new dependences
memory systems are satisfied
. e |f so move task to Bin 3
e Runtime system . Bin 3
on each node or - See if new data has

25
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< Looking Into a Number of Things

 DAG must be dynamic

= Some of the algorithms are iterative i.e.
eigenvalue problem

 Parameterized Task Graph
= Cosnhard and Jeannot

e DAG has to be handled in a
distributed fashion

27
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< Some Questions

 What’s the best way to represent the DAG?

 What’s the best approach to dynamically generating
the DAG?

* What run time system should we use?

= We will probably build something that we would target to the
underlying system’s RTS.

* What about work stealing?
= Can we do better than nearest neighbor work stealing?

 What does the program look like?
= Experimented with Cilk, Charm++, UPC, Intel Threads

= | would like to reuse as much of the existing software as
possible

28
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