2nd ""Scheduling in Aussois'' Workshop

Aussois, French Alps. - May 18-21, 2008.

Scheduling for Numerical
Linear Algebra Library at Scale

Jack Dongarra
INNOVATIVE COMPUFrING LABORATORY

University of Tennessee
Oak Ridge National Laboratory
University of Manchester

5/19/2008 WINRIA L1 P =

(\

<~ Something’s H

10,000,000

appening Here...

From
Sutte

K. Olu

kotun,L
r, and B. Smi

L. Hammond

h

, H.

1,000,000

100,000

10,000

1,000

100

10

m Transistors (000)
+ Clock Speed (MHz)
& Power (W)

& Perf/Clock {ILF)

0
1970

1975

1980

1985

1995

2000

2005

2010

In the “old
days” it was:
each year
processors
would become
faster

Today the clock
speed is fixed or
getting slower

Things are still
doubling every
18 -24 months

Moore’s Law
reinterpretated.

= Number of cores
double every
18-24 monEhs

ICL

500 Fastest Computers Over Time

1 Pflop/s

100 Tlop/s

10 Tflop/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

100 Mflop/s

IBMBlueGene/L

NEC Earth Simulator

IBMASCI White

59.7 GF/s

Intel ASCIRed

Fujitsu 'NWT"

N=500

1994

1995

1996

1997

1998

1999

2001

2002

2003
2004
2005
2006
2007

6.96 PF/s

478 TF/s

5.9 TF/s

— >
Accelerated Roadrunner

Hybrid Design (2 kinds of chips & 3 kinds of cores)

L In aggregate:
Connected Unit” cluster g 640 dual-core Opterons + 16,560 eDP Cell chips

144 quad-socket 76 TeraFlops Opteron + ~1.7 PetaFlops Cell
dual-core nodes

(138 w/ 4 dual-Cell blades) 172,800 cores
InfiniBand interconnects

N

...

.

2nd stage InfiniBand interconnect
(1518 links to 8 switches)

RR-14 T ===

1152 AMD cores / cluster each core with a Cell processor

Performance Development & Projections

10 Eflop/s -
1 Eflop/s
100 Pflop/s -
10 Pflop/s -
1 Pflopls -
100 Tilop/s -
10 Tlop/s -
1 Tflopls -
100 Gflop/s
10 Gflop/s -
1 Gflopls -
100 Mflop/s -
10 Miop/s -
1 Mflop/s -

. §

1 Gflop/s

O(1) Thread

1 Tflop/s

O(103) Threads

1 Pflop/s

1 Eflop/s

O(10%)Threads O(109) Threads

ORNL/UTK Computer Power Cost Projections
2007-2012

Over the next 5
years ORNL/UTK
will deploy 2 large
Petascale systems
Using 4 MW today,

going to 15MW
before year end

By 2012 could be
using more than
50MW!!

Cost estimates
based on $0.07 per
KwH

60

50

40

MegaWatts
J
o

20

10

$32.8M

m Cooling

m Computers

$22.6M

$11.8M

$12.2M

$9.3M

2007

2008

2009

Includes both DOE and NSF systems.

2010

2011

2012

£

ICLt

‘What’s Next?

Mixed Large

All Large Core and
Small Core

o
T
iii

i
e .
™ -
e T
All Small Core S ——

R

Many Small Cores

Different Classes of Chips

Home
| Games / Graphics
ii Business
Scientific
Many Floating- + 3D Stacked
Point Cores Memory

The question is not whether this will
happen but whether we are ready

(- What Will a Petascale System Looks Like?

Possible Petascale System

1. # of cores per nodes 10 - 100 cores,
possibly hybrid

2. Performance per nodes 100 - 1,000 GFlop/s
3. Number of nodes 1,000 - 10,000 nodes
4. Latency inter-nodes 1 pysec

5. Bandwidth inter-nodes 10 GB/s

6. Memory per nodes 100 - 1,000 GB

* In general would like high...
2. performance per node 5. bandwidth inter-nodes 6. memory per nodes
« Algorithms for multicore and need for latency avoiding
algorithms

1. Num(lj)er of cores per node 2. performance per node 4. Latency inter-
nodes

* Issues involving fault tolerance

= Motivation in:
1. Number of cores per node 3. number of nodes

N
< Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

e Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

e Numerical libraries for example will
change

= For example, both LAPACK and
ScalLAPACK will undergo major changes
to accommodate this

N
< LAPACK and ScaLAPACK

ScalLAPACK

‘ parallelism ’ Global

Local

parallelism

PThreads

Mess Passing
(MPI', PVM, ...)

About 1 million lines of code

N
“* Coding for an Abstract Multicore

Parallel software for multicores should have

two characteristics:

* Fine granularity:
* High level of parallelism is needed

« Cores will probably be associated with relatively small local
memories. This requires splitting an operation into tasks that
operate on small portions of data in order to reduce bus traffic
and improve data locality.

* Asynchronicity:
« As the degree of thread level parallelism grows and granularity
of the operations becomes smaller, the presence of

synchronization points in a parallel execution seriously affects
the efficiency of an algorithm.

¢. ManyCore - Parallelism for the

IcLOr"

Masses

 We are looking at the following
concepts in designing the next
numerical library implementation
* Dynamic Data Driven Execution
= Self Adapting
= Block Data Layout
= Mixed Precision in the Algorithm
= Exploit Hybrid Architectures
» Fault Tolerant Methods

12

IcLOr"

Steps in the LAPACK LU

DGETF2
(Factor a panel)

DLSWP
(Backward swap)

DLSWP
(Forward swap)

- DTRSM
(Triangular solve)

DGEMM |
(Matrix multiply)

%

f

11
/\
T
AR

31

W

LAPACK

LAPACK

LAPACK

BLAS

BLAS

13

£ LU Timing Profile (4 core system

Threads — no lookahead
'“ IHEEE EREEEE BEEEE
EEERE

]

Time for each component

O

|

0./
ol
!

(D

O O

Bulk Sync Phases

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

D
—r

BEE
EE

o =

ltll
[

DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

EEOEO

&
<=
&
<&

—
—
—
—

<

£ e\daetive Lookahead - Dznamic

_
.

.
\,,

|

/

Event Driven
Multithreading

Ideas not new.

Many papers use the
DAG approach.

4

S

i

O O

A

while (1)

fetch_task();
switch (task.type) {
case PANEL:
dgetf2 () ;
update_progress () ;
case COLUMN:

dlaswp () ;

dgemm () ;
update_progress () ;

case END:

for ()

dlaswp();
return;

Reorganizing
algorithms to use
this approach

(\
< Achieving Fine Granularity

Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks

of data.
Column-Major

(\
< Achieving Fine Granularity

Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks

of data.
Column-Major Blocked
N
iR
NN
Wb

—1

»
T LU -- 8-way dual Opteron -- MKL-9.1
70— e — e e S =
0 TN —LAPACK |
‘ 2000 By —— MKL-9.1
P ‘ Tiled+asynch.

O i | — | | |
2000 4000 6000 8000 10000 12000
nroblem size

18

ICL

Cholesky —— 2—way Quad Clovertown

80| E

70} -

LAPACK
e A

—— Tiled+asynch.

]
6000 8000
problem size

]
10000

]
12000

19

80

70

60

QR —- 2-way Quad Clovertown

I B R SN
;
ashe

L - 3 [e A
:
ache

| R e

--________I--

LAPACK
I S SR MKL -9 1 _
m— Tiled+asynch.

2000 4000 6000 8000
problem size

10000 12000

e Cholesky on the CELL

Cholesky - CELL Processor

" Je 1 CELL (8 SPEs)

e 186 Gflop/s

e 91 % peak

e 97 % SGEMM peak
+ 2 CELLs (16 SPEs)

e 365 Gflop/s

e 89 % peak
i e 95 % SGEMM peak

4 CELL Cholesky — 16 cores

400 UT Tile Cholesky — one CELL (8SPEs) |~
s |JT Tile Cholesky —- two CELLs (16 SPEs}
LAPACK & IBM CELL BLAS

350

300

250
L))
—
o
O 200
L
O

150

100

50+
0 L ——————— I 1 1 L 1
0 500 1000 1500 2000 2500 3000 3500 4000

problem size

Single precision results on the Cell

&

W

““ |If We Had A Small Matrix Problem

 We would generate the DAG,
find the critical path and
execute it.

 DAG too large to generate ahead
of time
= Not explicitly generate
= Dynamically generate the DAG as
we g0
* Machines will have large
number of cores in a distributed
fashion

= Will have to engage in message
passing

= Distributed management

= Locally have a run time system

(\
< Each Node or Core Will Have

4 some dependencies
satisfied

BIN 1 ¢ waiting for all dependencies

0000 000000000
0000:0000 00000:0000
00006 000 00000:0000

¢ all dependencies 3355 22230008 000 431101

satisfied Sisarsenssesanses SSEimsssutacses
¢ some data delivered m"m;ﬁio:o:sﬁ ses §§§§§§
00°00000-:00000000

BIN 2 4 waiting for all data 000 000000 ©

09°9000° 0
4 all data delivered
& waiting for execution

BIN 3

23

&
»
ICL

DAG and Runtime

Bin 1: Waiting for dependencies to be satisfied
Bin 2: All dependencies satisfied, waiting for

data

Bin 3: dependencies and data available; ready to

execute

Execute task in Bin 3
= Task with all data and dependencies satisfied

= After execution report to children done and
dependencies satisfied and send data

= Steal task if none
Check Bin 1 to see if new dependencies
satisfied for tasks

= If new dependency satisfied update and post
receive of data

= If all dependencies and data available satisfied
move to Bin 2
Check Bin 2 to see data arrival
= Check for data arrival; If all data available
move to Bin 3

If needed place new task from my part of the
DAG into Bin 1

oS5%

1 Some dependencies
satisfied; waiting for all

,: e
g@ ¢ 6@

2 All dependencies
satisfied; waiting for data

%0

3 Waiting for execution

24

N
< DAG and Scheduling

e DAG is - R?m time
dynamicall - Bin 1
y y e Exec a task that’s ready
generated and - Notify children of
'Impl'IC'It completion |
) e Send data to children
e Everything - If no work do work
designed for " St;a""g
. . ® PbIn
d]StnbUted e See if new dependences
memory systems are satisfied
. e |f so move task to Bin 3
e Runtime system . Bin 3
on each node or - See if new data has

25

Co re arrived

N
< Looking Into a Number of Things

 DAG must be dynamic

= Some of the algorithms are iterative i.e.
eigenvalue problem

 Parameterized Task Graph
= Cosnhard and Jeannot

e DAG has to be handled in a
distributed fashion

27

N
< Some Questions

 What’s the best way to represent the DAG?

 What’s the best approach to dynamically generating
the DAG?

* What run time system should we use?

= We will probably build something that we would target to the
underlying system’s RTS.

* What about work stealing?
= Can we do better than nearest neighbor work stealing?

 What does the program look like?
= Experimented with Cilk, Charm++, UPC, Intel Threads

= | would like to reuse as much of the existing software as
possible

28

&

<= Collaborators / Support

Alfredo Buttari,
Julien Langou, Q— (@
U Colorado, Denver ' u‘lThE MathWorks

Julie Langou,
UTK

Wit Go og'[e‘"

France
Jakub Kurzak,
UTK dongarra s
[Recherche Google][i J'ai de la chanceg utils linguistiou
Stan Tomov’ Rechercher dans - @ Web) Pages francophones ':K: France
UTK

Programmes de publicité - Solutions d'entreprise - A propos de Google - Google.com in English

82008 Google

