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Abstract

We consider the execution of a complex application on a
heterogeneous "grid" computing platform. The complex ap-
plication consists of a suite of identical, independent prob-
lems to be solved. In turn, each problem consists of a set
of tasks. There are dependences (precedence constraints)
between these tasks. A typical example is the repeated exe-
cution of the same algorithm on several distinct data sam-
ples. We use a non-oriented graph to model the grid plat-
form, where resources have different speeds of computation
and communication. We show how to determine the op-
timal steady-state scheduling strategy for each processor
(the fraction of time spent computing and the fraction of
time spent communicating with each neighbor). This result
holds for a quite general framework, allowing for cycles
and multiple paths in the platform graph.

1 Introduction

In this paper, we consider the execution of a complex
application, on a heterogeneous "grid" computing platform.
The complex application consists of a suite of identical, in-
dependent problems to be solved. In turn, each problem
consists of a set of tasks. There are dependences (prece-
dence constraints) between these tasks. A typical example
is the repeated execution of the same algorithm on several
distinct data samples. Consider the simple fork graph de-
picted in Figure 1. This fork graph models the algorithm.
We borrow this example from Subhlok et al. [30]. There is
a main loop which is executed several times. Within each
loop iteration, there are four tasks to be performed on some
matrices. Each loop iteration is what we call a problem in-
stance. Each problem instance operates on different data,
but all instances share the same task graph, i.e. the fork
graph of Figure 1. For each node in the task graph, there are
as many task copies as there are iterations in the main loop.

T4

T2 T3

T1

Figure 1. A simple fork graph example.

We use another graph, the platform graph, for the grid
platform. Wemodel a collection of heterogeneous resources
and the communication links between them as the nodes
and edges of an undirected graph. See the example in Fig-
ure 2 with four processors and five communication links.
Each node is a computing resource (a processor, or a cluster,
or whatever) capable of computing and/or communicating
with its neighbors at (possibly) different rates. The under-
lying interconnection network may be very complex and,
in particular, may include multiple paths and cycles (just as
the Ethernet does).

P2 P4

P3P1

Figure 2. A simple platform example

We assume that one specific node, referred to as the mas-
ter, initially holds (or generates the data for) the input tasks
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of all problems. The question for the master is to decide
which tasks to execute itself, and how many tasks to for-
ward to each of its neighbors. Due to heterogeneity, the
neighbors may receive different amounts of work (maybe
none for some of them). Each neighbor faces in turn the
same dilemma: determine how many tasks to execute, and
how many to delegate to other processors. Note that the
master may well need to send tasks along multiple paths to
properly feed a very fast but remote computing resource.

Because the problems are independent, their execution
can be pipelined. At a given time-step, different proces-
sors may well compute different tasks belonging to differ-
ent problem instances. In the example, a given processor Pi
may well compute the tenth copy of task T1, corresponding
to problem number 10, while another processor Pj com-
putes the eight copy of task T3, which corresponds to prob-
lem number 8. However, because of the dependence con-
straints, note that Pj could not begin the execution of the
tenth copy of task T3 before that Pi has terminated the ex-
ecution of the tenth copy of task T1 and sent the required
data to Pj (if i 6= j).

In this paper, our objective is to determine the optimal
steady state scheduling policy for each processor, i.e. the
fraction of time spent computing, and the fraction of time
spent sending or receiving each type of tasks along each
communication link, so that the (averaged) overall number
of problems processed at each time-step is maximum.

This scheduling problem is motivated by problems that
are addressed by collaborative computing efforts such
as SETI@home [22], factoring large numbers [10], the
Mersenne prime search [20], and those distributed com-
puting problems organized by companies such as En-
tropia [11]. Several papers [26, 25, 13, 12, 34, 5, 4] have
recently revisited the master-slave paradigm for processor
clusters or grids, but all these papers only deal with inde-
pendent tasks. To the best of our knowledge, the algorithm
presented in this paper is the first that allows precedence
constraints in a heterogeneous framework. In other words,
this paper represents a first step towards extending all the
work on mixed task and data parallelism [30, 8, 21, 1, 31]
towards heterogeneous platforms.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce our base model of computation and
communication, and we formally state the steady-state
scheduling to be solved. In Section 3, we provide the op-
timal solution to this problem, using a linear programming
approach. We work out a full example in Section 4. We
briefly survey related work in Section 5. Finally, we give
some remarks and conclusions in Section 6.

2 The model

We start with a formal description of the applica-
tion/architecture framework. Next we state all the equations
that hold during steady-state operation.

2.1 Application/architecture framework

The application

� Let P(1);P(2); : : : ;P(n) be the n problems to solve,
where n is large

� Each problem P(m) corresponds to a copy G(m) =
(V (m); E(m)) of the same task graph (V;E). The
number jV j of nodes in V is the number of task types.
In the example of Figure 1, there are four task types,
denoted as T1, T2, T3 and T4.

� Overall, there are n:jV j tasks to process, since there
are n copies of each task type.

The architecture

� The target heterogeneous platform is represented by a
directed graph, the platform graph.

� There are p nodes P1; P2; : : : ; Pp that represent the
processors. In the example of Figure 2 there are four
processors, hence p = 4. See below for processor
speeds and execution times.

� Each edge represents a physical interconnection. Each
edge eij : Pi ! Pj is labeled by a value cij which
represents the time to transfer a message of unit length
between Pi and Pj , in either direction: we assume that
the link between Pi and Pj is bidirectional and sym-
metric. A variant would be to assume two unidirec-
tional links, one in each direction, with possibly differ-
ent label values. If there is no communication link be-
tween Pi and Pj we let cij = +1, so that cij < +1
means that Pi and Pj are neighbors in the communica-
tion graph. With this convention, we can assume that
the interconnection graph is (virtually) complete.

� We assume a full overlap, single-port operation mode,
where a processor node can simultaneously receive
data from one of its neighbor, perform some (indepen-
dent) computation, and send data to one of its neigh-
bor. At any given time-step, there are at most two com-
munications involving a given processor, one in emis-
sion and the other in reception. Other models can be
dealt with, see [4, 2].
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Execution times

� Processor Pi requires wi;k time units to process a task
of type Tk.

� Note that this framework is quite general, because each
processor has a different speed for each task type, and
these speeds are not related: they are inconsistent with
the terminology of [7]. Of course, we can always
simplify the model. For instance we can assume that
wi;k = wi � Æk, where wi is the inverse of the relative
speed of processor Pi, and Æk the weight of task Tk.

Communication times

� Each edge ek;l : Tk ! Tl in the task graph is weighted
by a communication cost datak;l that depends on the
tasks Tk and Tl. It corresponds to the amount of data
output by Tk and required as input to Tl.

� Recall that the time needed to transfer a unit amount of
data from processor Pi to processor Pj is ci;j . Thus, if

a task T
(m)
k is processed on Pi and task T

(m)
l is pro-

cessed on Pj , the time to transfer the data from Pi to
Pj is equal to datak;l � ci;j ; this holds for any edge
ek;l : Tk ! Tl in the task graph and for any pro-
cessor pair Pi and Pj . Again, once a communication
from Pi to Pj is initiated, Pi (resp. Pj) cannot han-
dle a new emission (resp. reception) during the next
datak;l � ci;j time units.

2.2 Steady-state equations

We begin with a few definitions:

� For each edge ek;l : Tk ! Tl in the task graph
and for each processor pair (Pi; Pj), we denote by
s(Pi ! Pj ; ek;l) the (average) fraction of time spent
each time-unit by Pi to send to Pj data involved by
the edge ek;l. Of course s(Pi ! Pj ; ek;l) is a non-
negative rational number. Think of an edge ek;l as
requiring a new file to be transferred from the out-
put of each task T (m)

k processed on Pi to the input of

each task T
(m)
l processed on Pj . Let the (fractional)

number of such files sent per time-unit be denoted as
sent(Pi ! Pj ; ek;l). We have the relation:

s(Pi ! Pj ; ek;l) = sent(Pi ! Pj ; ek;l)

� (datak;l � ci;j) (1)

which states that the fraction of time spent transfer-
ring such files is equal to the number of files times the
product of their size by the elemental transfer time of
the communication link.

� For each task type Tk 2 V and for each processor Pi,
we denote by �(Pi; Tk) the (average) fraction of time
spent each time-unit by Pi to process tasks of type Tk,
and by cons(Pi; Tk) the (fractional) number of tasks of
type Tk processed per time unit by processor Pi. We
have the relation

�(Pi; Tk) = cons(Pi; Tk)� wi;k (2)

We search for rational values of all the variables s(Pi !
Pj ; ek;l), sent(Pi ! Pj ; ek;l), �(Pi; Tk) and cons(Pi; Tk).
We formally state the first constraints to be fulfilled.

Activities during one time-unit All fractions of time
spent by a processor to do something (either comput-
ing or communicating) must belong to the interval
[0; 1], as they correspond to the average activity during
one time unit:

8Pi;8Tk 2 V; 0 � �(Pi; Tk) � 1 (3)

8Pi; Pj ;8ek;l 2 E; 0 � s(Pi ! Pj ; ek;l) � 1 (4)

One-port model for outgoing communications Because
send operations to the neighbors of Pi are assumed to
be sequential, we have the equation:

8Pi;
X

Pj2n(Pi)

X

ek;l2E

s(Pi ! Pj ; ek;l) � 1 (5)

where n(Pi) denotes the neighbors of Pi. Recall that
we can assume a complete graph owing to our conven-
tion with the ci;j .

One-port model for incoming communications Because
receive operations from the neighbors of Pi are
assumed to be sequential, we have the equation:

8Pi;
X

Pj2n(Pi)

X

ek;l2E

s(Pj ! Pi; ek;l) � 1 (6)

Note that s(Pj ! Pi; ek;l) is indeed equal to the frac-
tion of time spent by Pi to receive from Pj files of type
ek;l.

Full overlap because of the full overlap hypothesis, there
is no further constraint on �(Pi; Tk) except that

8Pi;
X

Tk2V

�(Pi; Tk) � 1 (7)

For technical reasons it is simpler to have a single input
task (a task without any predecessor) and a single output
task (a task without any successor) in the task graph. To this
purpose, we introduce two fictitious tasks, Tbegin which is
connected to every task with no predecessor in the graph,
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and Tend which is connected to every task with no succes-
sor in the graph. Because these tasks are fictitious, we let
wi;Begin = wi;End = 0 for each processor Pi. No task
of type Tbegin is consumed by any processor, and no file
of type ek;end is sent between any processor pair, for each
edge ek;end : Tk ! Tend . This is ensured by the following
equations:

8Pi; cons(Pi; Tbegin) = 0
8Pi;8Pj 2 n(Pi);8ek;end : Tk ! Tend ;(

sent(Pi ! Pj ; ek;end) = 0

sent(Pj ! Pi; ek;end) = 0

(8)

Note that we can let datak;end = +1 for each edge
ek;end : Tk ! Tend , but we need to add that s(Pi !
Pj ; ek;end ) = sent(Pi ! Pj ; ek;l) � (datak;l � ci;j) = 0
(in other words, 0�+1 = 0 in this equation).

2.3 Conservation laws

The last constraints deal with conservation laws: we
state them formally, then we work out an example to help
understand these constraints.

Consider a given processor Pi, and a given edge ek;l in
the task graph. During each time unit, Pi receives from its
neighbors a given number of files of type ek;l: Pi receives
exactly

P
Pj2n(Pi)

sent(Pj ! Pi; ek;l) such files. Proces-
sor Pi itself executes some tasks Tk, namely cons(Pi; Tk)
tasks Tk, thereby generating as many new files of type ek;l.

What does happen to these files? Some are sent to the
neighbors of Pi, and some are consumed by Pi to execute
tasks of type Tl. We derive the equation:

8Pi;8ek;l 2 E : Tk ! Tl;X
Pj2n(Pi)

sent(Pj ! Pi; ek;l) + cons(Pi; Tk) =

X
Pj2n(Pi)

sent(Pi ! Pj ; ek;l) + cons(Pi; Tl) (9)

It is important to understand that equation (9) really ap-
plies to the steady-state operation. At the beginning of the
operation of the platform, only input tasks are available to
be forwarded. Then some computations take place, and
tasks of other types are generated. At the end of this initial-
ization phase, we enter the steady-state: during each time-
period in steady-state, each processor can simultaneously
perform some computations, and send/receive some other
tasks. This is why equation (9) is sufficient, we do not have
to detail which operation is performed at which time-step.

In fact, equation (9) does not hold for the master pro-
cessor Pmaster, because we assume that it holds an infinite
number of tasks of type Tbegin. It must be replaced by the
following equation:

8ek;l 2 E : Tk ! Tl with k 6= begin;X
Pj2n(Pmaster)

sent(Pj ! Pmaster; ek;l) + cons(Pmaster; Tk) =

X
Pj2n(Pmaster)

sent(Pmaster ! Pj ; ek;l) + cons(Pmaster; Tl)

(10)

Note that dealing with several masters would be straightfor-
ward, by writing equation 10 for each of them.

3 Computing the optimal steady-state

The equations listed in the previous section constitute a
linear programming problem, whose objective function is
the total throughput, i.e. the number of tasks Tend con-
sumed within one time-unit:

pX
i=1

cons(Pi; Tend ) (11)

Here is a summary of the linear program:

STEADY-STATE SCHEDULING PROBLEM SSSP(G)
Maximize

TP =
Pp

i=1 cons(Pi; Tend);
subject to
8i;8k; 0 � �(Pi; Tk) � 1
8i; j;8ek;l 2 E; 0 � s(Pi ! Pj ; ek;l) � 1
8i; j;8ek;l 2 E; s(Pi ! Pj ; ek;l) = sent(Pi ! Pj ; ek;l)

� (datak;l � ci;j)
8i;8k; �(Pi; Tk) = cons(Pi; Tk)� wi;k

8i;
P

Pj2n(Pi)

P
ek;l2E

s(Pi ! Pj ; ek;l) � 1

8i;
P

Pj2n(Pi)

P
ek;l2E

s(Pj ! Pi; ek;l) � 1

8i;
P

Tk2V
�(Pi; Tk) � 1

8i; cons(Pi; Tbegin) = 0
8i; j;8ek;end sent(Pi ! Pj ; ek;end ) = 0
8i;8ek;l 2 E;P

Pj2n(Pi)
sent(Pj ! Pi; ek;l) + cons(Pi; Tk) =P

Pj2n(Pi)
sent(Pi ! Pj ; ek;l) + cons(Pi; Tl)

8ek;l 2 E with k 6= begin;P
Pj2n(Pmaster)

sent(Pj ! Pmaster; ek;l) + cons(Pmaster; Tk) =P
Pj2n(Pmaster)

sent(Pmaster ! Pj ; ek;l) + cons(Pmaster; Tl)

We can state the main result of this paper:

Theorem 1. The solution to the previous linear program-
ming problem provides the optimal solution to SSSP(G)

Because we have a linear programming problem in ra-
tional numbers, we obtain rational values for all variables
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in polynomial time (polynomial in the sum of the sizes of
the task graph and of the platform graph). When we have
the optimal solution, we take the least common multiple of
the denominators, and thus we derive an integer period for
the steady-state operation.

4 Working out an example

In this section we fully work out a numerical instance
of the application/architecture platform given in Figures 1
and 2. We start by extending the task graph with Tbegin and
Tend , as illustrated in Figure 3.

1

T4

T2 T3

T1

Tend

Tbegin

Figure 3. Extending the fork (task) graph with
Tbegin and Tend .

We assume that P1 is the master processor. We outline
the conservation equations which hold for P1:

sent(P2 ! P1; e1;2) + sent(P3 ! P1; e1;2)

+ cons(P1; T1) = cons(P1; T2)

+ sent(P1 ! P2; e1;2) + sent(P1 ! P3; e1;2)

sent(P2 ! P1; e1;3) + sent(P3 ! P1; e1;3)

+ cons(P1; T1) = cons(P1; T3)

+ sent(P1 ! P2; e1;3) + sent(P1 ! P3; e1;3)

sent(P2 ! P1; e2;4) + sent(P3 ! P1; e2;4)

+ cons(P1; T2) = cons(P1; T4)

+ sent(P1 ! P2; e2;4) + sent(P1 ! P3; e2;4)

sent(P2 ! P1; e3;4) + sent(P3 ! P1; e3;4)

+ cons(P1; T3) = cons(P1; T4)+

sent(P1 ! P2; e3;4) + sent(P1 ! P3; e3;4)

sent(P2 ! P1; e4;end) + sent(P3 ! P1; e4;end)

+ cons(P1; T4) = cons(P1; Tend)

+ sent(P1 ! P2; e4;end) + sent(P1 ! P3; e4;end)

Similarly, the following conservation equations hold for
P2:

sent(P1 ! P2; ebegin;1) + sent(P3 ! P2; ebegin;1)

+ sent(P4 ! P2; ebegin;1) + cons(P2; Tbegin) =

cons(P2; T1) + sent(P2 ! P1; ebegin;1)

+ sent(P2 ! P3; ebegin;1) + sent(P2 ! P4; ebegin;1)

sent(P1 ! P2; e1;2) + sent(P3 ! P2; e1;2)

+ sent(P4 ! P2; e1;2) + cons(P2; T1) =

cons(P2; T2) + sent(P2 ! P1; e1;2)

+ sent(P2 ! P3; e1;2) + sent(P2 ! P4; e1;2)

sent(P1 ! P2; e1;3) + sent(P3 ! P2; e1;3)

+ sent(P4 ! P2; e1;3) + cons(P2; T1) =

cons(P2; T3) + sent(P2 ! P1; e1;3)

+ sent(P2 ! P3; e1;3) + sent(P2 ! P4; e1;3)

sent(P1 ! P2; e2;4) + sent(P3 ! P2; e2;4)

+ sent(P4 ! P2; e2;4) + cons(P2; T2) =

cons(P2; T4) + sent(P2 ! P1; e2;4)

+ sent(P2 ! P3; e2;4) + sent(P2 ! P4; e2;4)

sent(P1 ! P2; e3;4) + sent(P3 ! P2; e3;4)

+ sent(P4 ! P2; e3;4) + cons(P2; T3) =

cons(P2; T4) + sent(P2 ! P1; e3;4)

+ sent(P2 ! P3; e3;4) + sent(P2 ! P4; e3;4)

sent(P1 ! P2; e4;end) + sent(P3 ! P2; e4;end)

+ sent(P4 ! P2; e4;end) + cons(P2; T4) =

cons(P2; Tend) + sent(P2 ! P1; e4;end)

+ sent(P2 ! P3; e4;end) + sent(P2 ! P4; e4;end )

Newt we add numerical values for the wi;k , the ci;j and
the datak;l: see Figure 4. The values of the datak;l are in-
dicated along the edges of the task graph. The values of the
ci;j are indicated along the edges of the platform graph. For
the sake of simplicity, we letwi;k = wi�Æk for all tasks Tk,
where the corresponding values forwi are indicated close to
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108

2

64

3 5

7

1

0

0

T4

T2 T3

Tbegin

T1

Tend

2

1

3

310

4

3 6

1
P3

P2 P4

P1

Figure 4. The application/architecture exam-
ple with numerical values.

the nodes of the platform graph and the corresponding val-
ues for Æk are indicated close to the nodes of the dependency
graph. The master processor P1 is circled in bold.

We feed the values ci;j , wi;k and datak;l into the lin-
ear program, and compute the solution using a tool like the
Maple simplex package [9]. We obtain the optimal through-
put TP = 7=64. This means that the whole platform is
equivalent to a single processor capable of processing 7
tasks every 64 seconds. The actual period is equal to 91840.
The resulting values for �(Pi; Tk) are gathered in Table 1,
and those for cons(Pi; Tk) are gathered in Table 2.

T1 T2 T3 T4
P1 7=64 13719=91840 7213=18368 4573=13120
P2 0 1851=11480 531=1148 617=1640
P3 0 33=82 0 49=82
P4 0 6=41 0 35=41

Table 1. Optimal solutions for �(Pi; Tk)

Tbegin T1 T2 T3 T4 Tend
P1 0 7=64 4573=91840 7213=91840 4573=91840 4573=91840
P2 0 0 617=34440 177=5740 617=34440 617=34440
P3 0 0 11=328 0 7=328 7=328
P4 0 0 1=123 0 5=246 5=246
Total 7=64

Table 2. Optimal solutions for cons(Pi; Tk)

The resulting values for sent(Pi ! Pj ; ek;l) can be

summarized in the following way:

� P1 ! P2 : a fraction 299=1435 of the time is spent
communicating (files for edge) e1;2 and a fraction
531=1435 of the time is spent communicating (files for
edge) e1;3;

� P1 ! P3 : 11=82 of the time is spent communicating
e1;3 and 165=574 of the time is spent communicating
e3;4;

� P2 ! P4 : 4=41 of the time is spent communicating
e1;2 and 445=1148 of the time is spent communicating
e3;4;

� P3 ! P4 : 12=41 of the time is spent communicating
e2;4 and 255=1148 of the time is spent communicating
e3;4;

� the link P2 $ P3 is not used.

The relatively weak throughput of our platform is to
be compared to the efficiency of the master processor P1,
which is the fastest one. If P1 had been used alone, it would
have been possible to process 4 tasks every 64 units of time.
Instead, we achieve 7 tasks every 64 units of time, despite
all the dependences, despite the communication overheads,
and despite the fact that the other processors are at least
three times slower than P1. This clearly demonstrates the
usefulness of deploying the target problem suite on the het-
erogeneous platform.

Also, it is worth pointing out that the solution is not triv-
ial, in that processors do not execute tasks of all types. In
the example, the processors are equally efficient on all task
types: wi;k = wi � Æk, hence only relative speeds count.
We could have expected each problem to be processed by
a single processor, that would execute all the tasks of the
problem, in order to avoid extra communications; in this
scenario, the only communications would correspond to the
input cost cbegin;1 = 2. However, the intuition is mislead-
ing. In the optimal steady state solution, some processors
do not process some task types at all (see P3 and P4), and
some task types are executed by one processor only (see
T1). This example demonstrates that in the optimal solution,
the processing of each problemmay well be distributed over
the whole platform. This illustrates the full potential of the
mixed data and task parallelism approach.

5 Related problems

We classify several related papers along the following
main lines:

Scheduling task graphs on heterogeneous platforms
Several heuristics have been introduced to schedule
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(acyclic) task graphs on different-speed processors,
see Maheswaran and Siegel [18], Oh and Ha [19],
Topcuoglu, Hariri and Wu [33], and Sih and Lee [27]
among others. Unfortunately, all these heuristics as-
sume no restriction on the communication resources,
which renders them somewhat unrealistic to model
real-life applications. Recent papers by Hollermann,
Hsu, Lopez and Vertanen [14], Hsu, Lee, Lopez and
Royce [15], and Sinnen and Sousa [29, 28], suggest
to take communication contention into account.
Among these extensions, scheduling heuristics under
the one-port model (see Johnsson and Ho [16] and
Krumme, Cybenko and Venkataraman [17]) are
considered in [3]: just as in this paper, each processor
can communicate with at most another processor at a
given time-step.

Master-slave on the computational grid Master-slave
scheduling on the grid can be based on a network-flow
approach (see Shao, Berman and Wolski [26] and
Shao [25]), or on an adaptive strategy (see Heymann,
Senar, Luque and Livny [13]). Note that the network-
flow approach of [26, 25] is possible only when
using a full multiple-port model, where the number
of simultaneous communications for a given node is
not bounded. Enabling frameworks to facilitate the
implementation of master-slave tasking are described
in Goux, Kulkarni, Linderoth and Yoder [12], and in
Weissman [34].

Mixed task and data parallelism There are a very large
number of papers dealing with mixed task and data
parallelism. We quote the work of Subhlok, Stich-
noth, O’Hallaron and Gross [30], Chakrabarti, Dem-
mel and Yelick [8], Ramaswamy, Sapatnekar and
Banerjee [21], Bal and M. Haines [1], and Subhlok
and Vondran [31], but this list is by no means meant
to be comprehensive. We point out, however, that (to
the best of our knowledge) none of the papers pub-
lished in this area is dealing with heterogeneous plat-
forms. In fact, Taura and Chien [32] do consider the
pipeline execution of task graphs onto heterogeneous
platforms, but they make the restrictive hypothesis that
all copies of a given task type must be executed on the
same processor.

Asymptotic results Bertsimas and Gamarnik [6] have used
a fluid relaxation technique (inspired by the work of
Sevast’janov [23, 24]) to derive asymptotically opti-
mal scheduling algorithms. They apply this technique
to the job shop scheduling problem and to the packet
routing problem. It would be very interesting to extend
these results to a heterogeneous framework.

6 Conclusion

In this paper, we have dealt with the implementation of
mixed task and data parallelism onto heterogeneous plat-
forms. We have shown how to determine the best steady-
state scheduling strategy for a general task graph and for
a general platform graph, using a linear programming ap-
proach.

This work can be extended in the following two direc-
tions:

� On the theoretical side, we could try to solve the prob-
lem of maximizing the number of tasks that can be ex-
ecuted within K time-steps, where K is a given time-
bound. This scheduling problem is more complicated
than the search for the best steady-state. Taking the
initialization phase into account renders the problem
quite challenging.

� On the practical side, we need to run actual experi-
ments rather than simulations. Indeed, it would be
interesting to capture actual architecture and applica-
tion parameters, and to compare heuristics on a real-
life problem suite.
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