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Abstract

This paper examines methods of approximating the optimum checkpoint restart strategy for minimizing application run time
on a system exhibiting Poisson single component failures. Two different models will be developed and compared. We will begin
with a simplified cost function that yields a first-order model. Then we will derive a more complete cost function and demonstrate
a perturbation solution that provides accurate high order approximations to the optimum checkpoint interval.
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. Introduction

In this study we will expand upon the work begun
y Young[1] and continued by Daly[2] in refining a
odel for quantifying the optimum restart interval that
inimizes the total application run time. Our goal is

o derive a result in terms of a simple analytic approx-
mation, easily accessible to the application user, with
ell-defined error bounds. Our strategy for optimizing

he compute interval between dumpsτ is to generate a
ost functionTw(τ), the total wall clock time to com-
lete the execution of an application, and to determine
unique minimum. Heuristically speaking, this cost

E-mail address: jtd@lanl.gov.

function will look like

Tw(τ) = solve time+ dump time+ rework time

+ restart time. (1)

Solve time is defined as time spent on actual c
putational cycles towards a final solution. For a
tem with no interrupts, the wall clock timeTw(τ) con-
sists entirely of solve time. Dump time is the overh
spent writing out the checkpoint files required to res
the application after an interrupt. Rework time is
amount of wall clock time lost when an applicat
is killed by an interrupt prior to completing a rest
dump. It is the amount of time elapsed since the
restart dump was successfully written. Restart tim
the time required before an application is able to res
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real computational work. It includes both the applica-
tion initialization and any system overhead associated
with restarting a calculation after an interrupt.

2. A first-order model

Young [1] proposedτopt =
√

2δM as a useful ap-
proximation of the optimum checkpoint interval, where
δ is the time to write a checkpoint file,M is the mean
time to interrupt (MTTI) for the system, andτopt is
the optimum compute time between writing checkpoint
files. We will start with a first-order derivation that pro-
duces a result similar to Young’s estimate before mov-
ing on to a more complete model. To help us consider
how the wall clock time relates to the solve time, con-
siderFig. 1, which provides a conceptual view of an
application run encountering a single interrupt.

2.1. The basic cost function

Referring toFig. 1, it becomes straightforward to
construct a basic cost function for total wall clock time.
Solve time will be defined asTs, which is equal toNτ,
whereN is the number of passed segments required

ump
me

, we
pts
tion

pute
An ap-
ime

will be relaxed when we develop our new cost function
in Section 3.) This implies that, over a large number of
failures, the amount of work completed in a segment
prior to the failure, equivalent to the amount of rework
for that segment, will beφ(τ + δ) times the segment
length. Finally, the restart time is simplyRn(τ), the
product of the amount of time required to restart and
the total number of failures. Combining all of these
terms, we construct our basic cost function.

Tw(τ) = Ts +
(

Ts

τ
− 1

)
δ

+ [τ + δ]φ(τ + δ)n(τ) + Rn(τ). (2)

2.2. Determining the number of interrupts

The simplest useful life distribution model for me-
chanical and electrical equipment for which the mean
time to interrupt is known to beM is described by an ex-
ponential model[3] whose probability density function
is

f (t) = 1

M
e−t/M. (3)

The probability of an interrupt occurring before time�t

in such a system is given by the cumulative distribution

ully

ed to

r of

ave
eg-
ew
to complete a calculation. Dump time will be (N −
1)δ, where one is subtracted because there is no d
on the last segment. For rework time we will assu
that, on average, interrupts occur some fractionφ(τ +
δ) of the way through a segment. (For the moment
will make the simplifying assumption that interru
never occur during problem restart. This assump

Fig. 1. The application time line broken into five passed com
segments and one failed compute segment designated by X.
plication run is complete when the accumulated computation tτ
of all of the passed segments is equal to the total solution timeTs for
the application.
function

P(t ≤ �t) =
∫ �t

0

1

M
e−t/M dt = 1 − e−�t/M. (4)

From this we see that the probability of successf
computing for a time�t without an interrupt will be

P(t > �t) = 1 − P(t ≤ �t) = e−�t/M. (5)

Therefore, the average number of attempts need
completeN calculations of duration�t is

number of attempts= N

P(t > �t)
= N e�t/M. (6)

Finally, the total number of interrupts is the numbe
attempts minus the number of successes.

n(�t) = N

P(t > �t)
− N = N(e�t/M − 1). (7)

Notice that this assumes that we will never h
more than a single failure in any given compute s
ment. This assumption will also be relaxed in our n
model.
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2.3. First-order assumptions

Assuming interrupts arrive according to a Poisson
process (see[4–6]), we want to linearize our cost func-
tion by making the simplifying assumption that the ex-
ponential term in Eq.(7) is small, which means that
τ + δ � M. In that case the exponential term behaves
basically linearly, and we can use Eq.(7) to approxi-
mate the expected number of failures as

n(τ) = Ts

τ
(e(τ+δ)/M − 1)

∼= Ts

τ

(
τ + δ

M

)
for

τ + δ

M
� 1. (8)

We still need to address the issue of the fraction of
rework. In the case that the compute segment is sig-
nificantly short compared to the MTTI for the sys-
tem, which we already assumed when we linearized
the exponential in Eq.(8), it turns out to be a good es-
timate that, on the average, interrupts will occur half-
way through the compute interval. (This can be neatly
demonstrated by taking theφ(τ) derived in Eq.(15)
and looking at the limit as�t/M goes to zero.) So we
will use the following as the fraction of rework in our
first-order model:

φ

S t
f

T

F
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i nd
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e r a
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a

2

er
m um

for values ofτ > 0. To do this we consider solutions
of the first derivative with respect toτ that are equal to
zero.

−δTs

τ2 + Ts

M

(
1

2
− δ2

2τ2 − δR

τ2

)

= − 1

τ2 (2δM + 2δR + δ2) + 1 = 0. (11)

Thus the minimization problem reduces to a simple
quadratic form. Assuming that the delta squared term is
negligible (the assumption we made when we expanded
the exponential failure term in Eq.(8)), we recover
Young’s original solution with an added term for the
restart overhead.

τopt =
√

2δ(M + R) for τ + δ � M. (12)

Notice that this solution is identical to Young’s[1]
except for the presence of the restart timeR un-
der the radical because Young did not include the
restart time in his derivation. (If we assume thatR =
0, then we recover Young’s solution exactly.) With
this as our starting point, we will now develop and
solve a new cost function that relaxes our first-order
assumptions.

out
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(τ) = 1
2. (9)

ubstituting the terms forn(τ) andφ(τ) into our cos
unction from Eq.(2) gives

w(τ) = Ts +
(

Ts

τ
− 1

)
δ

+
[

1
2(τ + δ) + R

] Ts

τ

(
τ + δ

M

)
. (10)

inally, from the results of Ling et al.[7], we know
hat, for a system with a Poisson failure distribut
n which no failures occur during checkpointing a
ecovery, the optimal checkpointing strategy will
quidistant. Therefore, our model will be solving fo
ingle value ofτopt. Aperiodic checkpointing strategi
re not considered.

.4. Solving the first-order model

Eq.(10)will be our cost function for the first-ord
odel. We are interested in finding a unique minim
3. Developing a new cost function

Let us reconsider two assumptions that turn
not to be very accurate for smallM. The first wa
made in Eq.(9), where the fraction of a segme
requiring rework was approximated as one-half
fact, that was a reasonable approximation for l
M, but asM approachesτ + δ, the fraction of re
work drops off precipitously because the expected p
of failure occurs before the end of theτ + δ length
segment. This means that the beginning of the
ment will see far more failures than the end of
segment.

The second problematic assumption associated
our first-order model is that the segment size for a
ure is always assumed to beτ + δ, which means a fai
ure never occurs in a segment of lengthR + τ + δ. If
we encounter a failure during a restart segment, the
contribution to wall clock time is the expected rew
time for theR + τ + δ segment.
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3.1. Fractional rework

To better grasp how these expected failures are be-
having, consider that the probability of a failure occur-
ring halfway through any arbitrary compute segment
is actually the sum of the probabilities of the failure
occurring halfway through the first segment plus the
probability of it occurring halfway through the second
interval and so forth. In other words, the probability
density function describing the probability of failure at
a timet in any arbitrary compute segment of length�t

will be

g(t) = 1

M
e−t/M + 1

M
e−(t+�t)/M

+ 1

M
e−(t+2�t)/M + · · · = e−t/M

M(1 − e−�t/M)
.

(13)

Therefore, the expected point of failure for a random
variableT in the range 0≤ T ≤ �t in terms of the
probability density functiong(t) will be given by

E(�t) =
∫ �t

0
tg(t) dt =

∫ �t

0 t e−t/M dt

M(1 − e−�t/M)

�t/M

on

by
mp
n be
e
the

There is no additional restart cost associated with
computing a segment of lengthR + τ + δ because its
restart is included as part of its rework. If we define
P(τ) as the probability of successfully completing an
interval of lengthR + τ + δ without an interrupt, then
the expected number of failures during segments begin-
ning with a restart will be the total number of interrupts
n(τ) times 1− P(τ) and the contribution of restart and
rework to the cost function can be reformulated as fol-
lows:

{E(τ + δ) + R}P(τ)n(τ)

+ E(R + τ + δ)[1 − P(τ)]n(τ). (17)

3.3. Multiple failures in a compute segment

In order to allow for the possibility of multiple
restarts in a single compute segment, we will redefine
n(τ). Instead of estimating the total number of failures
by dividing the number of compute segments by the
probability of a failure in each segment, we will now
use the total wall clock time divided by the mean time
between failures. After replacingn(τ) byTw(τ)/M, our
new model can be expressed as

M(T − δ + δT /τ)

er
odel

file
and
= M e − M − �t

e�t/M − 1
= M + �t

1 − e�t/M
.

(14)

So, the expected fraction of reworkφ(�t) over a time
interval�t will be E(�t), derived in Eq.(14), divided
by the length of the interval

φ(�t) = M

�t
+ 1

1 − e�t/M
. (15)

3.2. Failures during restart segments

Previously, in Eq.(2), we estimated the contributi
of restart and rework to our cost function as

1
2(τ + δ)n(τ) + Rn(τ). (16)

Based on the expected point of failure given
Eq. (14), the distinction between failed solve-du
segments and restart-solve-dump segments ca
incorporated into Eq.(16) by noticing that the tim
for rework and restart depends on the length of
interval between checkpoints.
Tw(τ) = s s

M − {E(τ + δ) + R}P(τ)

− E(R + τ + δ)[1 − P(τ)]

, (18)

where

E(τ + δ) = M + τ + δ

1 − e(τ+δ)/M ,

E(R + τ + δ) = M + R + τ + δ

1 − e(R+τ+δ)/M ,

P(τ) = e−(R+τ+δ)/M.

4. Solving the new model

Using Eq.(18) as our starting point, we discov
after some algebraic manipulation that the new m
reduces conveniently to

Tw(τ) = M eR/M(e(τ+δ)/M−1)

(
Ts

τ
− δ

τ + δ

)
. (19)

Now assume that the write time for a checkpoint
is much less than the total application solve time,



J.T. Daly / Future Generation Computer Systems 22 (2006) 303–312 307

Eq.(19)simplifies even further to

Tw(τ) = M eR/M(e(τ+δ)/M−1)
Ts

τ
for δ � Ts. (20)

To find the extrema of Eq.(20), we will consider values
of τ > 0 such that the derivative with respect toτ is
zero.

dTw(τ)

dτ
= (τ − M) e(τ+δ)/M + M

= 0 ⇒
(

1 − τ

M

)
e(τ+δ)/M = 1. (21)

For positive values ofτ, this will have only a single zero
because the second derivative increases monotonically.
Notice that, unlike in the first-order model,R has dis-
appeared from the solution for the optimum when we
provide for the possibility of failures during the restart
segments of the calculation.

4.1. An exact solution

Nondimensionalize Eq.(21) by choosing ξ =√
δ/2M andη = (τ + δ)/M, and

e−η + η = 2ξ2 + 1. (22)

We may express the solution to equations of this form
i

W
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L Eq.
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η

W ob-
l rms

of elementary functions, it is not particularly useful
as a simple engineering estimate unless we happen to
have some means handy for numerically approximat-
ing W(ξ).

4.2. Asymptotic analysis and a perturbation
solution

While it is true that the Lambert function has a cor-
responding Taylor series that converges quite nicely for
small values ofξ, it is still rather cumbersome to deal
with even the first few terms of the expansion when
attempting to do a quick and easy calculation. Besides,
the Taylor series is not at all a reliable approximation
asξ approaches one. On the other hand, perturbation
series often converge even when the small parameter
becomes large.

Remember thatξ and η are non-negative, which
means that 0< e−η ≤ 1. For ξ � 1, the linear term
η dominates the exponential term, which tends toward
zero. This leads to the result

lim
ξ→∞

η(ξ) = 2ξ2 + 1 ⇒ τopt ∼= M. (26)

Forξ � 1,η is no longer the dominant term, and e−η ∼=
2

-
tion,

wo

ntial
of
n terms of Lambert’s functionW(z), which satisfies

(z) eW(z) = z (23)

n the complex plane. If we restrict it to real valu
(z) = x ≥ −1/e and requireW(x) ≥ −1, then the
ambert function is single valued. We can solve
22)as follows:

−η + η = 2ξ2 + 1 ⇒ ee−η

eη

= e2ξ2+1 ⇒ −e−η e−e−η

= −e−2ξ2−1 ⇒ −e−η = W(−e−2ξ2−1).

(24)

n this case,x = −e−2ξ2−1. Sinceξ ≥ 0, we have tha
≥ −1/e, so we can write the solution simply in ter
f a single-valued Lambert function on the princi
ranch as

= 2ξ2 + 1 + W(−e−2ξ2−1). (25)

e now have an exact solution to our optima pr
em, but since that solution cannot be written in te
1 − η + η /2, which gives us

lim
ξ→0

η(ξ) = 2ξ ⇒ τopt ∼=
√

2δM − δ. (27)

Since we know the asymptotic limit asξ → 0, we will
pick ξ as our small parameter. Expand e−η as a Tay
lor series, and substitute a perturbation type solu
designated by a tilde, of the form

η̃(ξ) =
∞∑

n=0

anξ
n. (28)

From Eq.(27), we already know that ˜η = 2ξ to high-
est order inξ. Thus we have values for the first t
terms of the perturbation series:a0 = 0 anda1 = 2.
To get the remaining terms, expand the expone
from Eq.(22) by substituting ˜η and equating terms
like order.(

1 − η̃ + η̃2

2
+ η̃3

6
+ η̃4

24
+ η̃5

120

)
− η̃

= 1 + 2ξ2 +
(

2a2 − 4
3

)
ξ3
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+
(

2a3 − 2a2 + 1
2a2

2 + 2
3

)
ξ4

+
(

2a4 − 2a3 + a2a3 + 4
3a2 − a2

2 − 4
15

)
ξ5

+ O(ξ6) = 2ξ2 + 1. (29)

Now solve for the individual terms of the perturbation
series by setting each coefficient separately equal to
zero.

2a2 − 4
3 = 0, 2a3 − 2a2 + 1

2a2
2 + 2

3 = 0,

2a4 − 2a3 + a2a3 + 4
3a2 − a2

2 − 4
15 = 0. (30)

Thus, we get the next three terms of our perturbation
series solution ˜η as

a2 = 2
3, a3 = 2

9, a4 = 8
135. (31)

Based on the asymptotic analysis in Eqs.(26) and (27),
we have developed solutions for the asymptotic limits
as ξ becomes very small or large. In most cases, we
expect thatδ < M, which impliesξ < 1. Because of
this we are particularly interested in the accuracy of
our solution to Eq.(22) for smallξ, which is why we

developed the perturbation solution. This means that
we can express the approximate solution ˜η in terms of
two functions ofξ as

η̃ =

2ξ

(
1 + 1

3ξ + 1
9ξ2 + 4

135ξ
3 + · · ·

)
for ξ < ξ0,

2ξ2 + 1 for ξ ≥ ξ0.

(32)

All that remains is to pick the reference valueξ0 such
that the difference between the exact solution forη,
given by Eq.(25), and the approximate solution ˜η is as
small as possible over the entire range ofξ > 0.

5. Results

5.1. Determining the reference value from the
relative error

Since we are able to calculate the exact value of
the optimum checkpoint interval from Eq.(25), a rel-
ative error seems an intuitive metric for quantifying
the accuracy of our approximation. Let us consider the

s ˜repres alized
+ 1 is
Fig. 2. The relative error for four different perturbation solutionη,
dump timeξ. The relative error for the asymptotic solution ˜η = 2ξ2
ented by solid lines, plotted as a function of the nondimension
shown with a dashed line in each plot.
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relative error between the restart intervalτopt and our
approximatioñτopt, which we may rewrite in terms of
our nondimensional parametersξ andη as

ε = |τopt − τ̃opt|
τopt

= |η − η̃|
η − δ/M

= |η − η̃|
η − 2ξ2 . (33)

Using our results from Eq.(25), we can write the rela-
tive error as

ε = |2ξ2 + 1 + W(−e−2ξ2−1) − η̃|
1 + W(−e−2ξ2−1)

. (34)

Plotting the relative errorε as a function of the nondi-
mensionalized dump timeξ for various values of ˜ηgives
us the results shown inFig. 2. Notice that, as more terms
are added to the perturbation series, the error associ-
ated with the perturbation solution decreases and the
point of intersectionξ0 between the perturbation and

Table 1
The optimal reference valueξ0 associated with applying different
numbers of terms from the perturbation solution ˜η in Eq. (32) is
shown along with the maximum relative error inτopt corresponding
to that solution

Perturbation solution, ˜η Reference
value,ξ0

Maximum
relative error,ε

2ξ 0.5594 0.340
2ξ
(

1 + 1
3ξ
)

0.7751 0.143

2ξ
(

1 + 1
3ξ + 1

9ξ2
)

0.9861 0.059

2ξ
(

1 + 1
3ξ + 1

9ξ2 + 4
135ξ

3
)

1.2767 0.015

asymptotic errors moves to the right. The relative error
is minimized by choosingξ0 as the point of intersection
between the errors associated with the perturbation so-
lution and the asymptotic solution. Those minima are
given in tabular form inTable 1.

F
1

ig. 3. Comparison of model and simulation results forM = 24 h,Ts = 5
17 min.
00 h,R = 10 min, andδ = 5 min. The new model predictsτopt =
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These results give us a nice upper bound on the
maximum error in the restart interval for our pertur-
bation solution in Eq.(32). However, what we would
ultimately like to know is how to pick our reference
value so as to minimize the maximum relative error in
total wall clock time. To do this we will need to con-
siderE, the relative error in wall clock time, shown
below.

E = |Tw(τopt) − Tw(τ̃opt)|
Tw(τopt)

= |(eη − 1)/(η − 2ξ2) − (eη̃ − 1)/(η̃ − 2ξ2)|
(eη − 1)/(η − 2ξ2)

=
∣∣∣∣1 − η − 2ξ2

η̃ − 2ξ2

(
eη̃ − 1

eη − 1

)∣∣∣∣ . (35)

Using the solution from Eq.(25), we can write the rel-
ative error in wall clock time as

E =
∣∣∣∣∣1 − 1 + W(−e−2ξ2−1)

η̃ − 2ξ2

×
(

eη̃ − 1

e2ξ2+1+W(−e−2ξ2−1) − 1

)∣∣∣∣ . (36)

Using the same method as we did for Eq.(34), we can
once again tabulate a reference value that corresponds
to the maximum value ofE for various choices of ˜η.
We will designate these reference valuesξ1 in order to
distinguish them for the reference values corresponding
to the relative error inτopt. The results are shown in
Table 2.

Notice that as we continue to add terms to ˜η, not only
do the relative errorsε andE continue to decrease, but
the difference between their reference values|ξ1 − ξ0|
decreases as well. By the time we have approximated
η̃ to fourth order inξ, their respective reference values
agree to the first four decimal places.
Fig. 4. Comparison of model and simulation results forM = 6 h,Ts = 500 h
,R = 10 min, andδ = 5 min. The new model predictsτopt = 57 min.
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Fig. 5. Comparison of model and simulation results forM = 15 min,Ts = 500 h,R = 10 min, andδ = 5 min. The new model predictsτopt =
9.1 min.

5.2. Comparing models to simulation

In Figs. 3–5, we compare the wall clock times pre-
dicted by the first-order and new models to a simulated
application execution. New model predictions ofτopt
are based on the first three terms of the perturbations
solution.

Table 2
The optimal reference valueξ1 associated with applying different
numbers of terms from the perturbation solution ˜η in Eq. (32) is
shown along with the maximum relative error inTw(τopt) correspond-
ing to that solution

Perturbation solution, ˜η Reference
value,ξ1

Maximum
relative error,E

2ξ 0.5218 0.0442
2ξ
(

1 + 1
3ξ
)

0.7617 0.0090

2ξ
(

1 + 1
3ξ + 1

9ξ2
)

0.9811 0.0016

2ξ
(

1 + 1
3ξ + 1

9ξ2 + 4
135ξ

3
)

1.2767 0.0001

The simulation generates pseudo-random interrupts
in an exponential distribution and determines the ac-
cumulated wall time required to completeN compute
segments for the specified solve time. Each simulation
is run up to 10,000 times per case, with the charts de-
picting the median simulation result as a bold line and
the range in which the middle 95% of the data fell with
error bars. The only parameter changing between runs
is M.

Fig. 3 shows that forτ + δ � M, the first-order
model yields a good estimate of both total wall clock
time and the optimum checkpoint interval. As the
mean time to interrupt decreases,Fig. 4 demonstrates
that the first-order model is beginning to break down,
though it still seems to be giving a reasonable es-
timate of the optimum restart interval. Finally, we
see in Fig. 5 that, as the MTTI continues to de-
crease, the first-order model fails entirely while the
new model continues to provide nearly exact agreement
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with the median values predicted by the simula-
tion.

6. Conclusions

We found that even though the first-order model pre-
dicts a contribution of the restart timeR to the selection
of the optimum compute interval between checkpoints
τopt, the higher order model demonstrates that in fact
R has no contribution. Furthermore, we demonstrated
that an excellent approximation toτopt, one that guaran-
tees that the relative error in total problem-solution time
of Eq. (36) never exceeds 0.2% of the exact solution
time, is given by the first three terms of the perturbation
solution.

τ̃opt =




√
2δM

[
1 + 1

3

(
δ

2M

)1/2

+ 1

9

(
δ

2M

)]
− δ for δ<2M,

M for δ ≥2M.

(37)

Finally, we observe that the maximum relative error in
problem solution time associated with our lowest order
perturbation solution, which is equivalent to Young’s

n
cal
ll
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