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Abstract

This paper examines methods of approximating the optimum checkpoint restart strategy for minimizing application run time
on a system exhibiting Poisson single component failures. Two different models will be developed and compared. We will begin
with a simplified cost function that yields a first-order model. Then we will derive a more complete cost function and demonstrate
a perturbation solution that provides accurate high order approximations to the optimum checkpoint interval.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction function will look like
In this study we will expand upon the work begun Tu(7) = solve time+ dump time+ rework time
by Young[1] and continued by Dal§2] in refining a + restart time (1)
model for quantifying the optimum restart interval that o : )
minimizes the total application run time. Our goal is SOIve time is defined as time spent on actual com-
to derive a result in terms of a simple analytic approx- putatlc_)nal cycles towards a final solu_tlon. For a sys-
imation, easily accessible to the application user, with M with no interrupts, the wall clock timg, (z) con-
well-defined error bounds. Our strategy for optimizing SIStS entirely of solve time. Dump time is the overhead
the compute interval between dumpis to generate a spent writing out the checkpoint files required to restart
cost functionT;,(z), the total wall clock time to com- the application after an interrupt. Rework timg is 'the
plete the execution of an application, and to determine @mount of wall clock time lost when an application

a unique minimum. Heuristically speaking, this cost is killed by an interrupt prior to completing a restart
dump. It is the amount of time elapsed since the last

restart dump was successfully written. Restart time is
E-mail address: jtd@Ilanl.gov. the time required before an application is able to resume
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real computational work. It includes both the applica-
tion initialization and any system overhead associated
with restarting a calculation after an interrupt.

2. A first-order model

Young [1] proposedrop: = +/26M as a useful ap-
proximation of the optimum checkpointinterval, where
3 is the time to write a checkpoint fild/ is the mean
time to interrupt (MTTI) for the system, anthp: is
the optimum compute time between writing checkpoint
files. We will start with a first-order derivation that pro-
duces a result similar to Young’s estimate before mov-
ing on to a more complete model. To help us consider
how the wall clock time relates to the solve time, con-
siderFig. 1, which provides a conceptual view of an
application run encountering a single interrupt.

2.1. The basic cost function

Referring toFig. 1, it becomes straightforward to
construct a basic cost function for total wall clock time.
Solve time will be defined a&s, which is equal tavz,
whereN is the number of passed segments required
to complete a calculation. Dump time will b&/(—
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will be relaxed when we develop our new cost function
in Section 3) This implies that, over a large number of
failures, the amount of work completed in a segment
prior to the failure, equivalent to the amount of rework
for that segment, will be(r + §) times the segment
length. Finally, the restart time is simplgn(z), the
product of the amount of time required to restart and
the total number of failures. Combining all of these
terms, we construct our basic cost function.

T.
S—1>5
T

+ [+ 8]¢(z + 8)n(7) + Rn(7).

mm=n+<

(@)

2.2. Determining the number of interrupts

The simplest useful life distribution model for me-
chanical and electrical equipment for which the mean
time to interrupt is known to b# is described by an ex-
ponential modefl3] whose probability density function
is

0= ©

The probability of an interrupt occurring before time
in such a system is given by the cumulative distribution

eft/M

1), where one is subtracted because there is no dumpfunction

on the last segment. For rework time we will assume
that, on average, interrupts occur some fractdn+

3) of the way through a segment. (For the moment, we
will make the simplifying assumption that interrupts
never occur during problem restart. This assumption

t=0 T A7)

Fig. 1. The application time line broken into five passed compute
segments and one failed compute segment designated by X. An ap-
plication run is complete when the accumulated computation time

of all of the passed segments is equal to the total solutionZiyfar

the application.

At 1
P(t < Af) = / —eMgr=1—e2/M  (4)
o M

From this we see that the probability of successfully
computing for a timeAr without an interrupt will be

P(t> Af)=1— P(r < Af) = e 2/M, (5)

Therefore, the average number of attempts needed to
completeN calculations of duratiom¢ is

At/ M

number of attempts- =N¢

(6)

P(t > At)

Finally, the total number of interrupts is the number of
attempts minus the number of successes.

n(At) = — N = N(@E/M _ 1),

_ 7

P(t > At) 0
Notice that this assumes that we will never have
more than a single failure in any given compute seg-
ment. This assumption will also be relaxed in our new
model.



J.T. Daly / Future Generation Computer Systems 22 (2006) 303-312

2.3. First-order assumptions

Assuming interrupts arrive according to a Poisson
process (segl—6]), we want to linearize our cost func-
tion by making the simplifying assumption that the ex-
ponential term in Eq(7) is small, which means that
T+ 8 < M. In that case the exponential term behaves
basically linearly, and we can use H®@) to approxi-
mate the expected number of failures as

T+6
for —— 1.
v <

n() = (M )
T
~Ts

:(57)

still need to address the issue of the fraction of

(8)

We

rework. In the case that the compute segment is sig-

nificantly short compared to the MTTI for the sys-
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for values ofr > 0. To do this we consider solutions
of the first derivative with respect tothat are equal to

Zero.
8Ts Ts /(1 82 SR
2 M\2 212 {2

= —T—]'2(28M+25R+82)+1:0. (11)
Thus the minimization problem reduces to a simple
guadratic form. Assuming that the delta squared termiis
negligible (the assumption we made when we expanded
the exponential failure term in E@8)), we recover
Young's original solution with an added term for the
restart overhead.

Toptz \/ 28(M+R) fOf‘L’—l—3<< M.

(12)

tem, which we already assumed when we linearized Notice that this solution is identical to Young4]

the exponential in E(8), it turns out to be a good es-
timate that, on the average, interrupts will occur half-
way through the compute interval. (This can be neatly
demonstrated by taking thg(r) derived in Eq.(15)
and looking at the limit aa\r/ M goes to zero.) So we
will use the following as the fraction of rework in our
first-order model:

¢(7) = 3. 9)

Substituting the terms fot(z) and¢(r) into our cost
function from Eq.(2) gives

Tw(T) = Ts+ (TS - 1) 1)

T

Ts

T

+ [%(r +8)+ R} (10)

T+6
()
Finally, from the results of Ling et a[7], we know
that, for a system with a Poisson failure distribution
in which no failures occur during checkpointing and
recovery, the optimal checkpointing strategy will be
equidistant. Therefore, our model will be solving for a
single value ofopt. Aperiodic checkpointing strategies
are not considered.

2.4. Solving the first-order model

Eq. (10) will be our cost function for the first-order
model. We are interested in finding a unique minimum

except for the presence of the restart tirReun-
der the radical because Young did not include the
restart time in his derivation. (If we assume tiiat

0, then we recover Young's solution exactly.) With
this as our starting point, we will now develop and
solve a new cost function that relaxes our first-order
assumptions.

3. Developing a new cost function

Let us reconsider two assumptions that turn out
not to be very accurate for smalf. The first was
made in Eqg.(9), where the fraction of a segment
requiring rework was approximated as one-half. In
fact, that was a reasonable approximation for large
M, but asM approaches + 4§, the fraction of re-
work drops off precipitously because the expected point
of failure occurs before the end of the+ § length
segment. This means that the beginning of the seg-
ment will see far more failures than the end of the
segment.

The second problematic assumption associated with
our first-order model is that the segment size for a fail-
ure is always assumed to be- §, which means a fail-
ure never occurs in a segment of lendtht+ t + 4. If
we encounter afailure during arestart segment, then the
contribution to wall clock time is the expected rework
time for theR + t + § segment.
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There is no additional restart cost associated with
computing a segment of length+ = 4 § because its

To better grasp how these expected failures are be-restart is included as part of its rework. If we define
having, consider that the probability of a failure occur- P(r) as the probability of successfully completing an
ring halfway through any arbitrary compute segment interval of lengthR + 7 4 § without an interrupt, then
is actually the sum of the probabilities of the failure the expected number of failures during segments begin-
occurring halfway through the first segment plus the ning with a restart will be the total number of interrupts
probability of it occurring halfway through the second n(z) times 1— P(r) and the contribution of restart and

3.1. Fractional rework

interval and so forth. In other words, the probability
density function describing the probability of failure at
atimer in any arbitrary compute segment of length
will be

1, 1
_ —1/M —(t+An/M
H=—e¢ —€
8() M + M
e—t/M
T M(1— e A/M)’

(13)

4L eraanm

Therefore, the expected point of failure for a random
variableT in the range O< T < At in terms of the
probability density functiorz(¢) will be given by

At fAt ret/M gy
— _ Jo
E(Ar) = /0 () o = =

_ MMM —M—Ar
B ed/M 1 =M

At
1 eAi/M:
(14)

So, the expected fraction of rewogiAr) over a time
interval At will be E(At), derived in Eq(14), divided
by the length of the interval

1

e (15)

M

3.2. Failures during restart segments

Previously, in Eq(2), we estimated the contribution

of restart and rework to our cost function as
3(r + 8)n(z) + Rn(v). (16)

Based on the expected point of failure given by
Eq. (14), the distinction between failed solve-dump

segments and restart-solve-dump segments can bely,(t) = M ef/M (/M _7)

incorporated into Eq(16) by noticing that the time

rework to the cost function can be reformulated as fol-
lows:

{E(t 4 8) + R}P(1)n(7)

T ER+ 1+ 8)[1 - P@)]n(2). (17)

3.3. Multiple failures in a compute segment

In order to allow for the possibility of multiple
restarts in a single compute segment, we will redefine
n(t). Instead of estimating the total number of failures
by dividing the number of compute segments by the
probability of a failure in each segment, we will now
use the total wall clock time divided by the mean time
between failures. After replacingz) by T,,(t)/ M, our
new model can be expressed as

M(TS ) =+ STs/f)

Tu(®) = 37— {E(t+8)+ RIP(r) (18)
—E(R+ 1+ 8)[1— P(7)]
where
1)
E(‘L’ + 5) =M + ]__‘;(%W,
R+1t+6

E(R+T+5)=M+W,

P(l’) — ef(R+r+8)/M'

4. Solving the new model

Using Eq.(18) as our starting point, we discover
after some algebraic manipulation that the new model

reduces conveniently to
T 1)
<S - ) . (19)
T T+46

for rework and restart depends on the length of the Now assume that the write time for a checkpoint file

interval between checkpoints.

is much less than the total application solve time, and
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Eq. (19) simplifies even further to of elementary functions, it is not particularly useful
Ts as a simple engineering estimate unless we happen to
Tu(t) = M eR/M(+o)/ M—l)? foré < 7s. (20) have some means handy for numerically approximat-
ing W(&).

To find the extrema of E¢20), we will consider values

of T > 0 such that the derivative with respect#as . ) )
4.2. Asymptotic analysis and a perturbation

Zero. .
d7,(2) solution
V0 = (o - MMy . |
dr While it is true that the Lambert function has a cor-
— 0= (1 _ L) TH/M _ 1 (21) responding Taylor series that converges quite nicely for
small values oft, it is still rather cumbersome to deal

For positive values of, this will have only asingle zero ~ With even the first few terms of the expansion when
because the second derivative increases monotonicallyattempting to do a quick and easy calculation. Besides,
Notice that, unlike in the first-order modeéi,has dis-  the Taylor series is not at all a reliable approximation
appeared from the solution for the optimum when we aS§ approaches one. On the other hand, perturbation
provide for the possibility of failures during the restart  Series often converge even when the small parameter

segments of the calculation. becomes large. _ _
Remember that and n are non-negative, which
4.1. An exact solution means that 6< €77 < 1. For£ >» 1, the linear term
n dominates the exponential term, which tends toward
Nondimensionalize Eq(21) by choosing & = zero. This leads to the result
V8/2M andn = (t + 8)/M, and ,g"m n(E) = 262 + 12 topt = M. (26)
e 4+n=282+1 (22) °°

Foré « 1,nisnolongerthe dominantterm, ande=

We may express the solution to equations of this form . )
y exp U quat : 1— 5+ n?/2, which gives us

in terms of Lambert’s functiomV(z), which satisfies
W(2) V@ — z (23) ;ﬁno n() =2 = Topt = V26M — 4. 27)

in the complex plane. If we restrict it to real values gjnce we know the asymptotic limit §s— 0, we will
N(z) = x = —1/e and requireW(x) > —1, then the  pick ¢ as our small parameter. Expand’eas a Tay-
Lambert function is single valued. We can solve Eq. |or series, and substitute a perturbation type solution,
(22)as follows: designated by a tilde, of the form

e +n=26+1=>¢"¢

o0
-~ — n
_ e252+1 - _e" o€ (&) = nzzoans . (28)
o282 -0 _ —2£2-1 .
=€ = = W(-e ), From Eq.(27), we already know thag = 2¢ to high-
(24) est order ing. Thus we have values for the first two
_ ) _ terms of the perturbation serieg; = 0 anda; = 2.
In this casex = —e~%"~1. Sincet > 0, we have that  To get the remaining terms, expand the exponential

x > —1/e, so we can write the solution simply interms  from Eq.(22) by substituting;"and equating terms of
of a single-valued Lambert function on the principal like order.
branch as

2 PR i i
2 o -+ LTy 1)y
n= 262+ 1+ W(—e %), (25) "t ot e T 24T 120)

We now have an exact solution to our optima prob- ) 4\ .3
lem, but since that solution cannot be written in terms =142+ (202 - §> &
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developed the perturbation solution. This means that
we can express the approximate solution ferms of

+ (2a4 — 2a3 + agaz + Saz — d — %) £5 two functions of as

+ (203—2a2+ 1a3+ %) g

25(1+%€+%§2+1i35§3+-~-> for & < &,

+ 0% = 262 + 1. (29) =
2
Now solve for the individual terms of the perturbation % +1 for§ > &o.
series by setting each coefficient separately equal to (32)
zero.
All that remains is to pick the reference valgesuch
2ap — ‘—3‘ =0, 2a3 — 2ap + %ag + % =0, that the difference between the exact solution ifpr
4 > 4 given by Eq.(25), and the approximate solutigns as
2a4 — 2a3 + azaz + 3az —a; — 15 = 0. (30) small as possible over the entire range of 0.
Thus, we get the next three terms of our perturbation
series solutiom as 5. Results
a2=%, a3:%, a4:1%5. (32)

5.1. Determining the reference value from the

Based on the asymptotic analysis in E@&) and (27) relative error

we have developed solutions for the asymptotic limits

as& becomes very small or large. In most cases, we  Since we are able to calculate the exact value of
expect that < M, which impliesé < 1. Because of  the optimum checkpoint interval from E(25), a rel-
this we are particularly interested in the accuracy of ative error seems an intuitive metric for quantifying
our solution to Eq(22) for small&, which is why we the accuracy of our approximation. Let us consider the

1 1
0.1 0.1
~ 0.01
0.01 -
N
0.001 N 0.001
0.0001 A 0.0001
0 05 1 15 2
(1) n=2¢ (2)
1
0.1
0.1
0.01 0.001
0.001
0.00001
0.0001
0 05 1 15 2 0 05 i 15 2
~ ~ 1 1 4
@ =261+ 18 +1¢2) @ =26+ 18 +182+58°)

Fig. 2. The relative error for four different perturbation solutignsepresented by solid lines, plotted as a function of the nondimensionalized
dump timet. The relative error for the asymptotic solutigr="2¢2 + 1 is shown with a dashed line in each plot.
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relative error between the restart intervgy and our Table 1
approximation”ropt, which we may rewrite in terms of The optimal reference valug associated with applying different

. - numbers of terms from the perturbation solutipnn™Eg. (32) is
our nondimensional parametérandy as . € P : ttipin"Eq. (32)
shown along with the maximum relative errorigp corresponding

to that solution

e — | Topt — Toptl _ In — 7l _ In — 7l (33)

- - L og2° Perturbation solution; ~ Reference Maximum

Topt n—o/M n—2 value,& relative errorg
Using our results from Eq25), we can write the rela- 2 0.5594 0.340
tive error as 2 (1+ 3¢) 0.7751 0.143
1 1g2

282414 W(—e 21 _ 7| o 2% (1+ 36+ 3£2) 0.9861 0.059

&= 1+ W(—e 271y ' (34) 2% (14 36+ 3682+ 138°)  1.2767 0.015

Plotting the relative erros as a function of the nondi-

mensionalized dump tinggor various values of gives asymptotic errors moves to the right. The relative error
us the results shown Fig. 2 Notice that, as more terms IS minimized by choosing as the point of intersection
are added to the perturbation series, the error associ-Petween the errors associated with the perturbation so-
ated with the perturbation solution decreases and thelution and the asymptotic solution. Those minima are
point of intersectiorty between the perturbation and ~ given in tabular form irfable 1

650
6251 - = A - - First Order Model
= 3 - New Model
|4 Simulation
3
o
=
o 600 4
£
'_
X
[&]
o
&]
T 5751
=
o}
[0}
w
a
©
i
T 550
o
'_
525 1
500 -7
0 20 40 60 80 100 120 140 160 180 200 220

Compute Interval Between Dumps (minutes)

Fig. 3. Comparison of model and simulation results #6r= 24 h, Ts = 500 h, R = 10 min, and§ = 5min. The new model predictgp; =
117 min.
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These results give us a nice upper bound on the 1+ W(_e—zsz—l)
maximum error in the restart interval for our pertur- € =|1— 7 282
bation solution in Eq(32). However, what we would 1
ultimately like to know is how to pick our reference ( g —1 ) ‘

1

value so as to minimize the maximum relative error in (36)

total wall clock time. To do this we will need to con-
sider €, the relative error in wall clock time, shown  ysing the same method as we did for E8¢), we can

28241+ W(—e 271 _ 4

below. once again tabulate a reference value that corresponds
T T to the maximum value o€ for various choices of).”
¢ w(Topt) — T (Topy)| We will designate these reference valgeén order to
Ty (Topt) distinguish them for the reference values corresponding
(€ = 1)/ — 2£2) — (& — 1)/(5 — 29| to the relative error ingpt. The results are shown in
- (& - 1)/(n - 22) Tabe 2 -
i Notice thatas we continue to add termgtadt only
_|y_n- 282 (el —1 35 do the relative errors and€ continue to decrease, but
Tt r—22\en—1)| (35) the difference between their reference vallggs- &o|
decreases as well. By the time we have approximated
Using the solution from E(25), we can write the rel- 7 to fourth order irg, their respective reference values
ative error in wall clock time as agree to the first four decimal places.
650
625 |
- - 4\ - - First Order Model
- = 13 - New Model
g ] Simulation
=
‘6’ 600
£
}_
k4
3
5 4
= 575 -
= |
o
@
&
w
= 550 1
5
'_
525 A
500 ‘ T r T r T T T T T r
0 20 40 60 80 100 120 140 160 180 200 220

Compute Interval Between Dumps (minutes)

Fig. 4. Comparison of model and simulation resultsioe= 6 h, Ts = 500 h,R = 10 min, ands = 5 min. The new model predictgp = 57 min.
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2800

2600 -

2400 +

- = o - - First Order Model
= 13 - New Model

Total Elapsed Wall Clock Time (hours)

Simulation
2200 -
A-
2000 - A -
‘A
A
A-..
A
- SR CEREY.N
1800 ‘ ‘ ‘ ‘ . . ; . . . . ‘ ‘ . . . .
0 4 8 12 16 20

Compute Interval Between Dumps (minutes)

Fig. 5. Comparison of model and simulation results#e= 15 min, 7s = 500 h,R = 10 min, and$ = 5min. The new model predictgp: =
9.1 min.

5.2. Comparing models to simulation The simulation generates pseudo-random interrupts
in an exponential distribution and determines the ac-

_InFigs. 3-5we compare the wall clock times pre- o mylated wall time required to completecompute
dicted by the first-order and new models to a simulated gegments for the specified solve time. Each simulation

application execution. New model predictionsgt is run up to 10,000 times per case, with the charts de-
are b_ased on the first three terms of the perturbationspictmg the median simulation result as a bold line and
solution. the range in which the middle 95% of the data fell with
Table 2 error bars. The only parameter changing between runs
The optimal reference valug associated with applying different is M.
numbers of terms from the perturbation solutiprn™Eq. (32) is Fig. 3 shows that forr + § <« M, the first-order
shown along with the maximum relative erroffip(zopy) correspond- model yields a good estimate of both total wall clock
ing to that solution time and the optimum checkpoint interval. As the
Perturbation solutior; ~ Reference  Maximum mean time to interrupt decreasé$y. 4 demonstrates
value,& relative error& that the first-order model is beginning to break down,
2 0.5218 0.0442 though it still seems to be giving a reasonable es-
2 (1+ 3¢) 0.7617 0.0090 timate of the optimum restart interval. Finally, we
2t (1+ 3¢+ 3£2) 0.9811 0.0016 see inFig. 5 that, as the MTTI continues to de-
o (1+ PV %553) 12767 0.0001 crease, the first-order model fails entirely while the

new model continues to provide nearly exact agreement
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with the median values predicted by the simula- References
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