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Introduction

I Scheduling large applications on complex heterogeneous
platforms

I Stream of data to process: video or audio streams, on-the-fly
processing of experimental data, . . .

I Structured applications: repeatedly apply several filters to
each data set

I Several computing resources, of different kinds
I Heterogeneous communication network
I How to organize all processings?
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Introduction

I Makespan minimization is a difficult problem → relaxations

I Divisible Load scheduling:
I Presentation of the Divisible Load Theory
I Scheduling divisible loads on a processor chain

I Steady-state scheduling:
I

I Dynamic bag-of-tasks applications
I

I
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General presentation

T1

T2 T3

T4

I Structured application: directed acyclic graph
GA = (VA = {T1, . . . ,Tn},EA = (Fk,l)k,l)

I Many data sets to process
I latform, modeled by a graph

GP = (VP = {P1, · · · ,Pp},EP = (Pq → Pr ))
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Objective function

Makespan (maximum completion time)

I The most natural objective function
I Lot of work about its minimization, but difficult problem /
I But. . .

is the makespan relevant in our case?
I Not really:

I undefined for a continuous flow of data sets
I does not benefit from regular problem structure

Throughput
Average number of processed data sets per time unit

I Well-suited to continuous flows of data sets
I Based upon problem regularity
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Steady-state scheduling
I Focus on schedule’s core
I Neglect initiation and termination phases
I Adapted to throughput maximization

Periodic schedules

P3

P1

P2

Period τ

I Optimal for throughput → asymptotically optimal for
makespan

I Independent of data set count → compact description
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Allocation

Definition
An allocation of the application graph to the platform graph is a
function σ associating:

I to each task Ti : a processor σ(Ti) that processes all instances
of Ti assigned to the allocation

I to each file Fi ,j : a set of communication links σ(Fi ,j) that
transfers this file from processor σ(Ti) to processor σ(Tj)
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Different mapping strategies

A small example

P2
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P3
P4

P5

P6

P7

T2
F3,4F2,3F1,2

T4T3T1
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Simple solution, with a single allocation

A mono-allocation schedule

P5 P3P3 P1

T1

T4T2

T3

T2
F3,4

T1 T4
F1,2 F2,3

T3
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Multi-allocation steady-state scheduling

An optimal solution: multi-allocation steady-state scheduling
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Multi-allocation steady-state scheduling

An optimal solution: multi-allocation steady-state scheduling
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Mappings with replications

Round-robin distribution of replicated tasks
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Mappings with replications

Round-robin distribution of replicated tasks
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A short comparison of the three methods 1/3

Mono-allocation steady-state schedules
I Easy to implement ,
I Handle stateful nodes ,
I Smaller buffers ,
I Less efficient schedules (stronger constraints) /
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A short comparison of the three methods 2/3

General multi-allocation steady-state solution
I Optimal throughput ,
I Polynomial computation time in almost all cases ,
I Very long periods /
I Huge response time /
I Complex allocation schemes /
I Never fully implemented /

15/64



A short comparison of the three methods 3/3

Replication with Round-Round distribution
I Natural extension to a mono-allocation solution ,
I No buffer required to keep initial order of data sets ,
I Fully implemented solution (DataCutter) ,
I Simple control, with closed form to determine processors ,
I Less efficient schedules (stronger constraints) /
I May not fully exploit each resource /
I Hard to determine throughput //
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Communication model

I Trade-off between realism and tractability
I Many different models

I One-Port model:
I Strict One-Port: a processor can either compute or perform a

single communication
I Full-Duplex One-Port: a processor can either compute or

simultaneously send and receive data
I One-Port with overlap of computation by communications

I Bounded Multiport model: several concurrent
communications, respecting resource bandwidths

I Linear cost model: communication time proportional to data
size

17/64



Communication model

Which model to choose?
I Computing resources (single processors vs. multi-core

processors or dedicated co-processors, . . . )
I Network (homogeneous network vs. a server with large

bandwidth connected to many light clients)
I Applications and software resources (blocking communications

vs. multithreaded libraries)
I Previously studied models
I Algorithmic complexity! (non-trivial results with simpler

models vs. realism with complex models)
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Mono-allocation steady-state scheduling

Main idea
All instances of a task are processed by the same resource

I Less efficient schedules (stronger constraints) /
I A single allocation ,

I Bounded Multiport model
I Limited incoming bandwidth bwin

q
I Limited outgoing bandwidth bwout

q
I Limited bandwidth per link bwq,r

I Period τ , throughput ρ: ρ = 1/τ = critical resource cycle-time
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Complexity

Problem DAG-Single-Alloc
Given a directed acyclic application graph, a platform graph, and a
bound B, is there an allocation with throughput ρ ≥ B?

Theorem
DAG-Single-Alloc is NP-complete
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Variables and constraints due to the application

I αk
q = 1 if task Tk is processed on processor Pq, and αk

q = 0
otherwise

I Each task is processed exactly once:

∀Tk ,
∑

Pq α
k
q = 1

I βk,l
q,r = 1 if file Fk,l is transferred using path Pq ; Pr , and
βk,l

q,r = 0 otherwise

I A file transfer must originate from where the file was
produced:

βk,l
q,r ≤ αk

q
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Constraints on computations

I The processor computing a task must hold all necessary input
data, i.e., either it received or it computed all required input
data:

αk
r +

∑
Pq;Pr

βk,l
q,r ≥ αl

r

I The computing time of a processor is not larger that τ :∑
Tk

αk
q × wq,k ≤ τ
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Constraints on communications
I The amount of data carried by the link Pq → Pr is:

dq,r =
∑

Ps;Pt with
Pq→Pr∈Ps;Pt

∑
Fk,l

βk,l
s,t × datak,l

I The link bandwidth must not be exceeded:
dq,r

bwq,r
≤ τ

I The output bandwidth of a processor Pq must not be
exceeded: ∑

Pq→Pr∈EP

dq,r
bwout

q
≤ τ

I The input bandwidth of a processor Pq must not be exceeded:∑
Pq→Pr∈EP

dq,r

bwin
r
≤ τ
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Objective

Minimize the maximum time τ spent by all resources

Theorem
An optimal solution of the above linear program describes an
allocation with maximal throughput

Summary
I Solutions based on mixed-linear programs
I NP-complete problem /
I Need for clever heuristics ,
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Greedy mapping strategies

I Simple mapping:
I assign “largest” task to best processor
I continue with second “largest” task, assign it to the processor

that decreases the least the throughput
I . . .

I Refined greedy:
I take communication times into account when sorting tasks
I when mapping a task, select the processor such that the

maximum occupation time of all resources (processors and
links) is minimized
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Rounding the linear program

1. Solve the linear program over the rationals
2. Based on the rational solution, select an integer variable αk

i :

RLP-max:
I Select the αk

i with maximum value
I Set αk

i to 1

RLP-rand:
I Select a task Tk not yet mapped
I Randomly choose a processor Pi with probability αk

i
I Set αk

i to 1

3. Goto step 1 until all variables are set
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Delegating computations

I Start from solution where all tasks are processed by a single
processor

I Try to move a (connected) subset of tasks to another
processor to increase throughput

I Repeat this process until no more improvement is found

Several issues to overcome:
I Find interesting groups of tasks to move

I for all tasks, we test all possible immediate neighborhoods, and
then try to increase the group along chains

I Hard to find a good evaluation metric: some moves do not
directly decrease throughput, but are still interesting

I for a given mapping, we sort all resource occupation times by
lexicographical order, and use the ordered list instead of the
throughput in comparisons
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Neighborhood-centric strategy

I First, evaluate the cost of any task and its immediate
neighbors on an idle platform

I Cost of a task: maximum occupation time over all resources
I Consider each task Tk ordered by non-increasing cost:

I Evaluate the mapping of Tk and its neighbors on each
processor

I Definitely assign Tk to best processor

I Same evaluation metric as Delegate
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Performance evaluation – methodology

I Reference heuristics: HEFT, Data-Parallel, Clustering

I LP and MLP solved with Cplex 11

I Simulations done using SimGrid

I Platforms: actual Grids, from SimGrid repository
(only a subset of processors is available for computation)

I Applications: random task graphs + one real application
I “Small problems”: 8–12 tasks
I “Large problems”: up to 47 tasks (MLP not used)
I for each application, we compute a CCR =

communications
computations

I we try to cover a large CCR range
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Performance evaluation – results on small problems
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Summary

I Mono-allocation strategies are close to multi-allocation ones
I Outperform HEFT in most cases
I Optimal MLP solution restricted to small problems
I Efficient heuristics handle larger problems
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A short introduction to the Cell
I Joint work of Sony, Toshiba and IBM
I Non-standard architecture
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A theoretical vision of the Cell

EIBP0
PPE0

SPE4 SPE3

SPE0 SPE1 SPE7 SPE6

M
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R
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SPE2SPE5
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P7P8P2P1

P4P5P6

I One Power core (PPE) P0
standard processor, direct access to memory and L1/L2 cache
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A theoretical vision of the Cell
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256-kB Local Stores, dedicated asynchronous DMA engine
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A theoretical vision of the Cell

EIB

P6
SPE2

SPE6SPE7SPE1SPE0

SPE3SPE4

PPE0

SPE5
P3

P7P8P2P1

P4P5

P0

M
E

M
O

R
Y

I Element Interconnect Bus (EIB)
200 GB/s → no contention

35/64
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bandwidth bw = 25GB/s

35/64
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I Limited DMA stack:
I at most 16 simultaneous incoming communications for each SPE
I at most 8 simultaneous communications

between a SPE and the PPE

35/64



Application model

I Previously-used task graph model: GA = (VA,EA)

I Many data sets
I Some enhancements:

I readk : data to read before executing Tk
I writek : data to write after the execution of Tk
I peekk : number of next data sets to receive before executing Tk

I Two computations times for Tk : wPPE (Tk) and wSPE (Tk)
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Preprocessing of the schedule
I Objective: compute minimal buffer sizes
I min periodl = maxm∈precl(min periodm) + peekl + 2
I bufferi ,l = min periodl −min periodi

peekj

bufferj ,l

bufferi ,l =min periodl
−min periodi

bufferi ,j

peekl
min periodl = maxm∈precl(min periodm) + peekl + 2
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min periodj
Tj

Ti

Tl

Tk
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Objective

I Maximize throughput
I Obtain a periodic schedule
I Use a single allocation: code size is critical
I Simplification: all communications within a period are

simultaneous
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Constraints 1/2
On the application structure:

I Each task is mapped on a processor:

∀Tk
∑

i
αk

i = 1

I Given a dependence Tk → Tl , the processor computing Tl
must receive the corresponding file:

∀(k, l) ∈ E ,∀Pj ,
∑

i
βk,l

i ,j ≥ α
l
j

I Given a dependence Tk → Tl , only the processor computing
Tk can send the corresponding file:

∀(k, l) ∈ E , ∀Pi ,
∑

j
βk,l

i ,j ≤ α
k
i
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Constraints 2/2
I On a given processor, all tasks must be completed within τ :

∀Pi ,
∑

k
αk

i × ti(k) ≤ τ

I All incoming communications must be completed within τ :

∀Pj ,
1

bw
(∑

k
αk

j × readk +
∑
k,l

∑
i
βk,l

i ,j × datak,l
)
≤ τ

I All outgoing communications must be completed within τ :

∀Pi ,
1

bw
(∑

k
αk

i × writek +
∑
k,l

∑
i
βk,l

i ,j × datak,l
)
≤ τ

+ constraints on the number of incoming/outgoing
communications to respect DMA requirements

+ constraints on the available memory on SPE
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Optimal mapping

I Constraints form a linear program
I Binary variables: exponential solving time /
I Can we do better?

I NP-complete problem (reduction from 2-Partition) /
I Reasonable running times (small number of cores) ,
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Experiments

Hardware:
I Sony Playstation 3
I Single Cell processor
I Only 6 available SPEs
I 256-MB memory

Software:
I New dedicated scheduling framework
I Requires a mono-allocation schedule
I Vocoder application (141 tasks) and random graphs
I Linear programs solved by Cplex (using a 0.05-approximation)
I Greedy memory-aware heuristic as reference
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The Vocoder application

Vocoder

StepSource
work=21
I/O: 0->1

*** STATEFUL ***

IntToFloat
work=6

I/O: 1->1

Delay
work=215
I/O: 1->1

*** STATEFUL ***

DUPLICATE(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
work=null

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

WEIGHTED_ROUND_ROBIN(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
work=null

RectangularToPolar
work=9105
I/O: 30->30

WEIGHTED_ROUND_ROBIN(1,1)
work=null

DUPLICATE(1,1)
work=null

WEIGHTED_ROUND_ROBIN(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
work=null

WEIGHTED_ROUND_ROBIN(1,1)
work=null

PolarToRectangular
work=5060
I/O: 40->40

FIRSmoothingFilter
work=3300
I/O: 15->15

Identity
work=90

I/O: 15->15

WEIGHTED_ROUND_ROBIN(1,1)
work=null

Deconvolve
work=450

I/O: 30->30

WEIGHTED_ROUND_ROBIN(1,1)
work=null

Duplicator
work=195

I/O: 15->20

LinearInterpolator
work=2010
I/O: 15->60

*** PEEKS 1 AHEAD ***

WEIGHTED_ROUND_ROBIN(1,1)
work=null

Multiplier
work=220

I/O: 40->20

Decimator
work=320

I/O: 60->20

Identity
work=120

I/O: 20->20

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

WEIGHTED_ROUND_ROBIN(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
work=null

Duplicator
work=195

I/O: 15->20

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

WEIGHTED_ROUND_ROBIN(1,1)
work=null

WEIGHTED_ROUND_ROBIN(1,18,1)
work=null

FloatVoid
work=60

I/O: 20->0

WEIGHTED_ROUND_ROBIN(1,0)
work=null

InvDelay
work=9

I/O: 1->1
*** PEEKS 13 AHEAD ***

Identity
work=6

I/O: 1->1

Doubler
work=252

I/O: 18->18

Identity
work=6

I/O: 1->1

WEIGHTED_ROUND_ROBIN(1,18,1)
work=null

Pre_CollapsedDataParallel_1
work=207

I/O: 20->20

Adder
work=146
I/O: 20->2

Subtractor
work=14
I/O: 2->1

ConstMultiplier
work=8

I/O: 1->1

FloatToShort
work=12
I/O: 1->1

FileWriter
work=0

I/O: 1->0

43/64



Throughput variation according to the number of SPEs

Experimental LP
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Theoretical LP
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Time to reach steady-state

Theoretical

Experimental

350

450
Th

ro
ug

hp
ut

(d
at

a
se

ts
/

se
c)

40,00032,50027,50022,50017,50012,5007,5002,5000
Number of data sets

0

50

100

150

200

250

300

400

45/64



Summary

I Heterogeneity is difficult to handle
I Innovative processor, but with strong hardware constraints
I Optimal solution to steady-state mono-allocation scheduling

problem
I New framework dedicated to mono-allocation schedules
I Outperforms greedy memory-aware heuristic
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Outline

Introduction

Steady-state scheduling

Mono-allocation steady-state scheduling

Task graph scheduling on the Cell processor

Computing the throughput of replicated workflows

Conclusion
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Application and platform

I A linear workflow with many data sets
T2 T3 T4T1

F2 F3F1

I Fully connected platform
I Heterogeneous processors and communication links
I Mapping is given
I Objective: determine throughput

Communication models
I Strict One-Port
I Overlap One-Port
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Mapping
I A processor processes at most 1 task
I A task is mapped on possibly many processors
I Replication count of Ti : mi

I

P1

m4 = 1
m3 = 3

m1 = 1 m2 = 2

P3

P5 P7

P2

P6

P4

F2 F3

T2 T3

F1

T1 T4
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Mapping
I A processor processes at most 1 task
I A task is mapped on possibly many processors
I Replication count of Ti : mi
I Round-Robin distribution of each task

Input data Path in the system
1 P1 → P2 → P4 → P7
2 P1 → P3 → P5 → P7
3 P1 → P2 → P6 → P7
4 P1 → P3 → P4 → P7
5 P1 → P2 → P5 → P7
6 P1 → P3 → P6 → P7
7 P1 → P2 → P4 → P7
8 P1 → P3 → P5 → P7
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Mapping
I A processor processes at most 1 task
I A task is mapped on possibly many processors
I Replication count of Ti : mi
I Round-Robin distribution of each task

Theorem
Assume that stage Ti is mapped onto mi distinct processors. Then
the number of paths is equal to m = lcm (m1, . . . ,mn).
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Mapping
I A processor processes at most 1 task
I A task is mapped on possibly many processors
I Replication count of Ti : mi
I Critical cycle time = 215.8 Period = 230.7
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57

13
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P2

P6

m2 = 2m1 = 1
m3 = 3

m4 = 1

P3

F1 F3

T1 T4T2 T3

F2
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Short presentation of Timed Petri Nets (TPN)
I Some transitions

I Some places
I Connections between transitions and places. . . and between

places and transitions
I Some tokens allowing transitions to be fired
I Delay between the consumption of input tokens and the

creation of output tokens

50/64



Short presentation of Timed Petri Nets (TPN)
I Some transitions
I Some places

I Connections between transitions and places. . . and between
places and transitions

I Some tokens allowing transitions to be fired
I Delay between the consumption of input tokens and the

creation of output tokens

50/64



Short presentation of Timed Petri Nets (TPN)
I Some transitions
I Some places
I Connections between transitions and places. . .

and between
places and transitions

I Some tokens allowing transitions to be fired
I Delay between the consumption of input tokens and the

creation of output tokens

50/64



Short presentation of Timed Petri Nets (TPN)
I Some transitions
I Some places
I Connections between transitions and places. . . and between

places and transitions

I Some tokens allowing transitions to be fired
I Delay between the consumption of input tokens and the

creation of output tokens

50/64



Short presentation of Timed Petri Nets (TPN)
I Some transitions
I Some places
I Connections between transitions and places. . . and between

places and transitions
I Some tokens allowing transitions to be fired

I Delay between the consumption of input tokens and the
creation of output tokens

50/64



Short presentation of Timed Petri Nets (TPN)
I Some transitions
I Some places
I Connections between transitions and places. . . and between

places and transitions
I Some tokens allowing transitions to be fired

I Delay between the consumption of input tokens and the
creation of output tokens

50/64



Short presentation of Timed Petri Nets (TPN)
I Some transitions
I Some places
I Connections between transitions and places. . . and between

places and transitions
I Some tokens allowing transitions to be fired

I Delay between the consumption of input tokens and the
creation of output tokens

50/64



Short presentation of Timed Petri Nets (TPN)
I Some transitions
I Some places
I Connections between transitions and places. . . and between

places and transitions
I Some tokens allowing transitions to be fired

I Delay between the consumption of input tokens and the
creation of output tokens

50/64



Short presentation of Timed Petri Nets (TPN)
I Some transitions
I Some places
I Connections between transitions and places. . . and between

places and transitions
I Some tokens allowing transitions to be fired

I Delay between the consumption of input tokens and the
creation of output tokens

50/64



Short presentation of Timed Petri Nets (TPN)
I Some transitions
I Some places
I Connections between transitions and places. . . and between

places and transitions
I Some tokens allowing transitions to be fired
I Delay between the consumption of input tokens and the

creation of output tokens

τ2

τ3

τ4

τ1
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Timed Petri Net model

I Transitions: communications and computations
I Places: dependences between two successive operations
I Each path followed by the input data must be fully developed

in the TPN
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Overlap One-Port model
Computations

T4
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Overlap One-Port model
Computations and commmunications
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Overlap One-Port model
A communication cannot begin before the end of the computation
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Overlap One-Port model
A computation cannot begin before the end of the communication
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Overlap One-Port model
Dependences due to the round-robin distribution of computations
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Overlap One-Port model
Dependences due to the round-robin distribution of outgoing
communications
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Overlap One-Port model
Dependences due to the round-robin distribution of incoming
communications
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Overlap One-Port model
All dependences!
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Strict One-Port model
Dependences between communications and computations
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Strict One-Port model
Dependences due to the Strict One-Port model
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Strict One-Port model
All dependences!
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Computing the throughput

I Equivalent to find critical cycles
I C is a cycle of the TPN
I L(C) is its length (total time of transitions)
I t(C) is the total number of tokens in places traversed by C
I A critical cycle achieves the largest ratio maxCcycle

L(C)
t(C)

I This ratio gives the period τ of the system
I Can be computed in time O(n3m3) (m = lcm (m1, . . . ,mn))
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Computing the throughput

I TPN has an exponential size /
I Overlap One-Port model:

Theorem
Consider a pipeline of n tasks T1, . . . , Tn−1, such that stage Ti is
mapped onto mi distinct processors. Then the average throughput
of this system can be computed in time O

(∑n−1
i=1 (mimi+1)

3
)
.

I Strict One-Port model: problem remains open
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Key ideas of proof

I Split the TPN into 2n − 1 columns
I Computation columns: simple problem
I Communication columns: reduction to smaller TPNs with

critical cycles of same weight
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The case of a communication column

I Several connected components.
I Example of connected component:

9 columns

7 rows

55 patterns

m1 = 5,m2 = 21,m3 = 27,m4 = 11
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Summary

I Even when mapping is given, the throughput is hard to
determine

I Examples without critical resource for both communication
models

I Such examples remain seldom
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Conclusion

Presentation of three steady-state scheduling problems
I Mono-allocation task graph scheduling on large heterogeneous

platforms
I Task graph scheduling on the Cell processor
I Computing throughput of replicated workflows

Algorithms and methods:
I NP-completeness proofs
I Optimal algorithms, mainly using linear programs
I Heuristics
I Use of Timed Petri Nets to model a complete system

60/64



Conclusion

Presentation of three steady-state scheduling problems
I Mono-allocation task graph scheduling on large heterogeneous

platforms
I Task graph scheduling on the Cell processor
I Computing throughput of replicated workflows

Experimental study:
I Simple numerical simulations
I Simulation using the SimGrid framework
I Cell implementation
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Ongoing Work and Perspectives

Mono-allocation steady-state scheduling
I Introduce duplication to increase the throughput

Scheduling task graphs on Cell processors
I Write new models to capture multi-Cell platforms
I Clever heuristics to handle very large task graphs
I Need to correctly model new heterogeneous architectures

Computing throughput of replicated workflows
I Determine complexity of the Strict One-Port case
I Work with stochastic computation and communication times
I Efficient heuristics to find good mappings
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Publications
Journal and book chapter
Comments on “Design and performance evaluation of load distribution strategies for multiple loads
on heterogeneous linear daisy chain networks”
Matthieu Gallet, Yves Robert, Frédéric Vivien, Journal of Parallel and Distributed Computing, 68(2), 2008

Divisible Load Scheduling
Matthieu Gallet, Yves Robert, Frédéric Vivien, Introduction to Scheduling , 2009

International conferences
Scheduling communication requests traversing a switch: complexity and algorithms
Matthieu Gallet, Yves Robert, Frédéric Vivien, Proceedings of the 15th Euromicro Workshop on Parallel,
Distributed and Network-based Processing (PDP’2007) , 2007

Scheduling multiple divisible loads on a linear processor network
Matthieu Gallet, Yves Robert, Frédéric Vivien, Proceedings of the 13rd IEEE International Conference on Parallel
and Distributed Systems (ICPADS’07) , 2007

Efficient Scheduling of Task Graph Collections on Heterogeneous Resources
Matthieu Gallet, Loris Marchal, Frédéric Vivien, Proceedings of the 23rd International Parallel and Distributed
Processing Symposium (IPDPS’09) , 2009

Allocating Series of Workflows on Computing Grids
Matthieu Gallet, Loris Marchal, Frédéric Vivien, Proceedings of the 14th IEEE International Conference on Parallel
and Distributed Systems (ICPADS’08) , 2008

Computing the throughput of replicated workflows on heterogeneous platforms
Anne Benoit, Matthieu Gallet, Bruno Gaujal, Yves Robert, Proceedings of the 38th International Conference on
Parallel Processing (ICPP’09) , 2009
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Performance evaluation – running times

Average running times in seconds to schedule 1000 data sets:

small task graphs large task graphs
HEFT ∗ 14.30 83.36

MLP 49.45 n/a
Delegate 16.74 40.49

Simple-Greedy 0.11 0.61
Refined-Greedy 0.12 0.81

RLP-max 166.38 1301.80
RLP-rand 16.78 812.30

∗: HEFT running time grows with the number of data sets
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Difference between experimental and theoretical values

Algorithm Average error Standard deviation
MLP 3% 3%

Simple-Greedy 8% 11%
Refined-Greedy 5% 6%

RLP-max 8% 12%
RLP-rand 16% 28%
Delegate 2% 2%

Neighborhood 6% 12%
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