
How should you Structure your Hierarchical
Scheduler?

Pushpinder Kaur Chouhan, Holly Dail,
Eddy Caron, and Frédéric Vivien

HPDC - The 15th IEEE International Symposium on High
Performance Distributed Computing

What is Deployment

A deployment is the mapping of a common platform and
middleware across many resources.

Software deployment maps and distributes a collection of
software components on a set of resources. Software
deployment includes activities such as releasing, configuring,
installing, updating, adapting, de-installing, and even
de-releasing a software system.

System deployment involves two steps, physical and logical. In
physical deployment all hardware is assembled (network, CPU,
power supply etc), whereas logical deployment is organizing
and naming whole cluster nodes as master, slave, etc.

Problem Statement

How to carry out an adapted deployment of middleware
services on a cluster with hundreds of nodes?

Which resources should be used?

How many resources should be used?

Should the fastest and best-connected resource be used for
middleware or as a computational resource?

3−agent distributed
scheduler

36,307
requests

requests

scheduler

22,867

centralized

Time (seconds)
0 200 400 600 800 1000 1200 1400 1600

0

5000

10000

12000

20000

25000

30000

35000

40000

C
om

pl
et

ed
 r

eq
ue

st
s

Objective

Find an optimal deployment of agents and servers onto a set of
resources.

optimal deployment is the deployment that provides the
maximum throughput.

ρ is the throughput of the platform calculated as the
completed requests per second.

Platform deployment architecture and execution phases

Scheduling Phase Service Phase

8) Service response

7) Run application
& generate response

5) Scheduling response
(reference of selected server)

4) Response sorted
& forwarded up

3) Request prediction

& response generation

2) Forward request down

1) Scheduling request

client scheduler server

s

s

s

s
s

s
s

s s s s

c

c

c

6) Service
request

Deployment planning

Lemma

The completed request throughput ρ of a deployment is given by
the minimum of the scheduling request throughput ρsched and the
service request throughput ρservice.

ρ = min(ρsched, ρservice)

ρsched the scheduling throughput in requests per second, is
defined as the rate at which requests are processed by the
scheduling phase.

ρservice the service throughput in requests per second, is
defined as the rate at which requests finish the service
response phase.

Deployment planning

Lemma

The scheduling throughput ρsched is limited by the throughput of
the agent with the highest degree.

Scheduling throughput is controlled by slowest agent

Slowest agent is the one with highest degree

Lemma

The service request throughput ρservice increases as the number of
servers included in a deployment increases.

Service requests are only sent to a single server.

Complete Spanning D-ary tree

A complete d-ary tree is a tree in
which every level, except possibly
the deepest, is completely filled.
All internal nodes except one have
a degree, or number of children,
equal to d; the remaining internal
node is at depth n − 1 and may
have any degree from 1 to d.
A spanning tree is a connected,
acyclic subgraph containing all the
vertices of a graph.

A complete spanning d-
ary tree (CSD tree) is a
tree that is both a complete
d-ary tree and a spanning
tree.

SS S

S No chains
allowed

dMax Set

dMax set is the set of all trees for which maximum degree is equal
to dMax.

Examples : 3 trees from dMax set 4 and dMax set 6.

dMax=6

dMax=4

Optimal deployment

Theorem

The optimal throughput ρ of any deployment with maximum
degree dMax is obtained with a CSD tree.

By Lemma1 ρ = min(ρsched, ρservice)
By lemma2 ρsched is limited by agent with maximum degree

By Lemma3 ρservice increases with |S|

Corollary

The complete spanning d-ary tree with degree d ∈ [1, |V| − 1] that
maximizes the minimum of the scheduling request and service
request throughputs is an optimal deployment.

Test all possible degrees d ∈ [1, |V| − 1]
Select MAX min(ρsched, ρservice)

Experimental design

Software: GoDIET is used to deploy , an hierarchical
Problem Solving Environment.
(http://graal.ens-lyon.fr/DIET)

Job types: DGEMM, a simple matrix multiplication (BLAS
package).

Workload: steady-state load with 1 - 200 client scripts (each
script launches requests serially)

Resources: dual AMD Opteron 246 processors @ 2GHz, each
with cache size of 1024KB, 2GB of main memory and a
1Gb/s Ethernet

Lyon cluster - 55 nodes
Sophia cluster - 140 nodes

Throughput validation - Serial Model (DGEMM 10)

1 2 5 10 20
0

2000

4000

6000

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Agent degree

Measured
Model w/ 20 Mb/s
Model w/ 190 Mb/s
Model w/ 909 Mb/s

Throughput validation - Parallel Model (DGEMM 10)

1 2 5 10 20
0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Agent degree

Measured
Model w/ 20 Mb/s
Model w/ 80 Mb/s
Model w/ 909 Mb/s

Throughput validation - DGEMM 1000, bandwidth
190Mb/s

1 2 5 10 20
0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Agent degree

Measured
Model w/ 190 Mb/s

Deployment selection validation - DGEMM 200, 25 Nodes

0 5 10 15 20 25
0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c)

Degree of CSD tree

Model prediction
Measured throughput

Deployment selection validation - DGEMM 310, 45 Nodes

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c)

Degree of CSD tree

Model prediction
Measured throughput

Summary Table

DGEMM
Size

Nodes Best Selected Model Star Tri-ary

10 21 1 1 100.0% 22.4% 50.5%

100 25 2 2 100.0% 84.4% 84.6%

200 45 3 8 86.1% 40.0% 100.0%

310 45 15 22 98.5% 73.8% 74.0%

1000 21 20 20 100.0% 100.0% 65.3%

Discussion

Conclusion

Determines how many nodes should be used
Designs the hierarchical organization
Proved an optimal deployment is a CSD tree
Deployment prediction is easy, fast and scalable
Experiments validated the model

Future work

Develop re-deployment approaches
- Dynamically adapt the deployment to workload levels
Develop deployment planning and re-deployment algorithms
for middleware on Grids

