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Abstract. This paper considers the modeling and the analysis of the
performance of lock-free concurrent data structures that can be repre-
sented as linear combinations of fixed size retry loops.
Our main contribution is a new way of modeling and analyzing a general
class of lock-free algorithms, achieving predictions of throughput that are
close to what we observe in practice. We emphasize two kinds of conflicts
that shape the performance: (i) hardware conflicts, due to concurrent
calls to atomic primitives; (ii) logical conflicts, caused by concurrent
operations on the shared data structure.
We propose also a common framework that enables a fair comparison
between lock-free implementations by covering the whole contention do-
main, and comes with a method for calculating a good back-off strategy.
Our experimental results, based on a set of widely used concurrent data
structures and on abstract lock-free designs, show that our analysis fol-
lows closely the actual code behavior.1

1 Introduction

Lock-free programming provides highly concurrent access to data and has been
increasing its footprint in industrial settings. Providing a modeling and an anal-
ysis framework capable of describing the practical performance of lock-free al-
gorithms is an essential, missing resource necessary to the parallel programming
and algorithmic research communities in their effort to build on previous intel-
lectual efforts. The definition of lock-freedom mainly guarantees that at least
one concurrent operation on the data structure finishes in a finite number of its
own steps, regardless of the state of the operations. On the individual operation
level, lock-freedom cannot guarantee that an operation will not starve.

The goal of this paper is to provide a way to model and analyze the practically
observed performance of lock-free data structures. In the literature, the common
performance measure of a lock-free data structure is the throughput, i.e. the
number of successful operations per unit of time. It is obtained while threads are
accessing the data structure according to an access pattern that interleaves local
1 The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2013-2016) under grant agreement 611183
(EXCESS Project, www.excess-project.eu).



work between calls to consecutive operations on the data structure. Although
this access pattern to the data structure is significant, there is no consensus in
the literature on what access to be used when comparing two data structures. So,
the amount of local work (that we will refer as parallel work for the rest of the
paper) could be constant ([14,15]), uniformly distributed ([10], [7]), exponentially
distributed ([17], [8]), null ([12,13]), etc. More questionably, the average amount
is rarely scanned, which leads to a partial covering of the contention domain.

We propose here a common framework enabling a fair comparison between
lock-free data structures, while exhibiting the main phenomena that drive per-
formance, and particularly the contention, which leads to different kinds of con-
flicts. As this is the first step in this direction, we want to deeply analyze the core
of the problem, without impacting factors being diluted within a probabilistic
smoothing. Therefore, we choose a constant local work, hence constant access
rate to the data structures. In addition to the prediction of the data structure
performance, our model provides a good back-off strategy, that achieves the peak
performance of a lock-free algorithm.

Two kinds of conflict appear during the execution of a lock-free algorithm,
leading to additional work. Hardware conflicts occur when concurrent operations
call atomic primitives on the same memory location: these calls collide and con-
duct to stall time, that we name here expansion. Logical conflicts take place if
concurrent operations overlap: because of the lock-free nature of the algorithm,
several concurrent operations can run simultaneously, but usually only one retry
can logically succeed. We show that the additional work produced by the failures
is not necessarily harmful for the system-wise performance.

We then show how throughput can be computed by connecting these two key
factors in an iterative way. We start by estimating the expansion probabilistically,
and emulate the effect of stall time introduced by the hardware conflicts as extra
work added to each thread. Then we estimate the number of failed operations,
that in turn lead to additional extra work, by computing again the expansion on
a system setting where those two new amounts of work have been incorporated,
and reiterate the process; the convergence is ensured by a fixed-point search.

We consider the class of lock-free algorithms that can be modeled as a linear
composition of fixed size retry loops. This class covers numerous extensively used
lock-free designs such as stacks [16] (Pop, Push), queues [14] (Enqueue, Dequeue),
counters [7] (Increment, Decrement) and priority queues [13] (DeleteMin).

To evaluate the accuracy of our model and analysis framework, we performed
experiments both on synthetic tests, that capture a wide range of possible ab-
stract algorithmic designs, and on several reference implementations of exten-
sively studied lock-free data structures. Our evaluation results reveal that our
model is able to capture the behavior of all the synthetic and real designs for
all different numbers of threads and sizes of parallel work (consequently also
contention). We also evaluate the use of our analysis as a tool for tuning the
performance of lock-free code by selecting the appropriate back-off strategy that
will maximize throughput by comparing our method against widely known back-
off policies, namely linear and exponential.



The rest of the paper is organized as follows. We discuss related work in
Section 2, then the problem is formally described in Section 3. We consider the
logical conflicts in the absence of hardware conflicts in Section 4. In Section 5, we
firstly show how to compute the expansion, then combine hardware and logical
conflicts to obtain the final throughput estimate. We describe the experimental
results in Section 6.

2 Related Work

Anderson et al. [3] evaluated the performance of lock-free objects in a single
processor real-time system by emphasizing the impact of retry loop interference.
Tasks can be preempted during the retry loop execution, which can lead to
interference, and consequently to an inflation in retry loop execution due to re-
tries. They obtained upper bounds for the number of interferences under various
scheduling schemes for periodic real-time tasks.

Intel [11] conducted an empirical study to illustrate performance and scalabil-
ity of locks. They showed that the critical section size, the time interval between
releasing and re-acquiring the lock (that is similar to our parallel section size)
and number of threads contending the lock are vital parameters.

Failed retries do not only lead to useless effort but also degrade the per-
formance of successful ones by contending the shared resources. Alemany et
al. [1] have pointed out this fact, that is in accordance with our two key fac-
tors, and, without trying to model it, have mitigated those effects by designing
non-blocking algorithms with operating system support.

Alistarh et al. [2] have studied the same class of lock-free structures that we
consider in this paper. The analysis is done in terms of scheduler steps, in a
system where only one thread can be scheduled (and can then run) at each step.
If compared with execution time, this is particularly appropriate to a system with
a single processor and several threads, or to a system where the instructions of
the threads cannot be done in parallel (e.g. multi-threaded program on a multi-
core processor with only read and write on the same cache line of the shared
memory). In our paper, the execution is evaluated in terms of processor cycles,
strongly related to the execution time. In addition, the “parallel work” and the
“critical work” can be done in parallel, and we only consider retry-loops with one
Read and one CAS, which are serialized. In addition, they bound the asymptotic
expected system latency (with a big O, when the number of threads tends to
infinity), while in our paper we estimate the throughput (close to the inverse of
system latency) for any number of threads.

3 Problem Statement

3.1 Running Program and Targeted Platform

In this paper, we aim at evaluating the throughput of a multi-threaded algorithm
that is based on the utilization of a shared lock-free data structure. Such a



Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work();
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Fig. 1: Thread procedure
Read & cw Previously

expanded CASExpansion

CAS

Fig. 2: Expansion

program can be abstracted by the Procedure AbstractAlgorithm (see Figure 1)
that represents the skeleton of the function which is called by each spawned
thread. It is decomposed in two main phases: the parallel section, represented
on line 3, and the retry loop, from line 4 to line 7. A retry starts at line 5 and
ends at line 7.

As for line 1, the function Initialization shall be seen as an abstraction of the
delay between the spawns of the threads, that is expected not to be null, even
when a barrier is used. We then consider that the threads begin at the exact
same time, but have different initialization times.

The parallel section is the part of the code where the thread does not access
the shared data structure; the work that is performed inside this parallel section
can possibly depend on the value that has been read from the data structure,
e.g. in the case of processing an element that has been dequeued from a FIFO
(First-In-First-Out) queue.

In each retry, a thread tries to modify the data structure, and does not exit
the retry loop until it has successfully modified the data structure. It does that
by firstly reading the access point AP of the data structure, then according to
the value that has been read, and possibly to other previous computations that
occurred in the past, the thread prepares the new desired value as an access
point of the data structure. Finally, it atomically tries to perform the change
through a call to the Compare-And-Swap (CAS) primitive. If it succeeds, i.e. if
the access point has not been changed by another thread between the first Read
and the CAS, then it goes to the next parallel section, otherwise it repeats the
process. The retry loop is composed of at least one retry, and we number the
retries starting from 0, since the first iteration of the retry loop is actually not
a retry, but a try.

The throughput of the lock-free algorithm, i.e. the number of successful data
structure operations per unit of time, that we denote by T , is impacted by several
parameters.
– Algorithm parameters: the amount of work inside a call to Parallel_Work

(resp. Critical_Work) denoted by pw (resp. cw).
– Platform parameters: Read and CAS latencies (rc and cc respectively), and

the number P of processing units (cores). We assume homogeneity for the
latencies, i.e. every thread experiences the same latency when accessing an
uncontended shared data, which is achieved in practice by pinning threads
to the same socket.



3.2 Examples and Issues

We first present two straightforward upper bounds on the throughput, and de-
scribe the two kinds of conflict that keep the actual throughput away from those
upper bounds.

3.2.1 Immediate Upper Bounds Trivially, the minimum amount of work
rlw(-) in a given retry is rlw(-) = rc + cw + cc, as we should pay at least the
memory accesses and the critical work cw in between.

Thread-wise: A given thread can at most perform one successful retry ev-
ery pw + rlw(-) units of time. In the best case, P threads can then lead to a
throughput of P/(pw + rlw(-)).

System-wise: By definition, two successful retries cannot overlap, hence we
have at most 1 successful retry every rlw(-) units of time.

Altogether, the throughput T is upper bounded by the minimum of 1/(rc +
cw + cc) and P/(pw + rc + cw + cc), i.e.

T ≤
{ 1

rc+cw+cc if pw ≤ (P − 1)(rc + cw + cc)
P

pw+rc+cw+cc otherwise. (1)

3.2.2 Conflicts

Logical conflicts: Equation 1 expresses the fact that when pw is small enough,
i.e. when pw ≤ (P − 1)rlw(-), we cannot expect that every thread performs
a successful retry every pw + rlw(-) units of time, since it is more than what
the retry loop can afford. As a result, some logical conflicts, hence unsuccessful
retries, will be inevitable, while the others, if any, are called wasted.

Figure 3 depicts an execution, where the black parts are the calls to Initial-
ization, the blue parts are the parallel sections, and the retries can be either
unsuccessful — in red — or successful — in green. After the initial transient
state, the execution contains actually, for each thread, one inevitable unsuccess-
ful retry, and one wasted retry, because there exists a set of initialization times
that lead to a cyclic execution with a single failure per thread and per period.

We can see on this example that a cyclic execution is reached after the tran-
sient behavior; actually, we show in Section 4 that, in the absence of hardware
conflicts, every execution will become periodic, if the initialization times are
spaced enough. In addition, we prove that the shortest period is such that, dur-
ing this period, every thread succeeds exactly once. This finally leads us to define

Cycle

T0
T1
T2
T3

Fig. 3: Execution with one wasted retry, and one inevitable failure



the additional failures as wasted, since we can directly link the throughput with
this number of wasted retries: a higher number of wasted retries implying a lower
throughput.

Hardware conflicts: The requirement of atomicity compels the ownership of the
data in an exclusive manner by the executing core. Therefore, overlapping parts
of atomic instructions are serialized by the hardware, leading to stalls in subse-
quently issued ones. For our target lock-free algorithm, these stalls that we refer
to as expansion become an important slowdown factor in case threads interfere
in the retry loop. As illustrated in Figure 2, the latency for CAS can expand and
cause remarkable decreases in throughput since the CAS of a successful thread
is then expanded by others; for this reason, the amount of work inside a retry is
not constant, but is, generally speaking, a function depending on the number of
threads that are inside the retry loop.

3.2.3 Process We deal with the two kinds of conflicts separately and connect
them together through the fixed-point iterative convergence.

In Section 5.1, we compute the expansion in execution time of a retry, noted
e, by following a probabilistic approach. The estimation takes as input the ex-
pected number of threads inside the retry loop at any time, and returns the
expected increase in the execution time of a retry due to the serialization of
atomic primitives.

In Section 4, we are given a program without hardware conflicts described by
the size of the parallel section pw(+) and the size of a retry rlw(+). We compute
upper and lower bounds on the throughput T , the number of wasted retries w,
and the average number of threads inside the retry loop Prl. Without loss of
generality, we can normalize those execution times by the execution time of a
retry, and define the parallel section size as pw(+) = q + r, where q is a non-
negative integer and r is such that 0 ≤ r < 1. This pair (together with the
number of threads P ) constitutes the actual input of the estimation.

Finally, we combine those two outcomes in Section 5.2 by emulating expan-
sion through work not prone to hardware conflicts and obtain the full estimation
of the throughput.

4 Execution without hardware conflict

We show in this section that, in the absence of hardware conflicts, the execution
becomes periodic, which eases the calculation of the throughput. We start by
defining some useful concepts: (f, P )-cyclic executions are special kind of periodic
executions such that within the shortest period, each thread performs exactly
f unsuccessful retries and 1 successful retry. The well-formed seed is a set of
events that allows us to detect an (f, P )-cyclic execution early, and the gaps
are a measure of the quality of the synchronization between threads. The idea
is to iteratively add threads into the game and show that the periodicity is
maintained. Theorem 1 establishes a fundamental relation between gaps and



well-formed seeds, while Theorem 2 proves the periodicity, relying on the disjoint
cases depicted on Figures 4a, 4b and 4c. We recall that the complete version of
the proofs can be found in [5], together with additional Lemmas. Finally, we
exhibit upper and lower bounds on throughput and number of failures, along
with the average number of threads inside the retry loop.

4.1 Setting

In preamble, note that the events are strictly ordered (according to their instant
of occurrence, with the thread id as a tie-breaker). As for correctness, i.e. to
decide for the success or the failure of a retry, we need instants of occurrence
for Read and CAS; we consider that the entrance (resp. exit) time of a retry is
the instant of occurrence of the Read (resp. CAS).

4.1.1 Notations and Definitions We recall that P threads are executing
the pseudo-code described in Procedure AbstractAlgorithm, one retry is of unit-
size, and the parallel section is of size pw(+) = q + r, where q is a non-negative
integer and r is such that 0 ≤ r < 1. Considering a thread Tn which succeeds
at time Sn; this thread completes a whole retry in 1 unit of time, then executes
the parallel section of size pw(+), and attempts to perform again the operation
every unit of time, until one of the attempt is successful.

Definition 1. An execution with P threads is called (C, P )-cyclic execution if
and only if (i) the execution is periodic, i.e. at every time, every thread is in
the same state as one period before, (ii) the shortest period contains exactly one
successful attempt per thread, (iii) the shortest period is 1 + q + r + C.

Definition 2. Let S = (Ti, Si)i∈J0,P−1K, where Ti are threads and Si ordered
times, i.e. such that S0 < · · · < SP−1. S is a seed if and only if for all i ∈
J0, P − 1K, Ti does not succeed between S0 and Si, and starts a retry at Si.

We define f (S) as the smallest non-negative integer such that S0 + 1 + q +
r+f (S) > SP−1 +1, i.e. f (S) = max (0, dSP−1 − S0 − q − re). When S is clear
from the context, we denote f (S) by f .

Definition 3. S is a well-formed seed if and only if for each i ∈ J0, P − 1K, the
execution of thread Ti contains the following sequence: a successful retry starting
at Si, the parallel section, f unsuccessful retries, then a successful retry.

Those definitions are coupled through the two natural following properties:

Property 1. Given a (C, P )-cyclic execution, any seed S including P consecutive
successes is a well-formed seed, with f (S) = C.

Property 2. If there exists a well-formed seed in an execution, then after each
thread succeeded once, the execution coincides with an (f, P )-cyclic execution.



Together with the seed concept, we define the notion of gap. The general
idea of those gaps is that within an (f, P )-cyclic execution, the period is higher
than P × 1, which is the total execution time of all the successful retries within
the period. The difference between the period (that lasts 1 + q + r + f) and
P , reduced by r (so that we obtain an integer), is referred as lagging time in
the following. If the threads are numbered according to their order of success
(modulo P ), as the time elapsed between the successes of two given consecutive
threads is constant (during the next period, this time will remain the same), this
lagging time can be seen in a circular manner: the threads are represented on a
circle whose length is the lagging time increased by r, and the length between
two consecutive threads is the time between the end of the successful retry of
the first thread and the start of the successful retry of the second one. More
formally, for all (n, k) ∈ J0, P − 1K2, we define the gap G

(k)
n between Tn and its

kth predecessor based on the gap with the first predecessor:{
∀n ∈ J1, P − 1K ; G

(1)
n = Sn − Sn−1 − 1

G
(1)
0 = S0 + q + r + f − SP−1

,

which leads to the definition of higher order gaps: ∀n ∈ J0, P − 1K ;∀k >

0; G
(k)
n =

∑n
j=n−k+1 G

(1)
j mod P .

For consistency, for all n ∈ J0, P − 1K, G
(0)
n = 0.

Equally, the gaps can be obtained from the successes: for all k ∈ J1, P − 1K,

G(k)
n =

{
Sn − Sn−k − k if n > k
Sn − SP +n−k + 1 + q + r + f − k otherwise (2)

Note that, in an (f, P )-cyclic execution, the lagging time is the sum of all
first order gaps, reduced by r.

4.2 Cyclic Executions

We only give the two main theorems used to show the existence of cyclic execu-
tions. The details can be found in the companion research report [5].

Theorem 1. Given a seed S = (Ti, Si)i∈J0,P−1K, S is a well-formed seed if and
only if for all n ∈ J0, P − 1K, 0 ≤ G

(f)
n < 1.

Theorem 2. Assuming r 6= 0, if a new thread is added to an (f, P − 1)-cyclic
execution, then all the threads will eventually form either an (f, P )-cyclic exe-
cution, or an (f + 1, P )-cyclic execution.

Proof. We decompose the Theorem into three Lemmas which we describe here
graphically:
– If all gaps of (f +1)th order are less than 1, then every existing thread will fail

once more, and the new steady-state is reached immediately. See Figure 4a.
– Otherwise:



• Either: everyone succeeds once, whereupon a new (f, P )-cyclic execution
is formed. See Figure 4b.

• Or: before everyone succeeds again, a new (f, P ′)-cyclic execution, where
P ′ ≤ P , is formed, which finally leads to an (f, P )-cyclic execution. See
Figure 4c. ut

(a) A new thread does not lead to a reordering
T0
T1
T2

(b) Reordering and immediate new seed
T0
T1
T2
T3

(c) Reordering and transient state
T0
T1
T2
T3

Fig. 4: Illustration of Theorem 2

4.3 Throughput Bounds
The periodicity offers an easy way to compute the expected number of threads
inside the retry loop, and to bound the number of failures and the throughput.

Lemma 1. In an (f, P )-cyclic execution, the throughput is T = P
q+r+1+f , and

the average number of threads in the retry loop Prl = P × f+1
q+r+f+1 .

Lemma 2. The number of failures is tighly bounded by f (-) ≤ f ≤ f (+), and
throughput by T (-) ≤ T ≤ T (+), where

f (-) =
{

P − q − 1 if q ≤ P − 1
0 otherwise , T (-) =

{ P
P +r if q ≤ P − 1

P
q+r+1 otherwise.

f (+) =
⌊

1
2

(
(P − 1− q − r) +

√
(P − 1− q − r)2 + 4P

)⌋
, T (+) = P

q + r + 1 + f (+) .

5 Expansion and Complete Throughput Estimation

5.1 Expansion
Interference of threads does not only lead to logical conflicts but also to hardware
conflicts which impact the performance significantly. We model the behavior of



the cache coherency protocols which determine the interaction of overlapping
Reads and CASs. By taking MESIF [9] as basis, we come up with the following
assumptions. When executing an atomic CAS, the core gets the cache line in
exclusive state and does not forward it to any other requesting core until the
instruction is retired. Therefore, requests stall for the release of the cache line
which implies serialization. On the other hand, ongoing Reads can overlap with
other operations. As a result, a CAS introduces expansion only to overlapping
Read and CAS operations that start after it, as illustrated in Figure 2.

Furthermore, we assume that Reads that are executed just after a CAS do not
experience expansion (as the thread already owns of the data), which takes effect
at the beginning of a retry following a failing attempt. Thus, read expansions
need only to be considered before the 0th retry. In this sense, read expansion can
be moved to parallel section and calculated in the same way as CAS expansion
is calculated.

To estimate expansion, we consider the delay that a thread can introduce,
provided that there is already a given number of threads in the retry loop. The
starting point of each CAS is a random variable which is distributed uniformly
within an expanded retry. The cost function d provides the amount of delay that
the additional thread introduces, depending on the point where the starting point
of its CAS hits. By using this cost function we can formulate the expansion
increase that each new thread introduces and derive the differential equation
below to calculate the expansion of a CAS.

Lemma 3. The expansion of a CAS operation is the solution of the following
system of equations: e′ (Prl) = cc ×

cc
2 + e (Prl)

rc + cw + cc + e (Prl)
e
(

P
(0)
rl

)
= 0

,
where P

(0)
rl is the point where

expansion begins.

Proof. To prove the theorem, we compute e (Prl + h), where h ≤ 1, by as-
suming that there are already Prl threads in the retry loop, and that a new
thread attempts to CAS during the retry, within a probability h: e (Prl + h) =
e (Prl) + h ×

∫ rlw(+)

0
d(t)

rlw(+) dt. The complete proof appears in the companion re-
search report [5].

5.2 Throughput Estimate

It remains to combine hardware and logical conflicts in order to obtain the final
upper and lower bounds on throughput. We are given as an input the expected
number of threads Prl inside the retry loop. We firstly compute the expansion
accordingly, by solving numerically the differential equation of Lemma 3. As
explained in the previous subsection, we have pw(+) = pw + e, and rlw(+) =
rc+cw+e+cc. We can then compute q and r, that is the input set (together with
the total number of threads P ) of the method described in Section 4. Assuming
that the initialization times of the threads are spaced enough, the execution will



superimpose an (f, P )-cyclic execution. Thanks to Lemma 1, we can compute
the average number of threads inside the retry loop, that we note by hf (Prl). A
posteriori, the solution is consistent if this average number of threads inside the
retry loop hf (Prl) is equal to the expected number of threads Prl that has been
given as an input.

Several (f, P )-cyclic executions belong to the domain of the possible out-
comes, but we are interested in upper and lower bounds on the number of fail-
ures f . We can compute them through Lemma 2, along with their corresponding
throughput and average number of threads inside the retry loop. We note by
h(+)(Prl) and h(-)(Prl) the average number of threads for the lowest number of
failures and highest one, respectively. Our aim is finally to find P

(-)
rl and P

(+)
rl ,

such that h(+)(P (+)
rl ) = P

(+)
rl and h(-)(P (-)

rl ) = P
(-)
rl . If several solutions exist, then

we want to keep the smallest, since the retry loop stops to expand when a stable
state is reached.

Note that we also need to provide the point where the expansion begins. It
begins when we start to have failures, while reducing the parallel section. Thus
this point is (2P−1)rlw(-) (resp. (P−1)rlw(-)) for the lower (resp. upper) bound
on the throughput.

Theorem 3. Let (xn) be the sequence defined recursively by x0 = 0 and xn+1 =
h(+)(xn). If pw ≥ rc + cw + cc, then P

(+)
rl = limn→+∞ xn.

Proof. In [5], we prove that h(+) is non-decreasing when pw ≥ rc + cw + cc, and
obtain the above theorem by applying the Theorem of Knaster-Tarski.

The same line of reasoning holds for h(-). We point out that when pw < rlw(-),
we scan the interval of solution, and have no guarantees about the fact that the
solution is the smallest one; still this corresponds to very extreme cases.

6 Experimental Evaluation

We validate our model and analysis framework through successive steps, from
synthetic tests, capturing a wide range of possible abstract algorithmic designs,
to several reference implementations of extensively studied lock-free data struc-
ture designs that include cases with non-constant parallel section and retry loop.
The complete results can be found in [5] and the numerical simulation code in [4].

6.1 Setting

We have conducted experiments on an Intel ccNUMA workstation system. The
system is composed of two sockets, that is equipped with Intel Xeon E5-2687W
v2 CPUs. In a socket, the ring interconnect provides L3 cache accesses and
core-to-core communication. Threads are pinned to a single socket to minimize
non-uniformity in Read and CAS latencies. Due to the bi-directionality of the
ring that interconnects L3 caches, uncontended latencies for intra-socket com-
munication between cores do not show significant variability. The methodology



in [6] is used to measure the CAS and Read latencies, while the work inside the
parallel section is implemented by a for-loop of Pause instructions.

In all figures, y-axis provides the throughput, while the parallel work is rep-
resented in x-axis in cycles. The graphs contain the high and low estimates (see
Section 4), corresponding to the lower and upper bound on the wasted retries,
respectively, and an additional curve that shows the average of them.

6.2 Synthetic Tests

For the evaluation of our model, we first create synthetic tests that emulate
different design patterns of lock-free data structures (value of cw) and different
application contexts (value of pw).

Generally speaking, in Figure 5, we observe two main behaviors: when pw
is high, the data structure is not contended, and threads can operate without
failure (unsuccessful retries). When pw is low, the data structure is contended,
and depending on the size of cw (that drives the expansion) a steep decrease in
throughput or just a roughly constant bound on the performance is observed.

An interesting fact is the waves appearing on the experimental curve, espe-
cially when the number of threads is low or the critical work big. This behavior
is originating because of the variation of r with the change of parallel work, a
fact that is captured by our analysis.

6.3 Treiber’s Stack

The lock-free stack by Treiber [16] is typically the first example that is used to
validate a freshly-built model on lock-free data structures. A Pop contains a retry
loop that first reads the top pointer and gets the next pointer of the element
to obtain the address of the second element in the stack, before attempting to
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Fig. 5: Synthetic program
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CAS with the address of the second element. The access to the next pointer of
the first element occurs between the Read and the CAS. Thus, it represents the
work in cw. By varying the number of elements that are popped at the same
time, and the cache misses implied by the reads, we vary the work in cw and
obtain the results depicted in Figure 6.

6.4 Discussion

In this subsection we discuss the adequacy of our model, specifically the cyclic
argument, to capture the behavior that we observe in practice. Figure 7 illus-
trates the frequency of occurrence of a given number of consecutive fails, together
with average fails per success values and the throughput values, normalized by
a constant factor so that they can be seen on the graph. In the background, the
frequency of occurrence of a given number of consecutive fails before success is
presented. As a remark, the frequency of 6+ fails is plotted together with 6. We
expect to see a frequency distribution concentrated around the average fails per
success value, within the bounds computed by our model.

While comparing the distribution of failures with the throughput, we could
conjecture that the bumps come from the fact that the failures spread out. How-
ever, our model captures correctly the throughput variations and thus strips
down the right impacting factor. The spread of the distribution of failures indi-
cates the violation of a stable cyclic execution (that takes place in our model),
but in these regions, r actually gets close to 0, as well as the minimum of all
gaps. The scattering in failures shows that, during the execution, a thread is
overtaken by another one. Still, as gaps are close to 0, the imaginary execution,
in which we switch the two thread IDs, would create almost the same perfor-
mance effect. This reasoning is strengthened by the fact that the actual average
number of failures follows the step behavior, predicted by our model. This shows
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that even when the real execution is not cyclic and the distribution of failures
is not concentrated, our model that results in a cyclic execution remains a close
approximation of the actual execution.

6.5 Back-Off Tuning

Together with our analysis comes a natural back-off strategy: we estimate the
pw corresponding to the peak point of the average curve, and when the parallel
section is smaller than the corresponding pw, we add a back-off in the parallel
section, so that the new parallel section is at the peak point.

We have applied exponential, linear and our back-off strategy to the En-
queue/Dequeue experiment specified in [5] (sequence of Enqueue and Dequeue
interleaved with parallel sections). Our back-off estimate provides good results
for both types of distribution. In Figure 8 (where the values of back-off are steps
of 115 cycles), the comparison is plotted for the Poisson distribution, which is
likely to be the worst for our back-off. Our back-off strategy is better than the
other, except for very small parallel sections, but the other back-off strategies
should be tuned for each value of pw.

7 Conclusion

In this paper, we have modeled and analyzed the performance of a general class
of lock-free algorithms, and have so been able to predict the throughput of such
algorithms, on actual system executions. The analysis rely on the estimation of
two impacting factors that lower the throughput: on the one hand, the expan-
sion, due to the serialization of the atomic primitives that take place in the retry
loops; on the other hand, the wasted retries, due to a non-optimal synchroniza-
tion between the running threads. We have derived methods to calculate those
parameters, along with the final throughput estimate, that is calculated from a
combination of these two previous parameters. As a side result of our work, this
accurate prediction enables the design of a back-off technique that performs bet-
ter than other well-known techniques, namely linear and exponential back-offs.

As a future work, we envision to enlarge the domain of validity of the model,
in order to cope with data structures whose operations do not have constant
retry loop, as well as the framework, so that it includes more various access
patterns. The fact that our results extend outside the model we consider allows
us to be optimistic on impacting factors introduced in this work. Finally, we also
foresee studying back-off techniques that would combine a back-off in the parallel
section (for lower contention) and in the retry loops (for higher robustness).
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