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Abstract Embedded and high performance computing
(HPC) systems face many common challenges. One of them
is the synchronization of the memory accesses in shared data.
Concurrent queues have been extensively studied in the HPC
domain and they are used in a wide variety of HPC applica-
tions. In this work, we evaluate a set of concurrent queue
implementations in an embedded platform, in terms of exe-
cution time and power consumption. Our results show that
by taking advantage of the embedded platform specifications,
we achieve up to 28.2 % lower execution time and 6.8 % less
power dissipation in comparison with the conventional lock-
based queue implementation. We show that HPC applications
utilizing concurrent queues can be efficiently implemented in
embedded systems and that synchronization algorithms from
the HPC domain can lead to optimal resource utilization of
embedded platforms.
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1 Introduction

High performance computing (HPC) systems execute com-
putationally demanding applications from a wide range of
domains (engineering, bioinformatics, etc.). Until recently,
the demand for high computational performance has been
met with the increase of the number of general purpose
processing cores, leading to the emergence of multicore
homogeneous HPC platforms. The application developers
try to extract high performance from parallelism by utilizing
such architectures.

On the other hand, in the embedded systems domain the
most common design paradigm is the integration of different
kind of units on a single chip. CPUs, DSPs and even graphic
accelerator units (GPUs) are integrated on a single die lead-
ing to the development of heterogeneous architectures. Such
platforms dominate today the embedded systems market and
they are utilized in smart-phones, tablets and other consumer
devices.

Although HPC and embedded domains followed different
architecture design paradigms in the past, it has been argued
that in recent years they have started to converge. For exam-
ple, the heterogeneous paradigm is recently adopted by the
HPC systems. The integration of CPU and GPU in a single die
has been utilized in general purpose mainstream platforms.
Recent examples include Intel’s Sandy Bridge [1] and AMD
Kaveri architecture, which integrates 4 CPUs and 8 GPUs
on a single chip [2]. Tegra K1 mobile processor by Nvidia,
integrates an ARM Cortex CPU, along with a Kepler GPU,
focusing on low power consumption [18]. Such heteroge-
neous architectures provide the opportunity to take advan-
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tage of both the flexibility of execution of CPUs for irregular
workloads and the high computational power of GPUs [3].

According to Bell’s Law [4], roughly every decade evolves
a new lower priced computer class (i.e. a category of com-
puter systems) that replaces the existing one. This class cre-
ates a new market and establishes a new industry. Nowadays,
the new class can be considered as the embedded systems.
Indeed, we experience the trend of porting computational
demanding applications from general purpose computers and
HPC systems to embedded platforms. Embedded systems
are expected to process large amounts of data in embedded
servers or perform computational intensive operations, such
as high resolution rendering, image processing, etc. Applica-
tions that until recently were executed only in general purpose
computer systems, will be realized on high-end multicore
embedded platforms. The term High Performance Embed-
ded Computing (HPEC) has been recently used to describe
embedded devices with very large processing power, used
mostly in aerospace and military applications [5]. Such plat-
forms are utilized in high-end consumer embedded devices,
such as smartphones and game consoles.

Another important point of the convergence between
the two domains is related with the power consumption,
which is a traditional design constraint in embedded systems.
Although high performance has been so far the major issue in
the HPC, power efficiency is now becoming a major concern,
as well. It is argued that the total energy cost summed over
a few years of operation of a large supercomputer facility
can almost equal the cost of the hardware infrastructure [6].
Also, power is listed as one of the most important issues and
constraint for future Exascale systems [7]. HPC can adopt
low power solutions utilized in embedded systems.

To tackle with the low power issue, new HPC design par-
adigms have been proposed. A recently proposed solution
for power efficient HPC is the development of HPC systems
from low-power embedded solutions [6,8]. For instance, the
nCore BrownDwarf supercomputer is composed of ARM
A15 cores and C66x DSPs, focusing on low power com-
putational performance [19]. Embedded systems follow the
concept of System-on-Chip (SoC), where all the components
are a part of the same module, reducing communication dis-
tances and hence power. Therefore, embedded platforms can
be efficiently used as building blocks for HPC systems.

Towards this end, it is important to evaluate HPC algo-
rithms and applications in modern embedded devices. Embed-
ded systems impose constraints such as low CPU frequency,
heterogeneous architectures and limited memory, which dif-
fer from the characteristics of the conventional HPC systems.
Therefore, the evaluation of modern computational intensive
applications in multicore embedded systems in terms of per-
formance and power consumption is a step towards the uti-
lization of low-power embedded platforms for the design of
HPC systems.
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In this work, we realize a set of concurrent queue imple-
mentations inspired from the HPC domain, on the embed-
ded multicore Myriad platform [11]. The implementations
are inspired from the Remote Core Locking (RCL) synchro-
nization algorithm [9,10] implemented for HPC and they
are evaluated on the Myriad platform in terms of perfor-
mance and power consumption. We aim to examine how syn-
chronization algorithms used in the HPC domain perform in
embedded platforms. In other words, we evaluate how effi-
ciently HPC applications utilizing concurrent data structures
can take advantage of the embedded platform specifications
and how they can be optimized taking into consideration
the platform limitations. As stated earlier, due to the conver-
gence of the two domains the shared memory synchroniza-
tion issues exist in both, therefore the adoption of solutions
from one domain to another can provide interesting results.

The rest of the paper is organized as follows: In Sect. 2
is presented the related work. Next, we provide a summary
of the technical details of the embedded platform utilized in
the context of this work. In Sect. 4 we describe the concur-
rent queue implementations and in Sect. 5 we present the
experimental results in terms of execution time and power
consumption. Finally, in Sect. 6 we draw our conclusions.

2 Related work

Since power consumption in HPC has become a major
issue, some attempts have been recently made to utilize low
power processors in an attempt to build more energy effi-
cient systems. In BlueGene supercomputers the computa-
tional power comes from low-power embedded PowerPC
cores and achieve satisfactory performance to energy ratio
[8]. Tibidabo is an HPC cluster built from low power ARM
multicore chips, with performance to energy ratio compara-
ble to the BlueGene [6]. Such approaches have been proposed
as a solution in reaching the implementation of an Exascale
system, which is currently hindered by the power that such
a system would consume [7]. Other approaches for achiev-
ing energy efficiency in HPC focus on the controlling of
heating, cooling and power of supercomputer systems. For
instance, Microsoft has developed Marlowe framework for
data senders that migrates workloads during low utilization
periods to turn off machines [12] and thus improve energy
efficiency.

The application we evaluated in the context of this work
is a concurrent queue. The synchronization algorithm used is
inspired from the Remote Core Locking technique described
in [9,10]. It is based on the utilization of a dedicated server
that executes the critical sections of the application. Simi-
lar techniques are the Flat combining technique, which is
an entirely software solution: the role of the server which
serves the access requests to the critical sections is played
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by client threads in a periodical manner [13]. Other related
works from the HPC domain focus on Hardware Transac-
tional Memory [14] and in mutual exclusion techniques, like
the token-based messaging [15]. In respect with the con-
current queue implementations, several non-blocking queue
designs have been proposed in the HPC domain. For instance,
[16] describes a scalable non-blocking bounded queue for
shared multiprocessor systems utilizing compare-and-swap
primitive, dealing with the contention on shared variables and
the ABA problem. Other concurrent queue implementations
are the Michael-Scott’s queue, where the queue is imple-
mented as a singly-linked list and the head and tail pointers
are modified by Compare-and-Swap operations [17].

3 Myriad platform description

Mpyriad is a 65 nm heterogeneous Multi-Processor System-
on-Chip (MPSoC) designed by Movidius Ltd [11] to provide
high throughput coupled with large memory bandwidth. The
design of the platform is tailored to satisfy the ever-increasing
demand for high computational capabilities at a low energy
footprint on mobile devices such as smartphones, tablets and
wearable devices. Myriad chip will be utilized in the context
of Project Tango, which aims at the design of a mobile device
capable of creating a 3D model of the environment around it
[20].

The recommended use case of the Myriad chip is as a
co-processor connected between a sensor system such as a
set of cameras and the host application processor. Myriad
platform is designed to perform the heavy processing on the
data stream coming from the sensor system and feed the
application processor with metadata and processed content
from the sensor system.

The heterogeneous multi-processor system integrates a
32-bit SPARC V8 RISC processor core (LEON3) utilized
for managing functions such as setting up process executions,
controlling the data flow and interrupt handling. Computa-
tional processing is performed by the Movidius Streaming
Hybrid Architecture Vector Engine (SHAVE) 128 bit VLIW
cores with an instruction set tailored for streaming multi-
media applications. The Myriad SoC integrates 8§ SHAVE
processors as depicted in Fig. 1.

Regarding the memory specifications, the platform con-
tains 1IMB on-chip SRAM memory (named Connection
Matrix—CMX) with 128KB directly linked to each SHAVE
processor providing local storage for data and instruction
code. Therefore, the CMX memory can be seen as a group of
8 memory “slices”, with each slice being connected to each
one of the 8 SHAVEs. The CMX memory is accessible to
all SHAVESs and to LEON processor, as well. The Stacked
SDRAM memory of 64 MB is accessible through the DDR
interface. (Stacked SDRAM will be referred as DDR in the
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Fig. 1 Myriad architecture diagram: the RISC processor (LEON) and
the 8 SHAVE cores. In each core a CMX memory slice is attached
(TMU is the Texture Management Unit). The 64 MB SDRAM memory
is depicted at the bottom of the diagram

Table 1 Memory access costs for LEON and SHAVEs

Memory  Size LEON cost SHAVE cost

LRAM 32KB Low High

CMX 1 MB Low Low

DDR 64 MB  High, but low on data Low only for DMA
and cache hit cache hit

rest of the paper). Finally, LEON has 32 KB dedicated RAM
(LRAM).

Table 1 shows the access costs of LEON and SHAVEs
for accessing LRAM, CMX and DDR memories. Access
cost refers to the cycles needed to access each memory. We
notice that LEON has low access cost on CMX and poten-
tially on DDR. SHAVE access time to the DDR is much
higher in comparison with the access time to CMX for ran-
dom accesses. DDR is designed to be accessed by SHAVEs
efficiently only through DMA. It is important to mention that
each SHAVE accesses its own CMX slice at higher band-
width and lower power consumption, in comparison with the
other CMX slices.

3.1 Synchronization and arbitration primitives

Myriad platform avails Test-and-Set registers that can be
used to create spin locks, which are commonly referred as
“mutexes”’. Spin-locks are used to create busy-waiting syn-
chronization techniques: a thread spins to acquire the lock
s0 as to have access to a shared resource. Analysis of exper-
iments on the Myriad platform shows that the mutex imple-
mentation is a fair lock with round-robin arbitration.

The Myriad platform avails a set of registers that can be
used for fast SHAVE arbitration. Each SHAVE has its own
copy of these registers and its size is 4x64 bit words. An
important characteristic is that they are accessed in a FIFO
pattern, so each one of them is called “SHAVE’s FIFO”. Each
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SHAVE can push data to the FIFO of any other SHAVE, but
can read data only from its own FIFO. A SHAVE writes to
the tail of another FIFO and the owner of the FIFO can read
from any entry. If a SHAVE attempts to write to a full FIFO,
it stalls. Finally, LEON does not avail FIFOs. SHAVE FIFOs
can be utilized to achieve efficient synchronization between
the SHAVEs. Also, they provide an easy and fast way for
exchanging data directly between the SHAVEs (up to 64 bits
per message), without the need to use shared memory buffers.

4 Concurrent queue implementations description

In this section we describe the concurrent queue implemen-
tations we evaluated on Myriad platform in the context of this
work. Concurrent queues are used in a wide range of appli-
cation domains, especially in the implementation of path-
finding and work-stealing algorithms. The queue is imple-
mented as a bounded cyclical array, accessed by all SHAVE
cores. SHAVEs request concurrently access to the shared
queue for inserting and removing elements.

Table 2 summarizes all different queue implementations
we developed and evaluated on the platform. We used three
different kinds of synchronization primitives: mutexes, mes-
sage passing over shared variables and SHAVEs’ FIFOs.
Mutexes and SHAVEs’ FIFOs were described in the pre-
vious section. In respect with the shared variables, we imple-
mented communication buffers between the processors, used
to exchange information for achieving synchronization. To
reduce the cost of spinning on shared variables, we allocated
these buffers in processor local memories, to avoid the con-
gestion of the Myriad main buses.

The queue implementations can be divided in two basic
categories: lock based and client-server. The lock-based
implementations of the concurrent queue utilize the mutexes
provided by the Myriad architecture. We implemented two
different lock-based algorithms: In the first one, a single lock
is used to protect the critical section of the enqueue() func-
tion and a second one to protect the critical section of the
dequeue(). Therefore, simultaneous access to both ends of

Table 2 Concurrent queue implementations: (“Y” indicates the ones
that are evaluated in this work)

the queue can be achieved. The second implementation uti-
lizes only one lock to protect the whole data structure.

4.1 Client-server implementations

The client-server implementations are based on the idea that
a server arbitrates the access requests to the critical sections
of the application and executes them. Therefore, the clients
do not have direct access to the critical section. Instead, they
provide the server with the required information for execut-
ing the critical section. This set of implementations is an
adaptation of the Remote Core Locking algorithm [9,10]. In
Myriad platform the role of the server can be played either by
LEON or a SHAVE core, as shown in Table 2. The SHAVEs
are the clients, requesting access to the shared data from the
server.

To maximize the efficiency of the client-server implemen-
tations, each SHAVE allocates the elements to be enqueued
inits local CMX slice. Although the CMX is much smaller in
comparison with the DDR memory, it provides much smaller
access time for the SHAVES than, for example, with the DDR.
The server allocates the queue ina CMX slice, since LDRAM
is much smaller.

We implemented two versions of the client-server syn-
chronization algorithms. In the first one, the server main-
tains the FIFO order of the queue by storing the addresses of
the allocated elements in a FIFO manner. In an enqueue, the
client allocates the element in its local CMX slice and then
sends the address of the element to the server, which pushes
the address in the queue. In the dequeue case, the client sends
a dequeue message to the server and waits for the server to
respond with the address of the dequeued element.

Figure 2 illustrates this implementation with only two
clients: Client0 enqueues element e5 in CMX0 and sends
the address to the server. The server pushes the address in
the queue and notifies client that the enqueue has finished

Synchronization primitive

Mutex Shared Var SHAVE FIFO
No server Y - -
Leon-srv-addr - Y -
SHAVE-srv-addr - Y Y
Leon-srv-h/t - - -
SHAVE-srv-h/t - Y Y
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Fig. 2 Client-server implementation: the server maintains the order of
the allocated elements by storing their addresses in a FIFO
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with an eng_fin message. Clientl requests a dequeue and the
server responds with the address of the e0 element.

We evaluated this algorithm by designing several alterna-
tives: In the first one, the server is the LEON processor and
in the second is a SHAVE. In Table 2 are displayed as Leon—
server—addr and SHAVE-server—addr respectively. Also,
we experimented with both shared variables and SHAVEs’
FIFOs synchronization primitives.

The main advantage of this algorithm is that it reduces the
stalling of the clients, especially during the enqueue oper-
ations. The client sends the address to the server and then
can proceed with other calculations, without waiting for the
server to respond. This applies especially in the case where
the SHAVE FIFO synchronization primitive is used. The
client stalls only when the server’s FIFO is full. Additionally,
the fact that the element allocation takes place only in local
memories reduces both the execution time and the power con-
sumption. Another parameter that affects the efficiency of the
algorithm is the synchronization primitive used. We expect
SHAVEs’ FIFOs primitive to be efficient both in terms of
performance and power consumption, since it avoids mem-
ory accesses during the exchange of information between the
clients and the server. However, the main disadvantage in this
case is that it can be only implemented using a SHAVE as a
server.

In the second client-server implementation we altered the
queue structure as follows: the server, instead of managing a
queue to store object addresses, utilizes two pointers: head
and fail that point at the first and the last element allocated
respectively. Additionally, each element has a next pointer
which points to the next element, keeping in this way the
FIFO order. All these pointers are managed by the server, in
order to improve the application parallelism by allowing the
clients to perform tasks only outside the critical section.

When a client allocates an object in its local queue, it sends
the address to the server, as in the first implementation. When
the server receives the address, first updates the next pointer
of the last element to point in the newly allocated element.
Then, it updates the tail pointer to point to the new element.
(This is the same that happens in a singly linked list FIFO
data structure). In the dequeue, as soon as the server receives
the request, sends to the client the address of the element
pointed by the head and then updates the head, using the
next pointer of the dequeued element.

To illustrate this algorithm, Fig. 3 shows an example. Ini-
tially, five elements exist in the queue. e0 is the first allocated
and e4 is the last one. Therefore, head points to e0 and fail
to e4. Client0 allocates element e5 an element in CMX0 and
sends the address to the server. The server sets the next pointer
of e4 to point to e5 and updates the fail pointer to e5 as well.
Then, sends an eng_fin message to Client0. Client] requests
adequeue. The server receives the message, updates the head
pointer and sends the address of €0 to the client.

| Client0 | | Client1 | | Server I
tail en —
\ head - —— 1 & sets next
CMX0 ; e — 65 »{ pointer and
ned nie2 el updates tail
CcMX1 \ \ degyy~
—¥ 200 Al updates head
he3 he1 €a =80 —
il U&eq)

\%

\
Time

Fig. 3 Client-server implementation: the server maintains FIFO order
of the allocated objects by pointing to the first and the last enqueued
elements

In comparison with the previous one, this implementation
consumes less memory space. Therefore, the space available
in each local CMX slice is affected only by the number of
allocated elements of the corresponding client, unlike the pre-
vious implementation where the queue of stored addresses
reduced the available memory of the slice where it was allo-
cated. Itis important to mention that each client accesses only
its local CMX slice during the enqueue and the dequeue oper-
ations. Only the server makes inter-slice accesses. The disad-
vantage of this implementation is that it cannot be efficiently
implemented using LEON as a server, since it accesses the
next pointers of each element with high cost. The imple-
mentation was designed using both shared variables and
SHAVESs’ FIFOs for communication between the server and
the clients. In Table 2 is displayed as SHAVE-srv_ ht.

5 Experimental results

The concurrent queue implementations were evaluated using
a synthetic benchmark, which is composed by a fixed work-
load of 20,000 operations and it is equally divided between
the running SHAVES. In other words, in an experiment with
4 SHAVE:S each one completes 5,000 operations, while in an
experiment with 8 SHAVEs, each one completes 2,500 oper-
ations. In the implementations where a SHAVE is utilized as
a server, we run the experiments using up to six clients.

All algorithms were evaluated in terms of time perfor-
mance, for the given fixed workload, which is expressed in
number of execution cycles. More specifically, in Myriad
platform the data flow is controlled by LEON. SHAVEs start
their execution when instructed to do so by LEON and then
LEON waits for them to finish. The number of cycles mea-
sured is actually LEON cycles from the point that SHAVEs
start their execution until they all finish. This number rep-
resents accurately the execution time. Power consumption
was measured using a shunt resistor connected at the 5V
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power supply cable. Using a voltmeter attached to the resis-
tor’s terminals we calculated the current feeding the board
and therefore the power consumed by the Myriad platform.

We performed two sets of experiments for evaluating
the behavior of the designs: dedicated SHAVEs and ran-
dom operations. In the “dedicated SHAVEs” experiment each
SHAVE performs only one kind of operations. In other words,
half of the SHAVEs enqueue and half dequeue elements
to/from the data structure. “Random operations” means that
each SHAVE has equal probability to perform either an
enqueue or a dequeue each time it prepares its next oper-
ation.

5.1 Execution time evaluation

In this subsection we present the performance experimental
results. mix-2-locks is the lock-based queue implementation
with 2 locks, while mtx-1-lock is the same implementation
with a single lock. leon-srv-addr refers to the client-server
implementation, where the server is LEON and stores the
addresses of the objects in a queue, while SHAVE-srv-addr
is the same implementation where a SHAVE is the server.
leon-srv-ht and shave-srv-ht refers to the client-server imple-
mentation where the server (LEON and a SHAVE respec-
tively) manages a head and a tail pointer to maintain the
FIFO order. Finally, “shared-var” means that the communi-
cation is achieved using a shared buffer (i.e. shared variables)
and “sf” means that the communication is made through the
SHAVESs’ FIFOs.

Figures 4 and 5 show the execution time of dedicated
SHAVESs and random operations respectively. We notice that
the mtx-2-locks implementation is the fastest one in the case
of 8 SHAVEs and seems to scale well. This is expected, since
it provides the maximum possible concurrency. It requires
about half the number of execution cycles in comparison
with the mtx-1-lock.

The SHAVEs’ FIFOs implementations perform well,
especially in the case of 4 SHAVEs in the random oper-
ations experiment (28.3 % in comparison to the mtx-2-
locks). The utilization of SHAVEs’ FIFOs for communica-
tion seems to be very efficient in terms of execution time. On
the other hand, shared variables provide much lower execu-
tion time: For example, shave-srv-addr-shared-var leads to
53.3 % more execution cycles in comparison with the shave-
srv-addr-sf in the dedicated SHAVEs experiment with 6
SHAVE:s. Also, the implementations where the server main-
tains a head and tail pointer performs slightly better in most
cases in comparison with the one where the server stores the
addresses of the elements (up to 16.7 % in random operations
for the 6 SHAVEs experiment).

In most implementations, we notice a very large drop in
the execution time from 2 to 4 SHAVES, due to the increase of
concurrency. In other words, in the 2 SHAVEs experiments
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there are time intervals where no client requests access to the
shared data. However, in case of four clients or more, there
is always a SHAVE accessing the critical section. Since the
workload is fixed, there is a large drop in the execution time
compared to the 2 client experiment. However, since access
to the critical section is serialized, the execution time drop
for more than 4 SHAVEs is much smaller (e.g. in case of
mtx-2-locks) or even non-existent (e.g. in mix-1-lock).

Finally, in all experiments where a SHAVE is utilized as
a server there is an increase in execution time from 4 to 6
SHAVE:s. The reason for that is the overhead added by inter-
slice accesses, which is larger than the decrease in execution
time due to increased concurrency. The utilization of LEON
as a server using shared variables for communication (i.e.
leon-srv-addr-shared-var) is inefficient since two overheads
are accumulated: LEON is accessing variables in the CMX
memory (which is more costly in comparison with SHAVEs)
and the spinning on shared variables for achieving commu-
nication.

5.2 Power consumption evaluation

As previously stated, power consumption was measured
using a shunt resistor connected to the power supply of
the platform. Figures 6 and 7 show the power consump-
tion for dedicated SHAVEs and random operations. For the
8 SHAVESs experiment the most power efficient implemen-
tation is the lock-based with a single lock (6.25 % in ded-
icated SHAVEs in comparison with the mix-2-locks). How-
ever, for a smaller number of clients, the SHAVEs’ FIFOs
implementations are the most power efficient. Indeed, power
consumption drops up to 6.8 % for 6 SHAVEs in the dedi-
cated SHAVEs experiment.

We notice that the lock-based implementation with a sin-
gle lock consumes less power than the 2-lock implemen-
tation. This is due to the fact that the power consumption
is affected by the number of SHAVESs accessing the mem-
ory concurrently. In the single lock implementation only one
SHAVES accesses the memory for performing operations.
However, in the 2-locks implementation there are 2 SHAVESs
which perform operations concurrently, while the rest are
spinning on the locks. Therefore, the 2-lock algorithm con-
sumes more power.

Spinning on a lock consumes very low power, because
mutexes are hardware implemented. Microbenchmarking
experiments show that 8§ SHAVEs spinning on a lock concur-
rently, consume about 20 % less power in comparison with
the case where 8 SHAVESs access the memory concurrently.
In fact, this is the case with the shared variables synchroniza-
tion primitive. All shared variable implementations consume
a lot of power, because spinning on a memory location is
energy inefficient, even if the spinning takes place in a local
CMX slice.
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SHAVEs’ FIFOs communication method is the most
energy efficient. When a SHAVE tries to write in a full
FIFO or read from an empty FIFO stalls, until the FIFO
gets non-full or non-empty respectively. Microbenchmark-
ing experiments we performed show that 8 SHAVEs stalling
in a FIFO consume about 28 % less power than spinning
on a mutex. Indeed, stalling in FIFOs is common in our
experiments, where the contention is high. The fact that this
synchronization algorithm avoids spinning on memory loca-
tions and set SHAVESs to stall mode makes it very power
efficient.

mtx-2-locks ~#~leon-srv-addr-shared-var

~#shave-srv-addr-sf shave-srv-ht-shared-var

5.3 Energy per operation evaluation

To evaluate in more depth the synchronization algorithms,
we present the energy per operation results in Figs. 8 and 9
for the dedicated and the random operations experiments
respectively. The results are normalized to the mtx-2-locks
calculated values. We notice that the RCL implementations
that utilize the SHAVE’s FIFOs for communication between
the clients and the server consume in almost all cases less
energy per operation than the mix-2-locks. In the random
operation experiment, shave-srv-ht-sf consumes 33 % less
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Fig. 6 Power consumption for
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energy per operation in comparison with the mitx-2-locks.
Indeed, when utilizing SHAVEs FIFOs instead of memory
buffers for arbitration between the SHAVE:s, the energy con-
sumption is low. The shared buffer communication scheme
is proven to be inefficient in terms of energy consumption.
For instance, leon-srv-addr-shared-var consumes more than
two times energy per operation in comparison with the m#x-
2-locks.
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5.4 Discussion

Mutex synchronization primitive is indeed efficient for the
concurrent queue implementation in terms of both perfor-
mance and power consumption (especially in the Myriad
platform, where mutexes are hardware implemented and very
optimized). However, our results show that RCL implemen-
tations provide very promising results for the queue imple-
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mentations and in most cases perform similar to the lock-
based ones. We expect that in future MPSoCs, where the
number of cores will increase even further, client-server
implementations will become even more efficient.

The reason that the RCL implementations seem an attrac-
tive alternative to the lock-based ones is the fact that they
transfer computational overhead of the critical sections from

mtx-2-locks
~shave-srv-addr-sf

~#—leon-srv-addr-shared-var
shave-srv-ht-shared-var

the cores, which are the queue workers (clients) to another
dedicated core that plays the role of the server. The computa-
tional overhead of inserting and removing elements to/from
the queue is transferred from the clients to the server. There-
fore, while the server executes the critical section, the clients
can proceed with other computations, thus increasing the par-
allelism and reducing the application execution time. Further-
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more, by minimizing the communication overhead between
the clients and the server (e.g. by utilizing the SHAVE’s
FIFOs), the results are very satisfactory. On the other hand,
in the lock-based implementations, the computational over-
head of accessing the queue elements is handled by the work-
ers. However, in this case, simultaneous accesses to the data
structure can be achieved, which is obviously not possible
in the RCL algorithm. However, with these experiments we
show that the RCL algorithm should be evaluated in embed-
ded systems along with the lock-based solutions, especially
in applications that use data structures which allow relatively
low level of parallelism.

6 Conclusions

In this work we evaluated a set of concurrent queue imple-
mentations inspired from the HPC domain to an embed-
ded platform. We showed that applications from the HPC
domain utilizing concurrent queues can be efficiently ported
to embedded systems. Also, this work proves that HPC syn-
chronization algorithms can be utilized in the embedded sys-
tems and provide satisfactory results. We plan to extend our
work by porting more synchronization algorithms, by taking
advantage of other hardware based synchronization primi-
tives, such as interrupts and DMA and evaluate our approach
in real-world multithreaded applications.
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