
Efficient and Robust Allocation Algorithms in Clouds
under Memory Constraints

Olivier Beaumont
Inria Bordeaux, France

Olivier.Beaumont@inria.fr

Lionel Eyraud-Dubois
Inria Bordeaux, France

Lionel.Eyraud-
Dubois@inria.fr

Juan-Angel Lorenzo
Inria Bordeaux, France

Juan-Angel.Lorenzo-del-
Castillo@inria.fr

Paul Renaud-Goud
Inria Bordeaux, France

Paul.Renaud-
Goud@inria.fr

ABSTRACT
We consider robust resource allocation of services in Clouds.
More specifically, we consider the case of a large public or
private Cloud platform such that a relatively small set of
large and independent services accounts for most of the over-
all CPU usage of the platform. We will show, using a recent
trace from Google, that this assumption is very reasonable
in practice. The objective is to provide an allocation of the
services onto the machines of the platform, using replication
in order to be resilient to machine failures. The services
are characterized by their demand along several dimensions
(CPU, memory,. . . ) and by their quality of service require-
ments, that have been defined through an SLA in the case
of a public Cloud or fixed by the administrator in the case of
a private Cloud. This quality of service defines the required
robustness of the service, by setting an upper limit on the
probability that the provider fails to allocate the required
quantity of resources. This maximum probability of failure
can be transparently turned into a set of (price, penalty)
pairs.

Our contribution is two-fold. First, we propose a formal
model for this allocation problem, and we justify our as-
sumptions based on an analysis of a publicly available clus-
ter usage trace from Google. Second, we propose a resource
allocation strategy whose complexity is low in the number
of resources, what makes it well suited to large platforms.
Finally, we provide an analysis of the proposed strategy
through an extensive set of simulations, showing that it can
be succesfully applied in the context of the Google trace.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—General

Keywords
Cloud Computing; resource allocation; reliability; column
generation; probability estimation; replication; resilience

1. INTRODUCTION & RELATED WORKS
Recently, there has been a dramatic change in both the plat-
forms and the applications used in parallel processing. On
the one hand, we have witnessed an important scale change,
that is expected to continue both in data centers and in ex-
ascale machines. On the other hand, an important simpli-
fication change has also occurred in the application models
and scheduling algorithms. On the application side, many
large scale applications are expressed as (sequences of) in-
dependent tasks, such as MapReduce applications [1, 2] or
even run as independent services handling requests, as in
the case of a PaaS (Platform as a Service) Cloud.

In fact, the main reason behind this paradigm shift is not
related to scale but rather to unpredictability. First of all,
estimating the duration of a task or the time of a data trans-
fer is extremely difficult, because of NUMA effects, shared
platforms, complicating network topologies and the number
of concurrent computations/transfers. Moreover, given the
number of involved resources, failures are expected to hap-
pen at a frequency such that robustness to failures is a cru-
cial issue for large scale applications running on Cloud plat-
forms. In this context, the cost of purely runtime solutions,
agnostic to the application and based either on checkpoint-
ing strategies [3, 4] or application replication [5] is expected
to be unnecessarily large in the context of regular applica-
tions, and there is a clear interest for application-level so-
lutions that take the inner structure of the application to
enforce fault-tolerance.

In this paper, we will consider the context of a PaaS Cloud
(Platform as a Service), in which several independent ser-
vices are handling queries and need to be allocated onto
physical machines (PMs) [6, 7]. In the static case, map-
ping services with heterogeneous computing demands onto
PMs with capacities is amenable to a multi-dimensional bin-
packing problem (each dimension corresponding to a differ-
ent kind of resource, memory, CPU, disk, bandwidth,. . . ).
Indeed, in this context, on the Cloud administrator side,
each physical machine comes with its computing capacity



(i.e. the number of flops it can process during one time-
unit), its memory capacity and its failure rate (i.e. the
probability that the machine will fail during the next time
period). On the client side, each service comes with its re-
quirement along the same dimensions (memory and CPU
footprints) and a reliability requirement that has been ne-
gociated through an SLA [8].

In order to deal with resource allocation problems in IaaS
(Infrastructure as a Service) Clouds, several sophisticated
techniques have been developed in order to optimally allo-
cate VMs (Virtual Machines) onto PMs, either to achieve
good load-balancing [9, 10] or to minimize energy consump-
tion [11]. Most of the works in this domain are based on
offline [12] and online [13] solutions of Bin Packing variants.
However, reliability constraints have received much less at-
tention in the context of Cloud computing, as underlined by
Cirne et al. [8].

In this paper, we will consider reliability issues in a simplified
context, although representative of many Cloud platforms,
as we will demonstrate it in Section 2.2 using a publicly
available trace from a Google cluster [14]. We assume that
each service represents a divisible workload, in the sense
that it is possible to allocate its workload freely upon the
machines of the platform. This is indeed the case for many
Internet services (like merchant websites for example), for
which it is possible to have a load-balancing frontend which
forwards the requests in the correct proportions to each vir-
tual machine. In a fashion similar to a previous work [8], we
consider reliability in a static scenario, and our objective is
to compute allocations that are resilient to failures thanks
to overprovisioning: each service is allocated more resources
than needed in order to enforce that enough resource is avail-
able to serve requests if failures happen. More specifically,
our goal is to find an allocation that will remain valid with a
given probability in presence of failures (described through
a probability distribution).

This rather coarse-grain model (where we consider services
instead of individual virtual machines) makes it possible to
propose sophisticated allocation algorithms (based on pow-
erful techniques such as column generation) while consider-
ing platforms with relatively large number of machines. In-
deed, as shown in Section 2.2, a rather small fraction of all
long running services consists of many tasks and represents
a majority of the resource usage. It is thus meaningful to
concentrate the computational efforts for the allocation on
those large services. Moreover, in the trace, a large fraction
of these long running jobs belongs to high priority classes,
thus justifying the importance of reliability requirements.

This work is a follow-up of [15] and [16], where reliability
of service allocation problems have been considered, but in
the context where services are defined by their processing re-
quirement only (and not their memory requirement) and in
the context of IaaS Clouds. One of the main results of [15] is
that estimating the reliability of a given allocation is already
a #P-complete problem [17]. In [16], energy minimization
is considered, and asymptotically optimal approximation al-
gorithms are proposed, based on the use of Chernoff and
Hoeffding bounds. In the present paper, we improve on this
previous work on several fronts:

• We have enhanced the realism of the model by adding
memory requirements for services, which we tackle with
an algorithm that globally optimizes the number of
machines each services is alloted to, given the avail-
able resources;

• We prove that our model is compliant with the charac-
teristics of a class of services (jobs in [18] terminology)
of the previously mentioned Google trace data [14].
This set of services (each service consisting in many
long running tasks) is relatively small (so that sophis-
ticated optimization techniques can be used on it) but
still encompasses most of the CPU usage of the plat-
form.

• We propose a more powerful packing heuristic to per-
form the actual allocation of services, based on column
generation techniques (see Section 3.2);

The paper is organized as follows. In Section 2, we present
the notations that will be used throughout this paper and
we define the characteristics of both the platform and the
services that are suitable for the techniques we propose. Our
assumptions are justified by an analysis of a cluster usage
trace made available by Google [14]. In Section 3, we pro-
pose an algorithm for solving the resource allocation problem
under reliability constraints. It relies on a pre-processing
phase that is used to decompose the problem into a relia-
bility problem and a packing problem. Finally, we present
in Section 4 a set of detailed simulation results that enables
us to analyze the performance of the algorithm proposed in
Section 3 both in terms of the quality of returned allocations
and processing time. Concluding remarks are presented in
Section 5.

2. FRAMEWORK

2.1 Platform and services description
In this paper, we assume the following model. On the one
hand, the platform is composed of m homogeneous machines
M1, . . . ,Mm, that have the same CPU capacity C and the
same memory capacity M. Machine heterogeneity will be
discussed in the next section. On the other hand, we aim at
running ns services S1, . . . ,Sns , that come with their CPU
and memory requirements. As stated in the introduction,
we assume that the CPU demand of a service can be spread
across several machines, with a fluid CPU sharing model: on
a given machine, the fraction of the total CPU dedicated to
a given service can take any (rational) value. This expresses
two assumptions: (i) the sharing between services running
on a given machine is done through time multiplexing, whose
grain is very fine, and (ii) the workload of each service can
be balanced among all its running instances, for example
with a frontend which dynamically forwards the requests to
the appropriate instance.

However, we consider that the memory requirements of a
service represent the amount of memory used by any in-
stance of this service, regardless of the amount of computa-
tion power allocated to this service on this machine. This
assumption models the fact that most of the memory used
by virtual machines comes from the complete software stack
image that needs to be deployed, and is compliant with our
observations from the Google trace data in the next section.



In this context, our goal is to minimize the number of used
machines, and to find an allocation of the services onto the
machines such that all packing constraints are fulfilled, and
such that the resource requirements of the service are met
in a robust manner, even in the presence of machine failures.

2.2 Model discussion from trace analysis
Google recently released a complete usage trace from one of
its production clusters [14]. Several teams have analyzed this
trace to describe the associated workload [19]. We tested
some of the assumptions of our model on this trace, and we
present the conclusions in this section.

Data from Google shows that heterogeneity is rather low in
this cluster: a large group (more than 50%) of the machines
is homogeneous and, with four homogeneous classes, it is
possible to cover 98% of the machines.

The workload in the Google trace consists in many services
(they are called jobs in the terminology of this trace), further
divided into tasks, each task being run onto a single machine.
Among other things, the trace provides the priority class of
each service, and reports the memory and cpu usage of each
task on 5-minute intervals. The whole trace spans a time of
about a month.

The first observation that can be made with this data is
that most of the workload (in terms of cpu usage) comes
from a relatively small set of services. Indeed, it can be
observed that at any time in the trace, the largest 150 ser-
vices account for at least 90% of the overall CPU usage and
that the largest 500 services account for 99% of the CPU
usage. Therefore, even though the overall trace involves a
huge number of services, it is of interest to concentrate on a
small fraction of them (100 to 500 services) that accounts for
most of the platform usage. This justifies our assumption
that it is possible to focus the optimization on relatively few
services, and thus use sophisticated allocation techniques.
Note that most of these services represent a large number of
tasks, what explains their overall weight. It is therefore cru-
cial for the algorithms to concentrate on services (or jobs)
and not on tasks (or virtual machines).

The context of this paper is also based on the fact that
services are user-facing jobs that run for very long dura-
tions and require strong reliability guarantees. By exam-
ining the trace, it is possible to identify the services which
exhibit these characteristics. Indeed, one of the higher pri-
ority classes is the production class, so we have selected ser-
vices from this class. To identify long running jobs, we have
picked at random 30 5-minute intervals in each day of the
trace, and we have isolated the services which are active on
at least 90% of these intervals (in order to cope with missing
data). This yields a rather large number of services (1240),
but most of them use a very small amount of CPU. By re-
moving the services which use less than the capacity of a
typical machine of the cluster, we obtain about 120 services
(between 90 and 150 depending on the time interval) which
account for 96% of the CPU usage of the original 1240 ser-
vices. Those large, high-priority, long-running services ac-
count for a significant part of the total CPU usage of the
cluster: on average, about 35%.

0.00

0.25

0.50

0.75

1.00

−0.5 0.0 0.5 1.0

Correlation of memory and cpu

F
ra

c
ti
o
n
 o

f 
s
e
rv

ic
e
s

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Norm. st. dev. of memory usage

F
ra

c
ti
o
n
 o

f 
s
e
rv

ic
e
s

0.00

0.25

0.50

0.75

1.00

0 1 2 3

Range value

F
ra

c
ti
o
n
 o

f 
s
e
rv

ic
e
s

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0

Correlation of memory and cpu

F
ra

c
ti
o
n
 o

f 
s
e
rv

ic
e
s

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Norm. st. dev. of memory usage

F
ra

c
ti
o
n
 o

f 
s
e
rv

ic
e
s

0.00

0.25

0.50

0.75

1.00

0 1 2 3

Range value

F
ra

c
ti
o
n
 o

f 
s
e
rv

ic
e
s

Figure 2: Analysis of the dependency between mem-

ory usage and cpu usage for the tasks of services in

two different datasets: Large on the top, HpLr on

the bottom.

Another assumption of our model states that memory usage
for a service on a machine does not depend on the amount
of cpu allocated to this service on that machine. To test
this assumption, we have analyzed two sets of jobs: (i) the
services that account for 90% of the CPU usage on 20 dif-
ferent snapshots all over the duration of the trace, and that
form the Large dataset and (ii) the high-priority, long run-
ning services described above that form the HpLr dataset.
In both cases, for each service, we have analyzed simultane-
ously the memory and cpu usage of each of their individual
tasks, and we have observed that for most of the services,
the memory usage of a task is almost independent of the cpu
usage of that task. This can be seen in Figure 2, by three
different criteria:

• The correlation factor between cpu usage and memory
usage is rather low: the absolute value of the correla-
tion is below 0.5 for 77% of the Large services and
67% of the HpLr services, and it is below 0.4 for 66%
of the Large services and 58% of the HpLr services.

• The variance of the memory usage for a given service is
rather low: the relative standard deviation (the stan-
dard deviation normalized by the mean value) is below
0.25 for 83% of the Large services, and for 77% of the
HpLr services.

• For each service, we have performed linear regression
to analyze the dependency of memory usage on cpu us-
age, and the resulting slopes are small for most of the
services. To account for scaling issues (the values of
the slope depends on the units used to express cpu and
memory usage), we have computed the range, defined
as the ratio between the value estimated by the linear
regression for the median cpu usage and for 0 cpu us-
age. This range is below 1.25 for 75% of the Large

services and 77% of the HpLr services, and below 1.5
for 84% of the services in both datasets.

If we consider the services which show low dependency for
all three criteria (correlation below 0.4, relative standard



0.00 0.01 0.02 0.03 0.04 0.05
cpu

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
m
e
m
o
ry

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018
cpu

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

m
e
m
o
ry

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
cpu

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

m
e
m
o
ry

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
cpu

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

m
e
m
o
ry

Figure 1: Dependency of memory usage vs cpu consumption of four different services. The leftmost plot

shows no dependency between memory and cpu. The other three plots show counter-examples.

deviation below 0.25 and range below 1.25), we get 52%
of the HpLr services, which account for 60% of their CPU
usage, and in the case of the Large services, they represent
59% of the services and 65% of the CPU usage.

These findings show that for a large proportion of the ser-
vices, the memory usage of a task does not depend on its
cpu usage, what validates our model. Typical situations for
(large) services are depicted in Figure 1. In Figure 1, each
plot corresponds to a service and each point corresponds
to the (memory,cpu) profile of one task of this service at a
given time stamp. The leftmost plot corresponds to the case
where the memory usage is independent of the CPU usage,
what is the most classical situation as shown by statistical
distributions depicted in Figure 2. We can however observe
a few tasks that can be considered as outliers as shown in
the 3 other plots. The second plot shows a small but sig-
nificant correlation between CPU and memory usages. The
third service cannot easily be incorporated into our model.
Indeed, it exhibits several types of tasks (corresponding to
the vertical bars) and for each kind of task, there is a large
discrepancy in the memory usage. Incorporating such ser-
vices into our model is left for future work, but such services
are highly untypical in the trace. At last, the rightmost pic-
ture exhibits two classes of tasks (those with memory usage
of order 3.5 × 10−3 and those with memory usage of order
1.3× 10−3). In order to be compliant with our model, such
a service needs to be split into two different services. Again,
doing this operation automatically on all services is left for
future work.

2.3 Failure model
In this paper, we envision large-scale platforms, what means
that machine failures are not uncommon and need to be han-
dled explicitly. Two techniques are usually set up to face
up machine failures: migration and/or replication. Follow-
ing [8], we consider that the response time of migrations is
too high to ensure continuity of the services and we there-
fore concentrate on the use of overprovisioning in order to
provide resilience with very quick recovery time. This over-
provisioning allows a service to continue running seamlessly
after possible failures and the system can replace failed ma-
chines (using a set of backup resources) to obtain the same
reliability guarantees.

More specifically, we assume that machine failures are in-
dependent, and that machines are homogeneous also with
regard to failures. We denote f the probability that a given

machine fails during the time period between two migration
phases. Because of those failures, we cannot ensure that a
service will have enough computational power at its disposal
during the whole time period. The probability that all ma-
chines in the platform fail is indeed positive. Therefore, in
our model each service Si is also described with its reliability
requirement ri, which expresses a constraint: the probability
that the service has not enough computational power (less
than its demand di) at the end of the time period must be
lower than ri.

In this context, by replicating a given service on many ma-
chines whose failure are independent, it will be possible to
achieve any reliability requirement. Our goal in this paper
is to do it for all services simultaneously, i.e. to enforce
that capacity constraints, reliability requirements and ser-
vice demands will be satisfied, while minimizing the number
of required machines.

2.4 Problem description
We are now ready to state precisely the problem. We have
m homogeneous machines with CPU capacity C, memory
capacity M, and failure probability f . We also have ns ser-
vices, where service Si has a CPU requirement di, memory
requirement mi, and a reliability constraint ri. An alloca-
tion is defined by Ai,j , the CPU allocated to service Si on
machine Mj , for all i ∈ {1, . . . ,ns} and j ∈ {1, . . . ,m}.
For all j ∈ {1, . . . ,m}, we denote is alivej the random
variable which is equal to 1 if machine Mj is alive at the
end of the time period, and 0 otherwise. We can then de-
fine, for all i ∈ {1, . . . ,ns}, the total CPU amount that
is available to service Si at the end of the time period:
Alive cpui =

∑m

j=1 is alivej × Ai,j . Furthermore, we use
the notation 1Ai,j

, which is equal to 1 if Ai,j is positive,
and 0 otherwise. The problem of the minimization of the
number of used machines can be written as follows, where
equations (2) and (3) depict the packing constraints, while
Equation (1) deals with reliability requirements:

min
m
s.t.































∀i,P (Alive cpui < di) < ri (1)

∀j,
ns
∑

i=1

mi1Ai,j>0 ≤M (2)

∀j,
ns
∑

i=1

Ai,j ≤ C (3)



We will use in this paper two approaches for the estimation
of the reliability requirements. In the No-Approx model,
the reliability constraint is actually written P (Alive cpui < di)
< ri.

However, as previously stated, given an allocation of one ser-
vice onto the machines, deciding whether this allocation ful-
fills the reliability constraint or not is a #P-complete prob-
lem [15]; this shows that estimating this reliability constraint
is a hard task. In [20], it has been observed that, based on
the approximation of a binomial distribution by a Gaus-
sian distribution, P (Alive cpui < di) < ri is approximately
equivalent to

m
∑

j=1

Ai,j −Bi

√

√

√

√

m
∑

j=1

A2
i,j ≥ Ki, where

Ki =
di

1− f
and Bi = zri ×

√

f

1− f
.

zri is a characteristic of normal distributions, and only de-
pends on ri, therefore it can be tabulated beforehand. In
the following, we will denote this model by the Normal-

Approx model.

Both packing and fulfilling the reliability constraints are
hard problems on their own, and it is even harder to deal
with those two issues simultaneously. In the next section,
we describe the way we solve the global problem, by decom-
posing it into two sub-problems that are easier to tackle.

3. PROBLEM RESOLUTION
We approach the problem through a two-step heuristic. The
first step focuses mainly on reliability issues. The general
idea about reliability is that, for a given service, in order to
keep the replication factor low (and thus reduce the total
number of machines used), the service has to be divided
into small slices and distributed among sufficiently many
machines. However, using too many small slices for each
service would break the memory constraints (remember that
the memory requirement associated to a service is the same
whatever the size of slice, provided it is positive). The goal
of the first step, described in Section 3.1, is thus to find
reasonable slice sizes for each service, by using a relaxed
packing formulation which can be solved optimally.

In a second step, described in Section 3.2, we compute the
actual packing of those service slices onto the machines.
Since the number of different services allocated to each ma-
chine is expected to be low (because of the memory con-
straints), we rely on a formulation of the problem based
on the partial enumeration of the possible configurations of
machines, and we use column generation techniques [21] to
limit the number of different configurations.

3.1 Focus on reliability
In this section, we describe the first step of our approach:
how to compute allocations that optimize the compromise
between reliability and packing constraints, under both No-

Approx and Normal-Approx models. This is done by
considering a simpler, relaxed formulation of the problem,
that can be solved optimally. We start with the Normal-

Approx model.

3.1.1 Normal-Approx model

As stated before, in this first phase, we relax the problem
by considering global capacities instead of capacities per ma-
chine. We thus consider that we have at our disposal a to-
tal budget mM for memory requirements and mC for CPU
needs, and use the following formulation:

min
m
s.t.



















































∀i,
m
∑

j=1

Ai,j −Bi

√

√

√

√

m
∑

j=1

A2
i,j ≥ Ki (4)

m
∑

j=1

ns
∑

i=1

mi1Ai,j>0 ≤ mM (5)

m
∑

j=1

ns
∑

i=1

Ai,j ≤ mC (6)

In the following, we prove that this formulation can be solved
optimally. We define a class of solutions, namely homoge-
neous allocations, in which each service is allocated on a set
of machines, with the same CPU requirement. Formally, an
allocation is homogeneous if for all i ∈ {1, . . . ,ns}, there ex-
ists Ai such that for all j ∈ {1, . . . ,m}, either Ai,j = Ai or
Ai,j = 0.

Due to lack of space, we refer the reader to the companion
research report [22] where all proofs are detailed.

Lemma 1. On the relaxed problem, homogeneous alloca-
tions is a dominant class of solutions.

An homogeneous allocation is defined by ni, the number
of machines hosting service Si, and Ai, the common CPU
consumption of service Si on each machine it is allocated to.
The problem of finding an optimal homogeneous allocation
can be written as:

min m s.t.



































∀i, niAi −BiAi

√
ni ≥ Ki (7)

∀i, Ai ≥ 0
∑

i

nimi ≤ mM

∑

i

niAi ≤ mC

which can be simplified into

min m s.t.























∀i,√ni > Bi
∑

i

mini ≤ mM

∑

i

Ki

1− Bi√
ni

≤ mC

(8)

In the following, we search for a fractional solution to this
problem: m, the ni’s and the Ai’s are not restricted to in-
teger values. We begin by formulating two remarks to help
solving this problem.



Remark 1. We can restrict to solutions for which the
two last constraints in Problem (8) are equalities.

Remark 2. We define f1 and f2 by f1 (n1, . . . , nns) =
∑

i mini and f2 (n1, . . . , nns) =
∑

i
Ki

1− Bi√
ni

.

Necessarily, at a solution with minimal m, we have:

∀i, j 1

mi

∂f2
∂ni

=
1

mj

∂f2
∂nj

.

This shows that for any optimal solution, there exists X
such that

∀i − BiKi

mi

√
ni(
√
ni −Bi)2

=
1

mi

∂f2
∂ni

= X.

Computing the ni’s given X

By denoting xi =
√
ni, let us consider the following third-

order equation xi(xi−Bi)
2+BiKi

miX
= 0. The derivative is null

at xi = Bi and xi = Bi/3, and the function tends to +∞
when xi → +∞. Since we search for xi > Bi > 0, we deduce
that for any X < 0, this equation has an unique solution.
Let us denote gi(X) the unique value of ni such that

√
ni is

a solution to this equation. As xi(xi−Bi)
2 ≥ (xi−Bi)

3, we

know that xi ≤ Bi+ 3
√

−BiKi/miX. We can thus compute

gi(X) with a binary search inside ]Bi, Bi+ 3
√

−BiKi/miX],
since x 7→ x(x − Bi)

2 ≤ x3 is an increasing function in
this interval. Incidentally, we note that for all i, gi is an
increasing function of X.

Computing X

According to remark 2, for any optimal solution there exists
X such that

∑

i

migi(X) = M/C ×
∑

i

Ki

1− Bi√
gi(X)

. (9)

Since the left-hand side is increasing with X, and the right-
hand side is decreasing with X, this equation has an unique
solution X∗ which can be computed by a binary search on
X. Once X∗ is known, we can compute the ni and we are
able to derive the Ai’s. The solution S∗ computed this way
is the unique optimal solution: for any optimal solution S′,
there exists X ′ which satisfies the previous equation. Since
this equation has only one solution, X ′ = X∗ and S′ = S∗.

We now show how to compute upper and lower bounds for
the binary search on X. As shown previously, we have an
obvious upper bound: X < 0. We express now a lower
bound. Let n∗

i be defined, for all i, by

min
∗
i ≥ 0 and min

∗
i =

M

C
× Ki

1− Bi√
n∗
i

.

Then
√

n∗
i is a solution of a second-order equation, n∗

i −

Bi

√

n∗
i −MKi/Cmi = 0, and since n∗

i ≥ 0, we can compute:

√

n∗
i =

1

2
×
(

Bi +

√

B2
i +

4MKi

Cmi

)

.

Now let

Xi = −
BiKi

√

n∗
i

(√

n∗
i −Bi

)2 and i− = argmini Xi.

For all i, Xi− ≤ Xi. Since gi is increasing with X, we have
gi(Xi−) ≤ gi(Xi) = n∗

i . Since x 7→ Ki/(1 − Bi/
√
x) is

non-increasing, this implies

M

C

Ki

1−Bi/
√

n∗
i

≤ M

C

Ki

1−Bi/
√

gi(Xi−)
.

From the definition of n∗
i , we can conclude

∑

i

migi(Xi−) ≤ M

C
×
∑

i

Ki

1− Bi√
gi(Xi−

)

⇒ X∗ ≥ Xi− .

With the same line of reasoning, we can refine the upper
bound into X∗ ≤ Xi+ , where i+ = argmaxi Xi, by showing

∑

i

migi(Xi+) ≥
M

C
×
∑

i

Ki

1− Bi√
gi(Xi+

)

.

3.1.2 No-Approx model

In the previous section, we showed how to compute an op-
timal solution to the relaxed problem under the Normal-

Approx model, but we have no guarantee that this solution
will meet the reliability constraints under the No-Approx

model.

Given an homogeneous allocation for a given service Si, the
amount of alive CPU of Si follows a binomial law: Alive cpui

∼ Ai×B (ni, 1− f). We can then rewrite the reliability con-
straint, under theNo-Approxmodel, as P(Ai×B (ni, 1− f)
< di) < ri. This constraint describes the actual distribu-
tion, but since the values (ni, Ai) have been obtained via an
approximation, there is no guarantee that they will satisfy
this constraint. However, since the cumulative distribution
function of a binomial law can be computed with a good pre-
cision very efficiently (see http://www.gnu.org/software/

gsl), we can compute n′
i, the first integer which meets the

constraint. We can then use equation (7) to refine the value
of Bi: we compute B′

i so that equation (7) with Ai and n′
i

is an equality, so that the approximation of the Normal-

Approx model is closer to the actual distribution for these
given values of Ai and ni.

We compute new Bi’s for all services, and iterate on the
resolution of the previous problem, until we reach a conver-
gence point where the values of the Bi do not change. In our
simulations (see section 4), this iterative process converges
in at most 10 iterations.



3.2 Focus on packing
In the previous section, we have described how to obtain
an optimal solution to the relaxed problem 8, in which ho-
mogeneous solutions are dominant. In the original problem,
packing constraints are expressed for each machine individu-
ally, and the flexibility of non-homogeneous allocations may
make them more efficient. Indeed, an interesting property
of equation (4) is that ”splitting” a service (i.e., dividing
an allocated CPU consumption on several machines instead
of one) is always beneficial to the reliability constraint (be-
cause splitting keeps the total sum constant, and decreases
the sum of squares). In this section, we thus consider the
packing part of the problem, and the reliability issues are
handled by the following constraints: the allocation of ser-
vice Si on any machine j should not exceed Ai, and the
total CPU allocated to Si should be at least niAi. Since the
(ni, Ai) values are such that the homogeneous allocation sat-
isfies the reliability constraint, the splitting property stated
above ensures that any solution of this packing problem sat-
isfies the reliability constraint as well.

The other idea in this section is to make use of the fact
that the number k of services which can be hosted on any
machine is low. This implies that the number of different
machine configurations (defined as the set of services allo-
cated to a machine) is not too high, even if it is of the
order of nsk. We thus formulate the problem in terms of
configurations instead of specifying the allocation on each
individual machines. However, exhaustively considering all
possible configurations is only feasible with extremely low
values of k (at most 4 or 5). In order to address a larger
variety of cases, we use in this section a standard column
generation method [21] for bin packing problems.

In this formulation, a configuration Cc is defined by the frac-
tion xi,c of the maximum capacity Ai devoted to service Si.
According to the constraints stated above, configuration Cc
is valid if and only if

∑

i mi ⌈xi,c⌉ ≤M,
∑

i xi,cAi ≤ C, and
∀c, 0 ≤ xi,c ≤ 1. Furthermore, we only consider almost full
configurations, defined as the configurations in which all ser-
vices except at most one are assigned a capacity either 0 or
1. Formally, we restrict to the set F of valid configurations
Cc such that card {i, 0 < xi,c < 1} ≤ 1.

We now consider the following linear program P, in which
there is one variable λj for each valid and almost full con-
figuration:

min
∑

c∈F

λc s.t. ∀i,
∑

c∈F

λcxi,c ≥ ni (10)

Despite the high number of variables in this formulation,
its simple structure (and especially the low number of con-
straints) allows us to use column generation techniques to
solve it. The idea is to generate variables only from a small
subset F ′ of configurations and solve the problem P on this
restricted set of variables. This results in a sub-optimal so-
lution, because there might exist a configuration in F \ F ′

whose addition would improve the solution. Such a variable
can be found by writing the dual of P (the variables in this
dual are denoted pi), i.e.

max
∑

i nipi s.t. ∀c ∈ F ,
∑

i xi,cpi ≤ 1

The sub-optimal solution to P provides a (possibly infea-
sible) solution p∗i to this dual problem. Finding an im-
proving configuration is equivalent to finding a violated con-
straint, i.e. a valid configuration Cj such that

∑

i xi,cp
∗
i >

1. We can thus look for the configuration Cj which maxi-
mizes

∑

i xi,cp
∗
i . This sub-problem is a knapsack problem,

in which at most one item can be split.

Let us denote this knapsack sub-problem as Split-Knapsack.
It can be formulated as follows: given a set of item sizes si,
item memory requirements mi, item profits pi, a maximum
capacity C and a maximum memory size M , find a subset
J of items with weights xi such that

∑

i∈J mi ≤ M , and
∑

i∈J xisi ≤ C which maximizes the profit
∑

i∈J xipi. We
first remark that solutions with at most one split item are
dominant for Split-Knapsack (which justifies that we only
consider almost full valid configurations, i.e. configurations
with at most one split item). Then, we prove that this prob-
lem is NP-complete, and we propose a pseudo-polynomial
dynamic programming algorithm to solve it. This algorithm
can thus be used to find which configuration to add to a par-
tial solution of P to improve it. The proofs of the following
results can be found in the research report [22].

Remark 3. For any instance of Split-Knapsack, there
exists an optimal solution with at most one split item (i.e.,
at most one i ∈ J for which 0 < xi < 1). Furthermore, this
split item, if there is one, has the smallest pi

si
ratio.

Theorem 1. The decision version of Split-Knapsack

is NP-complete.

Theorem 2. An optimal solution to Split-Knapsack can
be found in time O(nsCM) with a dynamic programming al-
gorithm.

Proof. We first assume that the items are sorted by non-
increasing pi

si
ratios. For any value 0 ≤ u ≤ C, 0 ≤ l ≤ M

and 0 ≤ i ≤ n, let us define P (u, l, i) to be the maximum
profit that can be reached with a capacity u, with a memory
size at most l, and by using only items numbered from 1 to
i, without splitting. We can easily derive that P (u, l, i+ 1)
can be computed as


















0 if l = 0 or i = 0
max(P (u, l, i),

P (u− si+1, l −mi+1, i) + pi+1)
if u ≥ si+1 and l ≥ mi+1

P (u, l, i) otherwise

We can thus recursively compute P (u, l, i) in O(nCM) time.

Using Remark 3, we can use P to compute P ′(i), defined as
the maximum profit that can be reached in a solution where
i is split:

P ′(i) = max
0<x<1

P (C − xsi,M −mi, i− 1) + xpi

Computing P ′ takes O(nC) time. The optimal profit is
then the maximum value between P (C,M, n) (in which case
no item is split) and max1≤i≤n P ′(i) (in this case item i is
split).



Algorithm 1 Summary of our two-step packing heuristic

1: function Homogeneous(Bi)
2: Binary Search for X satisfying eq. (9)
3: Compute ni = gi(X), then Ai according to eq. (7)
4: return ni, Ai

5: end function

6: function Heuristic

7: Compute Bi using zri from normal law
8: repeat

9: ni, Ai ← Homogeneous(Bi)
10: Compute n′

i from binomial distribution
11: Compute Bi from eq. (7) with n′

i and Ai

12: until no Bi has changed by more than ε
13: C ← greedy configurations
14: repeat

15: Solve Eq(10) with configurations from C
16: Get dual variables pi
17: c← solution of Split-Knapsack(pi)
18: C ← C ∪ {c}
19: until Solution of Split-Knapsack has profit ≤ 1
20: end function

In this section, we have proposed a two-step algorithm to
solve the allocation problem under reliability constraints.
The complete algorithm is summarized in Algorithm 1. The
execution time of the first loop is linear in ns, and in prac-
tice it is executed at most 10 times, so the first step is linear
(and in practice very fast). The execution time of the second
loop is also polynomial: solving a linear program on ratio-
nal numbers is very efficient, and the dynamic program has
complexity O(nsMC). Furthermore, in practice the num-
ber of generated configurations is very low, of the order of
ns, whereas the total number of possible configurations is
O(nsM). It is also interesting to note that although this
implementation based on column generation has no polyno-
mial complexity guarantee, it is possible to use the same dy-
namic algorithm for Split-Knapsack in an ellipsoid-based
algorithm [23] to obtain a polynomial algorithm. However,
in practice the column generation algorithm is much faster.

4. EXPERIMENTAL RESULTS
In this section, we present experimental results for Algo-
rithm 1, where we aim to analyze its performance both in
terms of number of machines used and of time complex-
ity. The experiments are based on the Google cluster usage
data [14], and more particularly the two datasets Large and
HpLr identified in Section 2.

Simulations were conducted using a node based on two quad-
core Nehalem Intel Xeon X5550, and the source code of all
heuristics and simulations is publicly available on the Web at
http://www.labri.fr/perso/eyraud/index.php/Main/CloudAllocation

4.1 Resource Allocation Algorithms
In order to assess the performance of our algorithm, it is pos-
sible to compute a lower bound on the number of machines
that need to be used to satisfy all the reliability constraints.
By using Hoeffding bounds for a single service, it is possi-
ble to prove [16] that the total cpu usage Ai allocated to
service i needs to satisfy Ai ≥ Ki

1−f+
√

−1

2
log ri

. The sum of

these lower bounds over all services provides the required

lower bound. We note that this lower bound does not take
memory constraints into account.

In order to give a point of comparison to describe the con-
tribution of our algorithm, we have designed an additional
simple greedy heuristic. This heuristic is based on an ex-
clusivity principle: two different services are not allowed to
share the same machine. Each service is thus allocated the
whole CPU power of some number of machines. The appro-
priate number of machines for a given service is the mini-
mum number of machines that have to be dedicated to this
service, so that the reliability constraint is met. This can be
easily computed using the cumulative distribution function
of a binomial distribution and a binary search. We greedily
assign the necessary number of machines to each service and
obtain an allocation that fulfills all reliability constraints.
This heuristic is named no sharing.

In the algorithms based on column generation, the linear
program for eq (10) is solved in rational numbers, because
its integer version is too costly to solve optimally. An integer
solution is obtained by rounding up all values of a given
configuration, so as to ensure that the reliability constraints
are still fulfilled. We will denote our heuristic by colgen.

4.2 Simulation settings
The experiments are based on both the Large and HpLr

datasets, as described in Section 2. Both datasets are di-
vided in a number of time intervals (20 for Large, 86 for
HpLr), and for each of these time intervals, the selected
services are described with the total CPU usage and the
average memory usage of all of their tasks running at that
time. Since reliability requirements are not specified in the
trace, we rely on randomly generated values: the require-
ment of each service is chosen as 10−X , where X is drawn
uniformly between 2 and 8. For each time interval, 10 ex-
periments are performed, with 10 different assignements of
reliability requirements.

In the Google trace, most of the machines are homogeneous
in terms of CPU and memory capacity; we have thus used
the characteristics of these machines (0.5 CPU and memory
capacity in the normalized units of the trace) in our experi-
ments. Finally, the failure probability of each machine is set
to 0.01.

4.3 Number of required machines
The number of required machines by each heuristic is shown
on Figure 3 for the Large dataset, and on Figure 4 for the
HpLr dataset. We can first see that the experiments are
quite stable: the variability incurred by the random choices
of reliability requirements is rather low. We can also see
that colgen uses consistently less than 5% more machines
than the lower bound for the Large dataset (4.2% on av-
erage), and less than 10% for the HpLr dataset (8.2% on
average). On the other hand, no sharing requires significantly
more machines, up to 15% more than the lower bound for
the Large dataset (13.6% on average), and up to 30% more
for the HpLr dataset (25% on average).

The fact that both heuristics perform better for the Large

dataset can be explained by the fact that for services with
lower CPU requirements, the approximations of both heuris-



tics are not so precise, and the lower bound is rather opti-
mistic. This can also be seen on time intervals 15 and 17 on
the Large dataset, where there is actually one very large
service which represents a large part of the CPU usage: the
solutions are dominated by this service, and both heuristics
obtain better results compared to the lower bound.

4.4 Execution time
Since the number of services in both datasets is of the same
order of magnitude (around 100 to 200), to analyze the de-
pendency of the execution time of colgen on the number of
services, we have generated arbitrarily large instances in the
following way. We have merged all the time intervals of
the Large dataset, and we have generated instances with
N services by picking randomly N services in this merged
list. Once again, for each value N we generate 10 different
instances.

We show on Figure 5 the execution time and the number
of configurations generated by the column generation pro-
cedure. We can see that the execution time depends on the
square of the number of services, which is explained by the
fact that the number of configurations generated depends
linearly on the number of services (with a slope of about
3.5). Since the complexity of the dynamic program which
generates the next configuration is also linear, this yields
indeed a quadratic complexity.

0

250

500

750

1000

1250

0 200 400 600 800

Number of services

T
im

e
 (

s
e
c
o
n
d
s
)

0

500

1000

1500

2000

2500

0 200 400 600 800

Number of services

N
u
m

b
e
r 

o
f 
c
o
n
fi
g
u
ra

ti
o
n
s
 g

e
n
e
ra

te
d

Figure 5: Execution time and number of configura-

tions generated.

5. CONCLUSION
The evolution of large computing platforms makes fault-
tolerance issues crucial. In this respect, this paper considers
a simple setting, with a set of services handling requests on
an homogeneous cloud platform. To deal with fault toler-
ance issues, we assume that each service comes with a global
demand and a reliability constraint. Our contribution fol-
lows two directions. First, we analyze a real cluster usage
trace to provide a strong justification of the choices and
assumptions of our model. Second, we borrow and adapt
from the Mathematical Programming and Operations Re-
search literature the use of Column Generation techniques,
that enable to solve efficiently some classes of linear pro-
grams. These techniques enable us to solve in an efficient
manner the resource allocation problem that we consider:
the performance of our algorithm is consistently within 10%
of a theoretical lower bound. This is done under realistic
settings (both in terms of size of the problem and character-
istics of the applications, for instance discrete unsplittable
memory constraints) and we believe that it can be extended

to many other fault-tolerant allocation problems. In partic-
ular, it would be interesting to consider a model where the
memory usage of a service instance is an affine function of
the number of requests it handles.

6. REFERENCES
[1] W. Shih, S. Tseng, and C. Yang, “Performance study

of parallel programming on cloud computing
environments using mapreduce,” in International
Conference on Information Science and Applications
(ICISA). IEEE, 2010, pp. 1–8.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,”Communications of
the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[3] F. Cappello, H. Casanova, and Y. Robert,
“Checkpointing vs. migration for post-petascale
supercomputers,” ICPP’2010, 2010.

[4] A. Bouteiller, F. Cappello, J. Dongarra,
A. Guermouche, T. Hérault, and Y. Robert,
“Multi-criteria checkpointing strategies: response-time
versus resource utilization,” in Euro-Par 2013 Parallel
Processing. Springer, 2013, pp. 420–431.

[5] C. Wang, Z. Zhang, X. Ma, S. S. Vazhkudai, and
F. Mueller, “Improving the availability of
supercomputer job input data using temporal
replication,”Computer Science-Research and
Development, vol. 23, no. 3-4, pp. 149–157, 2009.

[6] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud
computing: state-of-the-art and research challenges,”
Journal of Internet Services and Applications, vol. 1,
no. 1, pp. 7–18, 2010.

[7] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin,
I. Stoica et al., “Above the clouds: A berkeley view of
cloud computing,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28,
2009.

[8] W. Cirne and E. Frachtenberg, “Web-scale job
scheduling,” in Job Scheduling Strategies for Parallel
Processing. Springer, 2013, pp. 1–15.

[9] R. Calheiros, R. Buyya, and C. De Rose, “A heuristic
for mapping virtual machines and links in emulation
testbeds,” in ICPP. IEEE, 2009, pp. 518–525.

[10] O. Beaumont, L. Eyraud-Dubois, H. Rejeb, and
C. Thraves, “Heterogeneous Resource Allocation
under Degree Constraints,” IEEE Transactions on
Parallel and Distributed Systems, 2012.

[11] A. Beloglazov and R. Buyya, “Energy efficient
allocation of virtual machines in cloud data centers,”
in 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing. IEEE, 2010, pp.
577–578.

[12] M. R. Garey and D. S. Johnson, Computers and
Intractability, a Guide to the Theory of
NP-Completeness. W. H. Freeman and Company,
1979.

[13] D. Hochbaum, Approximation Algorithms for NP-hard
Problems. PWS Publishing Company, 1997.

[14] J. Wilkes, “More Google cluster data,” Google research
blog, Nov. 2011, posted at http://googleresearch.
blogspot.com/2011/11/more-google-cluster-data.html.

[15] O. Beaumont, L. Eyraud-Dubois, and H. Larchevêque,



●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

1.00

1.05

1.10

1.15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time interval

R
a
ti
o
 o

f 
m

a
c
h
in

e
s
 u

s
e
d
 t
o
 l
o
w

e
r 

b
o
u
n
d

Algorithm

NoSharing

ColumnGeneration

Figure 3: Number of required machines for the Large dataset

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

1.0

1.1

1.2

1.3

Time interval

R
a
ti
o
 o

f 
m

a
c
h
in

e
s
 u

s
e
d
 t
o
 l
o
w

e
r 

b
o
u
n
d

Algorithm

NoSharing

ColumnGeneration

Figure 4: Number of required machines for the HpLr dataset

“Reliable service allocation in clouds,” in IPDPS’13
IEEE International Parallel & Distributed Processing
Symposium, 2013.

[16] O. Beaumont, P. Duchon, and P. Renaud-Goud,
“Approximation algorithms for energy minimization in
cloud service allocation under reliability constraints,”
in HIPC’2013, IEEE international conference on High
Performance Computing, Bangalore, 2013.

[17] L. Valiant, “The complexity of enumeration and
reliability problems,” SIAM J. Comput., vol. 8, no. 3,
pp. 410–421, 1979.

[18] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google
cluster-usage traces: format + schema,” Google Inc.,
Mountain View, CA, USA, Technical Report, Nov.
2011, revised 2012.03.20. Posted at URL http://code.
google.com/p/googleclusterdata/wiki/TraceVersion2.

[19] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch, “Heterogeneity and dynamicity of

clouds at scale: Google trace analysis,” in ACM
Symposium on Cloud Computing (SoCC), San Jose,
CA, USA, Oct. 2012.

[20] O. Beaumont, L. Eyraud-Dubois, P. Pesneau, and
P. Renaud-Goud, “Reliable service allocation in clouds
with memory and capacity constraints,” in Resilience
– EuroPar workshop, 2013.

[21] J. Desrosiers and M. E. Lübbecke, A primer in column
generation. Springer, 2005.

[22] O. Beaumont, L. Eyraud-Dubois, J.-A. Lorenzo, and
P. Renaud-Goud, “Efficient and robust allocation
algorithms in clouds under memory constraints,” Inria
Bordeaux Sud-Ouest, Tech. Rep., May 2014. [Online].
Available: http://hal.inria.fr/hal-00874936

[23] G. L. Nemhauser and L. A. Wolsey, Integer and
combinatorial optimization. Wiley New York, 1988,
vol. 18.


