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Abstract—We revisit the well-known greedy algorithm
for scheduling independent jobs on parallel processors,
with the objective of minimizing the power consumption.
We assess the performance of the online version, as well
as the performance of the offline version, which sorts the
jobs by non-increasing size before execution. We derive
new approximation factors, as well as examples that show
that these factors cannot be improved, thereby completely
characterizing the performance of the algorithms.
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I. INTRODUCTION

This paper aims at characterizing the performance of
the well known greedy algorithm for scheduling inde-
pendent jobs on parallel processors, when the objective
is to minimize the power consumption instead of the
execution time, or makespan.

For convenience, here is a quick background on the
greedy algorithm for makespan minimization. Consider
a set J of n independent jobs J1, . . . , Jn to be scheduled
on a set P of p parallel processors P1, . . . ,Pp. Let
ai be the size of job Ji, that is the time it requires
for execution. The algorithm comes in two versions,
online and offline, or without/with sorting jobs. In the
online version of the problem, jobs arrive on the fly. The
ONLINE-GREEDY algorithm assigns the last incoming
job to the currently least loaded processor. In the offline
version of the problem (see [1]), all job sizes are
known in advance, and the OFFLINE-GREEDY starts
by sorting the jobs (largest sizes first). Then it assigns
jobs to processors exactly as in the online version.
The performance of both versions is characterized by
the following propositions (see Figures 1 and 2 for an
illustration of the worst-case scenarios):

Proposition 1: For makespan minimization,
ONLINE-GREEDY is a 2 − 1

p approximation, and this
approximation factor is met on the following instance:
• n = p(p− 1) + 1,
• ai = 1 for 1 ≤ i ≤ n− 1,
• and an = p.

Proposition 2: For makespan minimization,
OFFLINE-GREEDY is a 4

3 −
1
3p approximation, and this

approximation factor is met on the following instance:

• n = 2p+ 1,
• a2i−1 = a2i = 2p− i for 1 ≤ i ≤ p,
• and an = p.

Minimizing the total power consumed by the proces-
sors to execute the job has recently become a very im-
portant objective, both for economic and environmental
reasons [2]. Assume that we can vary processor speeds,
for instance through dynamic voltage scaling. In that
case we can always use the smallest available speed for
each processor, at the price of a dramatic decrease in
performance.

The problem is in fact a bi-criteria problem: given a
bound M on the makespan, what is the schedule that
minimizes the power consumption while enforcing the
execution time bound?

For simplicity, we can assume that processors have
continuous speeds (see [3], [4], [5], [6]), and scale
the problem instance so that M = 1. This amounts
to setting each processor speed equal to its workload,
and to minimizing the total energy dissipated during an
execution of length one time-unit. In other words, this
amounts to minimizing the total dissipated power, which
is proportional to the sum of the cubes of the processor
speeds (a model commonly used, e.g. in [6], [7], [8],
[9]).

Formally, let alloc : J → P denote the allocation
function, and let load(q) = {i | alloc(Ji) = Pq}
be the index set of jobs assigned to processor Pq , for
1 ≤ q ≤ p.

The power dissipated by Pq is
(∑

i∈load(q) ai

)3

,
hence the objective is to minimize

(1)
p∑
q=1

 ∑
i∈load(q)

ai

3

.



ONLINE-GREEDY Optimal solution

Figure 1. Tight instance for ONLINE-GREEDY (with p = 5).

OFFLINE-GREEDY Optimal solution

Figure 2. Tight instance for OFFLINE-GREEDY (with p = 5).

This is to be contrasted with the makespan minimiza-
tion objective, which writes

(2) max
1≤q≤p

∑
i∈load(q)

ai .

However, because of the convexity of the cubic power
function, the “natural” greedy algorithm is the same for
both objectives: assigning the next job to the currently
least loaded processor minimizes, among all possible
assignments for that job, both the current makespan
and dissipated power. We observe that when p = 2,
the optimal solution is the same for both objectives.
However, this is not true for larger values of p. For
example, consider the instance with n = 6, p = 3,
a1 = 8.1, a2 = a3 = 5, a4 = a5 = 4 and a6 = 2.
• The optimal solution for the makespan is the par-

tition {J1}, {J2, J3}, {J4, J5, J6}, with makespan
10 and power 2531.441.

• The optimal solution for the power is the par-
tition {J1, J6}, {J2, J4}, {J3, J5}, with makespan
10.1 (hence not optimal) and power 2488.301
(the processor loads are better balanced than in
the previous solution, leading to a lower power
consumption).

This example is illustrated in Figure 3.

Just as the original makespan minimization prob-
lem, the (decision version of the) power minimization
problem is NP-complete, and a PTAS (polynomial-time
approximation scheme) can be derived. However, the
greedy algorithm plays a key role in all situations where
jobs arrive on the fly, or when the scheduling cost
itself is critical. This was already true for the makespan
problem, but may be even more important for the
power problem, due to the environmental (or “green”)
computing perspective that applies to all application
fields and computing platforms.
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Figure 3. Different optimal solutions for makespan and power minimization.

We discuss related work in Section II. The main
results of the paper are summarized in Section III,
and compared to previously known results. Section IV
is devoted to a detailed proof of both theorems, and
also we provide in Section V numerical values of the
approximation factors for small values of p. We give
some final remarks in Section VI.

II. RELATED WORK

The greedy algorithm has been widely studied in the
literature, both in the offline and online versions. A more
general problem than minimizing the sum of the cubes
of the processor workloads (Equation (1)) is to minimize
their Lr norm, i.e., the quantity

(3) Nr =

 p∑
q=1

 ∑
i∈load(q)

ai

r
1
r

.

Note that

N∞ = lim
r→∞

Nr = max
1≤q≤p

∑
i∈load(q)

ai

is the makespan minimization objective (Equation (2)),
while (N3)3 is the power minimization objective of this
paper (Equation (1)).

Chandra and Wong [10] consider the problem of
minimizing N2 in the offline version. They show that
OFFLINE-GREEDY is a 5

2
√

6
approximation algorithm

for r = 2, but this bound is not tight: they give
lower bounds for the approximation ratio of OFFLINE-
GREEDY for the N2 problem: their bound is

√
37
6 with

an even number p of processors,
√

83
9 with p = 3

processors, and
√

37
36 −

1
36p with an odd number p ≥ 5

of processors. The gap between these bounds has been
filled by Leung and Wei [11], who provide a tight
approximation factor for the performance of OFFLINE-
GREEDY for the N2 problem.

Chandra and Wong [10] also provide lower and
upper bounds for the approximation factor of OFFLINE-
GREEDY for the general Nr problem. In particular for
r = 3, their upper bound is 19

45
3
√

15 ≈ 1.04 (and their
lower bound depends on the processor number p). Note
that Theorem 2 below gives the exact approximation
factor for any value of p, thereby closing the gap
between lower and upper bounds. Finally, we point
out that Chandra and Wong [10] do not deal with the
online version of the problem, which Theorem 1 below
completely solves.

Awerbuch et al. [12] discuss the problem of min-
imizing Nr for general r and for the online version
of the problem. However, they have an additional rule:
each job can be assigned only to a subset of the pro-
cessors, called its permissible servers. They first study
the problem with unit-size jobs (which is trivial without
permissible servers), and they extend their analysis to
the case where each job has a different execution cost on
each of its admissible servers. They prove that ONLINE-
GREEDY is a 1+

√
2 approximation algorithm for r = 2,

and a Θ(r) approximation algorithm in the general case.
Alon et al. [13] provide a PTAS (polynomial-time

approximation scheme) to minimize Nr. This result
is of great theoretical interest but only applies to the
offline version of the problem, and is not related to the
OFFLINE-GREEDY algorithm.
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Finally, Avidor et al. [14] discuss the performance of
ONLINE-GREEDY when minimizing Nr for general r.
They provide an upper bound 2−Θ( ln r

r ) for the approx-
imation factor of ONLINE-GREEDY, independently of
the number of processors. This is to be contrasted with
Theorem 1 which provides a tight approximation factor
for any processor number in the case r = 3.

III. MAIN CONTRIBUTIONS

The main results of the paper are summarized in
Theorems 1 and 2 below:

Theorem 1: For power minimization, ONLINE-
GREEDY is a f (on)

p (β
(on)
p ) approximation, where

f (on)
p (β) =

1
p3

(
(1 + (p− 1)β)

3
+ (p− 1) (1− β)

3
)

β3 + (1−β)3

(p−1)2

,

and where β(on)
p is the unique root in the interval [ 1

p , 1]
of the polynomial

g(on)
p (β) = β4(−p3 + 4p2 − 5p+ 2)

+ β3(−2p2 + 6p− 4)

+ β2(−4p+ 5)

+ β(2p− 4)

+ 1.

This approximation factor cannot be improved.

Theorem 2: For power minimization, OFFLINE-
GREEDY is a f (off)

p (β
(off)
p ) approximation, where

f (off)
p (β) =

1
p3

((
1 + (p−1)β

3

)3

+ (p− 1)
(

1− β
3

)3
)

β3 + (1−β)3

(p−1)2

,

and where β(off)
p is the unique root in the interval [ 1

p , 1]
of the polynomial

g(off)
p (β) = β4(−9p3 + 30p2 − 27p+ 6)

+ β3(−6p2 + 18p− 12)

+ β2(−78p2 + 126p+ 33)

+ β(18p− 180)

+ 81.

This approximation factor cannot be improved.

We point out that this paper is the first to prove
tight approximation factors for the problem of minimiz-
ing N3, for any processor number p, both in the offline
and online versions of the problem.

IV. PROOF OF THE MAIN THEOREMS

The proof of Theorems 1 and 2 is organized as
follows:

• Proposition 3 provides a technical bound that is
valid for both the online and offline versions;

• This technical bound is used in Proposition 4
to show that ONLINE-GREEDY is a f (on)

p (β
(on)
p )

approximation, and in Proposition 5 to show that
OFFLINE-GREEDY is a f

(off)
p (β

(off)
p ) approxima-

tion;
• Finally, instances showing that the above factors

are tight are given in Proposition 6 for ONLINE-
GREEDY, and in Proposition 7 for OFFLINE-
GREEDY.

Proposition 3: For any given instance, the perfor-
mance ratio Pgreedy

Popt
of the greedy algorithm (ONLINE-

GREEDY or OFFLINE-GREEDY) is such that

(4)
Pgreedy

Popt
≤

(
S+(p−1)aj

p

)3

+ (p− 1)
(
S−aj
p

)3

O3 + (p− 1)
(
S−O
p−1

)3 ,

where
• Pgreedy is the power dissipated by the greedy

algorithm;
• Popt is the power dissipated in the optimal solu-

tion;

• S =

n∑
i=1

ai;

• O is the largest processor load in the optimal
solution;

• j is the index of the last job assigned to the
processor that has the largest load in the greedy
algorithm.

Proof: For the optimal solution, we immediately
have

Popt ≥ O3 + (p− 1)

(
S −O
p− 1

)3

.

This is because of the definition of O, and of the
convexity of the power function.

There remains to show that for the greedy algorithm,
(5)

Pgreedy ≤
(
S + (p− 1)aj

p

)3

+ (p− 1)

(
S − aj
p

)3

.

Without loss of generality, let P1 be the maximum
loaded processor in the solution returned by the greedy

4



Figure 4. Notations for p = 4.

algorithm. For all q ∈ {1, . . . , p}, let Mq be the load
of processor Pq before the assignment of the job Jj ,
and let uq ≥ 0 be the sum of the sizes of all jobs
assigned to Pq after Jj−1, as illustrated in Figure 4 for
p = 4. By definition of j, we have u1 = aj . In the
example, u3 = 0, i.e., no jobs have been assigned to P3

after Jj−1.

The power returned by the greedy algorithm is thus:

Pgreedy =

p∑
q=1

(Mq+uq)
3 = (M1+aj)

3+

p∑
q=2

(Mq+uq)
3 .

For q ∈ {2, . . . , p}, let vq be the variation of the load
of processor Pq from the average load of processors
other than P1:

vq = Mq + uq −
S −M1 − aj

p− 1
,

and Figure 4 illustrates this notation. Then

Pgreedy = (M1 + aj)
3 +

p∑
q=2

(
S −M1 − aj

p− 1
+ vq

)3

︸ ︷︷ ︸
f(M1)

.

Note that the vq can be either positive or negative
(in the example, v2 ≤ 0 and v3 ≥ 0), and that their
sum is always zero. To check this analytically, observe
that (M1 + aj) +

∑p
q=2

(
S−M1−aj

p−1 + vq

)
= S, hence∑p

q=2 vq = 0.

Now, given the vq , we have for p ≥ 2, since 1 = p−1
p−1 :

f ′(M1) ≥ 3

p− 1
×

p∑
q=2

(
(M1 + aj)

2

−
(
S −M1 − aj

p− 1
+ vq

)2
)

≥ 3

p− 1
×

p∑
q=2

(
M1 + aj −

S −M1 − aj
p− 1

− vq
)

×
(
M1 + aj +

S −M1 − aj
p− 1

+ vq

)
.

By construction,

M1 + aj ≥
S −M1 − aj

p− 1
+ vq,

therefore f is an increasing function.

Moreover, P1 is the least loaded processor before the
assignment of Jj , thus a fortiori, for q ∈ {2, . . . , p},

M1 ≤
S −M1 − aj

p− 1
+ vq ,

hence

(p− 1)M1 ≤ (S−M1− aj) +

p∑
q=2

vq = S−M1− aj .
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We derive that M1 ≤M+
1 , where

(6) M+
1 =

S − aj
p

.

Note that M+
1 does not depend on the vq . Since f is

an increasing function, we have

Pgreedy = f(M1) ≤ f(M+
1 ).

We had for q ∈ {2, . . . , p}, M1 ≤ S−M1−aj
p−1 + vq ,

hence if M1 = M+
1 ,

vq ≥
p

p− 1
×M+

1 −
1

p− 1
× (S − aj) = 0.

We deduce that, for M1 = M+
1 and q ∈ {2, . . . , p},

vq = 0 (they are all nonnegative and their sum is null).
Finally, we obtain

Pgreedy ≤ f(M+
1 ) = (M+

1 +aj)
3 +

(S − aj −M+
1 )3

(p− 1)2
,

which, given the value of M+
1 from Equation (6),

directly leads to Equation (5). This concludes the proof.

Proposition 4: For power minimization, ONLINE-
GREEDY is a f (on)

p (β
(on)
p ) approximation.

Proof: We use the notations of Proposition 3. We
first observe that ai ≤ O, for all i ∈ {1, . . . , n}, by
definition of O. In particular, aj ≤ O.

We introduce β = O
S . Clearly, β ∈ [ 1

p , 1], and we can
rewrite Equation (4) as:

Ponline

Popt
≤

1
p3

(
(1 + (p− 1)β)

3
+ (p− 1) (1− β)

3
)

β3 + (1−β)3

(p−1)2︸ ︷︷ ︸
f
(on)
p (β)

.

We now show that, for all p, f (on)
p has a single

maximum in [ 1
p , 1]. After differentiating with respect

to β and eliminating some positive multiplicative factor,

we obtain that the sign of
(
f

(on)
p

)′
is that of g(on)

p ,
where:

g(on)
p (β) = β4(−p3 + 4p2 − 5p+ 2)

+β3(−2p2 +6p−4)+β2(−4p+5)+β(2p−4)+1.

Differentiating again two times, we obtain:(
g(on)
p

)′
(β) = 4β3(−p3 + 4p2 − 5p+ 2)

+ 3β2(−2p2 + 6p− 4) + 2β(−4p+ 5) + 2p− 4;

(
g(on)
p

)′′
(β) = 24β2 − 24β + 10− 8p

+ p(−12βp+ 36β − 60β2) + 48p2β2 − 12p3β2 .

If p ≥ 5,(
g(on)
p

)′′
(β) ≤ 34− 40 + p(−60 + 36)

+ p2(−60 + 48)β2

≤ 0 .

We check that(
g

(on)
2

)′′
(β) = −6 ≤ 0 ,(

g
(on)
3

)′′
(β) = −24β − 14− 48β2 ≤ 0 and(

g
(on)
4

)′′
(β) = −72β − 22− 216β2 ≤ 0 ,

hence
(
g

(on)
p

)′
is a decreasing function for all p ≥ 2 in

the interval [ 1
p , 1].

Next, we show that(
g(on)
p

)′
(1) = −4p3 + 10p2 − 8p+ 2 ≤ 0,

and hence either g(on)
p is increasing and then decreasing

in the interval [ 1
p , 1], or g(on)

p is decreasing in the whole

interval. Indeed, for p = 2,
(
g

(on)
2

)′
(1) = −6 ≤ 0, and

for p ≥ 3,
(
g

(on)
p

)′
(1) ≤ p2(−12 + 10)− 24 + 2 ≤ 0.

We now check the values of g(on)
p at the interval

bounds: for p ≥ 2, we have

g(on)
p (1) = −p+ 2p2 − p3 ≤ 0 , and

g(on)
p

(
1
p

)
= 3− 11/p+ 15/p2 − 9/p3 + 2/p4 ≥ 0,

since g(on)
2

(
1
2

)
= 1

4 , g(on)
3

(
1
3

)
= 56

81 , and for all p ≥ 4,
g

(on)
p

(
1
p

)
≥ 3− 11/p ≥ 12−11

p ≥ 0.

In both cases (either g(on)
p is increasing then decreas-

ing, or g(on)
p is only decreasing), since g(on)

p

(
1
p

)
≥ 0

and g
(on)
p (1) ≤ 0, we conclude that g(on)

p has a sin-
gle zero β

(on)
p in [ 1

p , 1], for which f
(on)
p attains its

maximum. Finally ONLINE-GREEDY is a f (on)
p (β

(on)
p )

approximation.

Proposition 5: For power minimization, OFFLINE-
GREEDY is a f (off)

p (β
(off)
p ) approximation.

Proof: We follow the same line of reasoning as
in Proposition 4, with O = βS, but we now further
assume that aj ≤ O/3. Indeed, if aj > O/3, there
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are at most two jobs assigned to each processor in
the optimal solution. But then n ≤ 2p, and for all
such instances OFFLINE-GREEDY is optimal (this is
the same argument as for the makespan minimization
problem, due to the convexity of the power function).
With aj ≤ O/3 = βS/3, we rewrite Equation (4) as:

Poffline

Popt
≤

1
p3

((
1 + (p−1)β

3

)3

+ (p− 1)
(

1− β
3

)3
)

β3 + (1−β)3

(p−1)2︸ ︷︷ ︸
f
(off)
p (β)

.

The sign of
(
f

(off)
p

)′
is the sign of g(off)

p , where:

g(off)
p (β) = β4(−9p3 + 30p2 − 27p+ 6)

+ β3(−6p2 + 18p− 12)

+ β2(−78p2 + 126p+ 33)

+ β(18p− 180)

+ 81.

Differentiating again two times, we obtain:(
g(off)
p

)′
(β) = 4β3(−9p3 + 30p2 − 27p+ 6)

+ 3β2(−6p2 + 18p− 12)

+ 2β(−78p2 + 126p+ 33)

+ 18p− 180 ;

(
g(off)
p

)′′
(β) = 12β2(−9p3 + 30p2 − 27p+ 6)

+ 6β(−6p2 + 18p− 12)

− 156p2 + 252p+ 66 .

If p ≥ 4,(
g(off)
p

)′′
(β) ≤12β2((−36 + 30)p2 − 108 + 6)

+ 6β((−24 + 18)p− 12)

+ (−588 + 252)p+ (−80 + 66) ≤ 0.

Now
(
g

(off)
2

)′′
(β) = −54 and(

g
(off)
3

)′′
(β) = −576β2 − 72β − 582 ≤ 0,

thus for all p > 1 and 1
p ≤ β ≤ 1,

(
g

(off)
p

)′′
(β) ≤ 0.

Therefore g(off)
p is concave.

Let us now check the values of g(off)
p at the interval

bounds. We have

g(off)
p

(
1
p

)
≥ 21− 35 + 15 ≥ 0 , and

g(off)
p (1) = −9p3 − 54p2 + 135p− 72 ≤ 0 ,

since g(off)
2 (1) = −72 − 216 + 270 − 72 ≤ 0, and for

p ≥ 3, g(off)
p (1) ≤ p(−27− 162 + 135)− 72 ≤ 0.

We conclude that for all p > 1, f (off)
p has a single

maximum in [ 1
p , 1], reached for β = β

(off)
p , where

g
(off)
p (β

(off)
p ) = 0. Finally OFFLINE-GREEDY is a

f
(off)
p (β

(off)
p ) approximation.

Proposition 6: The approximation factor
f

(on)
p (β

(on)
p ) for ONLINE-GREEDY cannot be improved.

Proof: Consider an instance with p processors and
n = p(p−1) + 1 jobs, where for all i ∈ {1, . . . , n−1},
ai = 1, and an = B =

β(on)
p p(p−1)

1−β(on)
p

.

ONLINE-GREEDY assigns p − 1 unit-size jobs to
each processor, and then the big job is assigned to any
processor, leading to a power dissipation of:

Ponline =

(
S + (p− 1)aj

p

)3

+ (p− 1)

(
S − aj
p

)3

,

where j = n.

From β
(on)
p ≥ 1

p , we deduce that B ≥ p. Therefore
the optimal solution assigns Jn to the first processor,
and p unit-size jobs to each other processor. We have
aj = O = B and for q ∈ {2, . . . , p},∑

i∈load(q)

ai = p =
S −O
p− 1

, and hence

Popt = O3 + (p− 1)

(
S −O
p− 1

)3

.

Moreover we have O = β
(on)
p S:

O − β(on)
p S = B − β(on)

p (B + p(p− 1))

= B − p(p− 1)β(on)
p

(
β

(on)
p

1− β(on)
p

+ 1

)
= 0 .

Therefore, for this instance,
Ponline

Popt
= f (on)

p (β(on)
p ) ,

which concludes the proof.
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Proposition 7: The approximation factor
f

(off)
p (β

(off)
p ) for the ratio of the OFFLINE-GREEDY

cannot be improved.

Proof: Consider an instance with p processors and
n = 2p+ 1 jobs, where for all 1 ≤ i ≤ p,

a2i−1 = a2i = 2p− i+ vi,

and where an = p+ vp. We define

A =
3p(1− β(off)

p p)

β
(off)
p (p+ 1)− 3

, and

∀1 ≤ i ≤ p, vi =
i− 1

p− 1
A.

We first show that the jobs are sorted in non-
increasing order:
• For 1 ≤ i ≤ p, a2i−1 = a2i;
• an = an−1 (= a2p);
• For 1 ≤ i ≤ p− 1,
a2i+1 − a2i = −1 + vi+1 − vi = −1 + A

p−1 .

Consider the function ĥp(β) 7→ 3p(βp−1)
3−β(p+1) . Its deriva-

tive is nonnegative, hence ĥp is increasing.
We now prove that β(off)

p ≤ 3/(2p+1), which ensures
that

A = ĥp(β
(off)
p ) ≤ ĥp(3/(2p+ 1)) = p− 1,

and therefore a2i+1 − a2i = A
p−1 − 1 ≤ 0. Recall that

β
(off)
p is the unique root in the interval [ 1

p , 1] of g(off)
p

(see Theorem 2). We already know that g(off)
p ( 1

p ) ≥ 0
(see proof of Proposition 5). We now prove that

g(off)
p (3/(2p+ 1)) ≤ 0 .

Indeed, we have

g(off)
p (3/(2p+ 1)) = −135p(8p3 + 3p2 − 30p+ 19)

(2p+ 1)4
,

and 8p3 + 3p2 − 30p+ 19 ≥ p(32− 30) + 19 ≥ 0.

Therefore, β(off)
p ≤ 3

2p+1 , which proves that a2i+1 ≤
a2i, and hence the jobs are sorted in non-increasing
order.

Before the assignment of the last job, all proces-
sor loads are perfectly balanced. OFFLINE-GREEDY
first assigns J1, J2, . . . , Jp to P1,P2, . . . ,Pp re-
spectively. Then it assigns Jp+1, Jp+2, . . . , J2p to
Pp,Pp−1, . . . ,P1 respectively. After these assignments,

for all i ∈ {1, . . . , dp/2e}, the load of processor P2i−1

is:

a2i−1 + a2(p−(i−1)) = 3p+ vi + vp−(i−1)

= 3p+
i− 1

p− 1
A+

p− i
p− 1

A

= 3p+A.

Moreover, for all i ∈ {1, . . . , bp/2c}, the load of
processor P2i is

a2i + a2(p−(i−1))−1 = a2i−1 + a2(p−(i−1)) = 3p+A.

The last job Jn is assigned to any processor, and the
power dissipated by OFFLINE-GREEDY is:

Poffline =

(
S + (p− 1)aj

p

)3

+ (p− 1)

(
S − aj
p

)3

,

where j = n.

The optimal solution assigns J1, J2, . . . , Jp−1

to P2,P3, . . . ,Pp respectively. It assigns
Jp, Jp+1, . . . , J2p−2 to Pp,Pp−1, . . . ,P2 respectively.
The last three jobs J2p−1, J2p and J2p+1 are assigned
to P1, which is the most loaded processor.

The loads of processors P2,P3, . . . ,Pp are perfectly
balanced in the optimal assignment, and their load is
3p+ pA/(p− 1):
• For all i ∈ {1, . . . , bp/2c}, the load of proces-

sor P2i is

a2i−1 + a2(p−i) = 3p+ vi + vp−i

= 3p+
i− 1

p− 1
A+

p− i+ 1

p− 1
A

= 3p+ pA/(p− 1).

• For all i ∈ {1, . . . , dp/2e− 1}, the load of proces-
sor P2i+1 is

a2i + a2(p−i)−1 = a2i−1 + a2(p−i)

= 3p+ pA/(p− 1).

Finally, the load of processor P1 is

O = 3an = 3p+ 3A ,

and since 3p + 3A ≥ 3p + pA/(p − 1), it is the most
loaded processor.

We can then compute the corresponding power con-
sumption. Note that the total load S − O is equally
divided between p − 1 processors, and hence 3p +
pA/(p− 1) = S−O

p−1 . We obtain:

Popt = O3 + (p− 1)

(
S −O
p− 1

)3

.
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ONLINE-GREEDY OFFLINE-GREEDY

p β
(on)
p f

(on)
p (β

(on)
p ) β

(off)
p f

(off)
p (β

(off)
p )

2 0.577 1.866 0.513 1.086

3 0.444 2.008 0.350 1.081

4 0.372 2.021 0.267 1.070

5 0.325 2.001 0.216 1.061

6 0.292 1.973 0.181 1.054

7 0.266 1.943 0.156 1.048

8 0.246 1.915 0.137 1.043

64 0.0696 1.461 0.0177 1.006

512 0.0186 1.217 0.00223 1.00083

2048 0.00479 1.104 0.000278 1.00010

224 0.0000192 1.006 0.0000000680 1.000000025

Table I
NUMERICAL VALUES FOR THE APPROXIMATION FACTORS OF ONLINE-GREEDY AND OFFLINE-GREEDY.

To conclude the proof, we need to prove that

O = β(off)
p S .

Note that

S = 3p2 + vp + 2

p∑
i=1

vi = 3p2 +A+
2A

p− 1

p−1∑
i=0

i

= 3p2 + (p+ 1)A ,

and therefore

β(off)
p S −O = 3p(β(off)

p p− 1) + (β(off)
p (p+ 1)− 3)A

= 3p(β(off)
p p− 1) + 3p(β(off)

p p− 1)

= 0,

which leads to the desired result.

Finally, since aj = an = O/3, we can easily verify
that the ratio of this instance is

Poffline

Popt
= f (off)

p (β(off)
p ) .

V. THE APPROXIMATION FACTOR AS A FUNCTION
OF p

We provide in this section a few observations on the
values of the approximation factor of ONLINE-GREEDY

and OFFLINE-GREEDY for large values of p. Using
Taylor expansions, we derive the following asymptotic
values for large p:

• For large p, β(on)
p =

(
2
p2

)1/3

+O(1/p). Note that
3
√

2 ≈ 1.260.

• For large p, β(off)
p = 3(1+

√
79)

26p + O(1/p2). Note

that 3(1+
√

79)
26 ≈ 1.141.

It is worth pointing out that both ONLINE-GREEDY
and OFFLINE-GREEDY are asymptotically optimal
when p is large, while in the case of makespan
minimization, the asymptotic approximation factor of
ONLINE-GREEDY was equal to 2 and that of OFFLINE-
GREEDY equal to 4/3.

For p = 2 we have exact values: β(on)
2 =

√
3

3 and
f

(on)
2 (β

(on)
2 ) = 1 +

√
3

2 ≈ 1.866, while β(off)
2 =

√
91−8
3

and f
(off)
2 (β

(off)
2 ) = 1 +

√
91+10
18 ≈ 1.086. We report

representative numerical values in Table IV. We observe
that ONLINE-GREEDY is at most 50% more costly
than the optimal for p ≥ 64, while OFFLINE-GREEDY
always remains within 10% of the optimal, and gets
within 5% for p ≥ 7.
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VI. CONCLUSION

In this paper, we have fully characterized the perfor-
mance of the greedy algorithm for the power minimiza-
tion problem. We have provided tight approximation
factors for any processor number p, both in the offline
and online versions of the problem. These results extend
those of a long series of papers, and completely solve
the N3 minimization problem.

On the practical side, further work could be devoted
to conducting experiments with a more complicated
power model, that would include static power in addi-
tion to dynamic power (see for example the model for
the Intel Xscale [15], detailed in [16], [17], [18]). With
such a model, the “natural” greedy algorithm would
assign the next job to the processor that minimizes
the increment in total power. There would then be two
choices, either the currently least loaded processor, or a
currently unused processor (at the price of more static
power to be paid).
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