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Abstract—This paper considers the problem of modeling the
energy behavior of lock-free concurrent queue data structures.
Our main contribution is a way to model the energy behavior
of lock-free queue implementations and parallel applications that
use them. Focusing on steady state behavior we decompose energy
behavior into throughput and power dissipation which can be
modeled separately and later recombined into several useful
metrics, such as energy per operation. Based on our models,
instantiated from synthetic benchmark data, and using only
a small amount of additional application specific information,
energy and throughput predictions can be made for parallel
applications that use the respective data structure implemen-
tation. To model throughput we propose a generic model for
lock-free queue throughput behavior, based on a combination
of the dequeuers’ throughput and enqueuers’ throughput. To
model power dissipation we commonly split the contributions
from the various computer components into static, activation
and dynamic parts, where only the dynamic part depends on
the actual instructions being executed. To instantiate the models
a synthetic benchmark explores each queue implementation
over the dimensions of processor frequency and number of
threads. Finally, we show how to make predictions of application
throughput and power dissipation for a parallel application using
a lock-free queue requiring only a limited amount of information
about the application work done between queue operations.
Our case study on a Mandelbrot application shows convincing
prediction results.

Index Terms—lock-free; analysis; modeling; energy; power;
throughput; queue; concurrent data structures

I. INTRODUCTION

Lock-free implementations of data structures is a scalable
approach for designing concurrent data structures. Lock-free
data structures offer high concurrency and immunity to dead-
locks and convoying, in contrast to their blocking counterparts.
Concurrent FIFO queue data structures are fundamental data
structures that are key components in applications, algorithms,
run-time and operating systems. The producer/consumer pat-
tern, e.g., is a common approach to parallelizing applications
where threads act as either producers or consumers and
synchronize and stream data items between them using a
shared collection. A concurrent queue, a.k.a. shared “first-in,
first-out” or FIFO buffer, is a shared collection of elements
which supports at least the basic operations Enqueue (adds
an element) and Dequeue (removes the oldest element). De-
queue returns the element removed or, if the queue is empty,
NULL. A large number of lock-free (and wait-free) queue
implementations have appeared in the literature, e.g. [1]–[6]
being some of the most influential or most efficient results.

Each implementation of a lock-free queue has obviously its
strong and weak points so the impact on performance and
energy when choosing one particular implementation for any
given situation may not be obvious.

As the number of known implementations of lock-free
concurrent queues is growing, it is of great interest to describe
a framework within which the different implementations can
be ranked, according to the parameters that characterize the
situation. A brute force approach could achieve this by
running the implementations on hand on the whole domain
of study, gathering and comparing measurements. This would
yield high accuracy, but at a tremendous cost, since the domain
is likely to be large. Additionally, it would only bring a limited
understanding on the phenomena that drive the behavior of
the queue implementations. Therefore, we propose generic
models for predicting the behavior of lock-free queues under
steady state usage. The models are instantiated for the queue
implementations and machine on hand using empirical data
from a limited number of points in the domain.

The implementations can be ranked according to a plethora
of metrics. Traditionally, performance in terms of throughput
has been the main metric. Furthermore, the notion of energy
efficiency has now extended into every nook and cranny
of Information Technology, at any scale, from the Exascale
machines that need huge improvements in terms of power
dissipation to be feasible [7], to the small electronic devices
where the battery lifetime is a critical issue.

We decompose the energy behavior of queues, and subse-
quently applications, into two components: (i) throughput and
(ii) power dissipation. We model these components separately.
The predicted throughput and power dissipation can be re-
combined into the energy-efficiency metric energy per queue
operation, which is the ratio between power dissipation and
queue throughput. When modeling an application, this metric
can be extended to energy per unit of application work. Fur-
ther, plotting energy per operation or unit of work according to
throughput allows exploration of the Pareto-optimal frontier of
the energy−performance bi-criteria optimization problem for
the queues or the application.

Lock-free queue data structures generally offer disjoint-
access parallelism: enqueuers and dequeuers modify only
their respective ends of the queue, and compete mostly with
operations of the same kind. Nonetheless, when the queue is
close to empty, both ends point to the same part of the queue,
then enqueue and dequeue operations have to be synchronized,



and every operation impacts the behavior of any other.
Concerning the queue as a whole, a successful event can

be seen as the dequeue of a non-NULL item, since this
event implies that the item has been enqueued and dequeued.
Also, the throughput of the queue is naturally defined as the
number of such events per unit of time, which is a meaningful
performance criterion for queues.

In this work, we focus on queues that are in a steady state,
i.e. such that the rate of each operation attempt is constant.
Then, the throughput T of the queue is the minimum between
the throughput of all dequeues Td , even those returning NULL,
and throughput of enqueues Te . Indeed, if Te > Td , then
the queue grows and the throughput is determined by the
dequeuers, which cannot obtain any NULL items; and if
Te ≤ Td , then the queue is mostly empty and NULL items are
dequeued, but the throughput is determined by the enqueuers.

Despite this decomposition, enqueuers’ and dequeuers’
throughput are still correlated when the queue is mostly
empty. In addition, the interactions between them are rather
asymmetric, as in broad terms, an enqueue can be delayed
by any concurrent dequeue, while for a dequeue, concurrent
enqueues will cease to disturb it as they move away from the
dequeue end.

Based on these facts, we decorrelate the throughput into
several uncorrelated and basic throughputs, and reconstitute
the main throughput by combining them. Among the advan-
tages of this process, we earn a better understanding of the
performance (as the basic throughputs are meaningful), and
we reduce the number of measurements needed to instantiate
the model on the whole domain of study.

The domain of study that we envision here can be viewed
as the Cartesian product of four sets: (i) number of threads
accessing the queue, (ii) frequencies available on the machine,
(iii) interval of dequeue access rate, (iv) interval of enqueue
access rate. The cardinality of the first two sets is at most
a few tens, while the last two are continuous sets that are
not even bounded. In this paper, thanks to the removal of the
dependencies between throughputs, we are able to instantiate
the model with only a few data points, while the model covers
the whole intervals.

Finally, this decomposition also eases the study of power
dissipation, where we reuse the same ideas as in the throughput
estimation part.

The rest of the paper is organized as follows. Section II
discusses related work. Section III introduces our modeling
framework for lock-free concurrent queues. Section IV de-
scribes how the throughput of lock-free concurrent queues is
modeled, while Section V describes how the power dissipation
is modeled. In Section VI we develop a method to model
parallel applications using the queue models and apply it
to an application for computing the Mandelbrot set. Finally,
Section VII concludes this paper.

II. RELATED WORK

Hunt et al. [8] measured the performance and energy
use of lock-free and lock-based implementations of FIFO

while ! done do
el ← Parallel Work(pwe );
Enqueue(el);

end
Procedure Enqueuer

while ! done do
el ← Dequeue();
Parallel Work(pwd );

end
Procedure Dequeuer

Fig. 1: Thread procedures

queues, double-ended queues and sorted singly linked lists.
The results from the lock-free and lock-based implementations
are compared and also analyzed using captured hardware
performance counters, e.g. instruction count, user/system time,
L1 cache miss ratio and branch misprediction rate. Gautham
et al. [9] compared the performance and energy use of locks
and software transactional memory in benchmarks from the
STAMP benchmark suite.

A variety of models have been proposed to estimate power
dissipation, based on different approaches. PMC (Performance
Monitoring Counters) based power models, build upon event
selection and statistical correlation, draw considerable amount
of attention. Using this approach, Contreras et al. [10] esti-
mated CPU and memory power. Wang et al. [11] provided
a two level power model for multiprocessors, which uses
frequency and IPC (Instructions Per Cycle) as the only PMC
event. Isci et al. [12] described a technique to estimate per-
component power dissipation for CPU using PMCs and used
this to determine phases of a program. Tiwari et al. [13]
created an instruction level power model. They determined a
base cost for each instruction type with micro-benchmarks and
tried to clarify the inter-instruction impacts to estimate power
dissipation of compositions. Ge and Cameron [14] provided
a power-aware speedup model. They decompose the program
into phases according to the degree of available parallelism
and on/off-chip access ratios that is used to capture the impact
of frequency scaling and process count. Choi et al. [15]
introduced a roofline model which is parameterized with
the maximum throughputs, operation energy and power cap
values. They bound the throughput with the power cap, since
energy consumption per unit of time depends on throughput,
and extract the parameters’ values using regression.

As seen above there exist some empirical studies on en-
ergy/power consumption of lock-free data structures and a
huge variety of power models but we are not aware of any
energy model targeting lock-free data-structures. In this study,
we aim to begin filling this gap by providing a detailed analysis
of power and performance of lock-free queues.

III. FRAMEWORK

A. Synthetic Benchmark

1) Skeleton: We run the synthetic benchmark composed
of the two functions described in Figure 1, starting with an
empty queue. Half of the threads are assigned to be enqueuers
while the remaining ones are dequeuers. We disable logical
cores (hyper-threading) and map different threads into different
cores, also the number of threads never exceeds the number
of cores. In addition, the mapping is done in the following
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Fig. 2: Key legend of the graphs

way: when adding an enqueuer/dequeuer pair, they are both
mapped on the most filled but non-full socket.

The parallel sections (Parallel Work) shall be seen as a
processing activity, pre-processing for the enqueuers before
they enqueue an item, and post-processing on an item from
the queue for the dequeuers. We assume that memory accesses
in the parallel sections are negligible, and represent the parallel
sections as sequences of bunches of pause instructions in the
benchmark; we note pwe (resp. pwd ) the number of bunches
of 90 pauses (which corresponds to 1000 cycles) that compose
the parallel work in the enqueuer (resp. dequeuer).

From a high-level perspective, Enqueue and Dequeue
operations follow a retry loop pattern: a thread reads an access
point to the data structure, works locally with this view of the
data structure, possibly performs memory management actions
and prepares the new desired value as an access point of
the data structure. Finally, it atomically tries to perform the
change through a call to the Compare-and-Swap primitive. If
it succeeds, i.e. if the access point has not been changed by
another thread between the first read and the Compare-and-
Swap, then it goes to the next parallel section, otherwise it
repeats the process.

2) Queue Implementations: We study some of the most
well-known and studied lock-free and linearizable queues in
the literature, as implemented in NOBLE [16]. The legend
depicted in Figure 2 will be used throughout the paper. The
aim of this work is still to predict the behavior of any lock-free
queue algorithm and not only the ones mentioned above. These
algorithms are used to validate the model that we present in
the following sections.

B. General Power Model

The power is split into three elements: the static part is the
cost of turning the machine on, the activation part incorporates
a fixed cost for each socket and each core in use, and the
dynamic part is a supplementary cost that depends on the
running application.

In accordance with the RAPL energy counters [17]–[19],
we further decompose each part per-component, for memory,
CPU, and uncore (denoted by a superscript M, C and U,
respectively):

P =
∑

X∈{M,C,U}

(
P (stat,X) + P (active,X) + P (dyn,X)

)
.

We assume that we already know the platform characteris-
tics, i.e. all static and active powers (they can be obtained as

explained for instance in the companion research report [20]),
and we try to find the application-specific dynamic powers.
In order to keep the formulas readable, in the following, we
denote by P (X) the dynamic power P (dyn,X).

C. Notations and Setting

We denote by n the number of running threads that call the
same operation, and by f the clock frequency of the cores (we
only consider the case where all cores share the same clock
frequency).

We recall that pwe (resp. pwd ) is the amount of work in the
parallel section of an enqueuer (resp. dequeuer), as the number
of bunches of 90 pauses. For a given queue implementation,
we denote by cwe (resp. cwd ) the amount of work in one try
of the retry loop of the Enqueue (resp. Dequeue) operation.
Associated with these amounts of work, we define, for o ∈
{d , e}, the average execution time of the parallel section (resp.
the retry loop and a single try of the retry loop) related to
operation o as t (PSo) (resp. t (RLo) and t (SLo)).

In the same way, for o ∈ {d , e}, we denote by P
(C)
o

(resp. P (C)
o,PS and P

(C)
o,RL) the dynamic CPU power dissipated

by component X in (resp. the parallel section related to and
the retry loop related to) operation o.

Finally, for o ∈ {d , e}, we denote by ro the ratio of the time
that a thread spends in the retry loop, while it is associated
with operation o.

In Sections IV and V, in order to keep expressions as simple
as possible, we define one unit of time as λ sec, where λ is
the execution time of 90×f pauses (as the pause instructions
are perfectly scalable with clock frequency, λ is constant).
Throughput is expressed in number of operations per unit of
time, i.e. per λ secs. Finally, we derive the power in Watts.

All experiments and their underlying predictions are done
on a platform composed of a dual-socket Intel R© Xeon R©

processor, with eight cores per socket. The sizes of L3, L2
and L1 caches are 25MB, 256 kB and 32 kB, respectively.

We run the implementations at the two extreme frequencies
1.2GHz and 3.4GHz, for all possible even total numbers of
threads, from 2 to 16, i.e. for n ∈ {1, . . . , 8}.

IV. THROUGHPUT ESTIMATION

A. Throughput Decomposition Principles

We recall that the throughput of the queue is defined as:

T = min (Te , Td) ,

where Te and Td are the enqueuers’ and dequeuers’ through-
put, respectively.

As we are in steady state, one operation o is performed
every t (PSo) + t (RLo) unit of time by each thread, and n
threads attempt to concurrently execute o, hence the general
expression of the throughput To :

To =
n

t (PSo) + t (RLo)
.

We have seen that the parallel sections of the benchmark are
full of pauses, thus the time t (PSo) spent in a given parallel



section is straightforwardly given by t (PSo) = pwo/f . The
execution time of dequeue and enqueue operations is more
problematic, for two main reasons. Primo, because of the lock-
free nature of the implementations. As the number of retries
is unknown, the time spent in the function call is not trivially
computable. Secundo, when the activity on the queue is high,
the threads compete for accessing a shared data, and they stall
before actually being able to access the data. We name this as
the expansion, as it leads to an increase in the execution time
of a single try of the retry loop.

The contention on the queue is twofold. At any time, and
even if it could be negligible, threads that perform the same
operation disturb each other, since they try to access the same
shared data. In addition, when the queue is mostly empty,
enqueuers and dequeuers try to access the same data, then
interference occurs; enqueuers make dequeuers stall and vice
versa. We call the former case intra-contention, and the latter
one inter-contention.

As expected, we have noticed a marked difference between
the execution time of a dequeue operation returning NULL and
one that returns a queue item, i.e. whether the queue was empty
or contained at least one item. That is why we decompose Td
into throughput of dequeue on empty queue T (+)

d (that returns
a NULL item), and dequeue on non-empty queue T (-)

d (that
does not return NULL).

Further, the impact of inter-contention on dequeue opera-
tions is negligible compared to the impact of the queue being
empty; therefore we ignore inter-contention for dequeues.

In contrast, the queue being empty does not notably change
the execution time of the enqueue operation, while dequeue
operations can impact the behavior of concurrent enqueue
operations greatly when the queue is close to empty. Hence,
we split Te into the enqueue throughput T (+)

e when the queue
is not inter-contented, and the enqueue throughput T (-)

e when
the queue experiences the maximum possible inter-contention.

These basic throughputs fulfill the two following inequali-
ties: T (+)

d ≥ T (-)
d and T (+)

e ≥ T (-)
e .

Thanks to this separation into the four basic throughput
cases T (+)

d , T (-)
d , T (+)

e and T (-)
e , we earn a better understand-

ing of the factors that influence the general throughput, and we
deinterlace their dependencies, which dramatically decreases
the number of points in the parallel section sizes set where we
need to take measurements for our modeling. More precisely,
by construction, T (+)

d and T (-)
d do not indeed depend on pwe ,

while T (+)
e and T (-)

e do not depend on pwd . Nonetheless Td
(resp. Te ) is defined as a barycenter between T (+)

d and T (-)
d

(resp. T (-)
e and T (+)

e ), whose weights depend on both pwd

and pwe .

In Section IV-B, we describe the basic throughputs, we
combine them in Section IV-C, then we explain how to
instantiate the parameters of the model in Section IV-D, and
finally exhibit results in Section IV-E.

Cycle

Retry
Loop Parallel Work

Fig. 3: Cyclic execution under low intra-contention

B. Basic Throughputs

We aim in this section at estimating the throughput T (b)
o

of one of the basic operations described in the previous
subsection, where o ∈ {e, d} and b ∈ {+,-}. We assume
that T (b)

o depends only on pwo , in addition to the tacit
dependencies on the clock frequency, number of threads and
queue implementation. We denote by cw

(b)
o the amount of

work in a single try of the retry loop related to operation o in
case b when the queue is not intra-contented.

1) Low Intra-Contention: We study in this section the low
intra-contention case, i.e. when (i) the threads do not suffer
from expansion due to threads that perform the same operation,
and (ii) a success is obtained with a single try of the retry loop.
As it appears in Figure 3, we have a cyclic execution, and the
length of the shortest cycle is t (PSo)+t

(
SL(b)

o

)
. Within each

cycle, every thread performs exactly one successful operation,
thus the throughput is easy to compute:

T (b)
o =

n

t (PSo) + t
(
SL(b)

o

) =
nf

pwo + cw
(b)
o

. (1)

2) High Intra-Contention: As explained in Section IV-A,
in this case, the direct evaluation of the execution time of
a retry loop is more complex, but we have experimentally
observed that the throughput is approximately linear with the
expected number of threads that are in the retry loop at a given
time. In addition, this expected number is almost proportional
to the amount of work in the parallel section. As a result, a
good approximation of the throughput, in high intra-contention
cases, is a function that is linear with the amount of work in
the pwo .

Fig. 4: Intra-contention frontier

3) Frontier: We now have to estimate whether the queue
is highly intra-contended.

There exists a simple lower bound of the amount of work
in the parallel section, such that there exists an execution
where the threads are never failing in their retry loop. We
plot in Figure 4 an ideal execution with n = 3 threads and



t (PSo) = (n− 1)× t
(
SL(b)

o

)
. In this execution, all threads

always succeed at their first try in the retry loop. Nevertheless,
if we shorten the parallel section, then there is not enough
parallel potential any more, and the threads will start to fail:
the queue leaves the low intra-contention state.

In practice, this lower bound (t (PSo) = (n − 1) ×
t
(
SL(b)

o

)
) is actually a good approximation for the critical

point where the queue switches its state.

C. Combining Basic Throughputs

We are given parallel sections sizes, and show how to
link the throughput of the four basic operations, with the
dequeuers’ and enqueuers’ throughput. There are two possible
states for the queue: either it is mostly empty (i.e. some NULL
items are dequeued), or it gets larger and larger.

In the first case, some of the dequeues will occur on an
empty queue. In 1 unit of time, Te items are enqueued. These
items are dequeued in Te/T

(-)
d units of time (the queue is

non-empty while they are dequeued), which leads to a slack
of 1−Te/T

(-)
d , where dequeues of NULL items can take place

at a rate T (+)
d , hence the following throughput formula:

Td =
Te
T (-)
d

× T (-)
d +

(
1− Te
T (-)
d

)
× T (+)

d . (2)

Concerning the enqueuers, we use the same assumption on
inter-contention as used on intra-contention in Section IV-B2,
saying that the throughput is linear with the expected number
of threads inside the retry loop. Here, the expected number
of threads inside the dequeue operation is proportional to the
ratio rd of the time spent by one dequeuer in its dequeue
operation. We do not know t (RLd), but we know that in
average, to complete a successful operation, a thread needs
t (PSd) + t (RLd) units of time, and among this time it will
spend t (PSd) in the parallel section. Therefore

rd = 1− t (PSd) /(t (PSd) + t (RLd)) = 1− Td × pwd

n× f
.

The minimum intra-contention is reached when this ratio is 0,
while the maximum is obtained when it is 1, thus:

Te =
Td × pwd

n× f
× T (+)

e +

(
1− Td × pwd

n× f

)
× T (-)

e . (3)

In the second case, enqueuers and dequeuers do not access
to the same part of the queue, thus inter-contention does not
take place, then Te = T (+)

e , and all dequeues return a non-
NULL item, hence Td = T (-)

d .

The discrimination of these two cases is trivial when en-
queuers’ and dequeuers’ throughput are given: the queue is in
the first state (mostly empty) if and only if Te ≤ Td .

Reversely, if we know the four basic throughputs, and aim at
reconstituting the dequeuers’ and enqueuers’ throughput, sev-
eral solutions could be consistent. We show in the companion
research report [20] that, given

(
T (+)
d , T (-)

d , T (+)
e , T (-)

e

)
,

• there exists a solution (Td , Te) with a growing queue if
and only if T (+)

e > T (-)
d . In addition, such a solution with

a growing queue is such that Te = T (+)
e and Td = T (-)

d .
• there exists a solution (Td , Te) with a mostly empty queue

if and only if

T (-)
e

T (-)
d

≤ 1− pwd

n× f

(
T (+)
e − T (-)

e

)
. (4)

In addition, such a solution with a mostly empty queue
is determined in a unique way by Equations 3 and 2.

• there exists at least one solution (Td , Te).
One can notice that if T (+)

e > T (-)
d and Inequality 4

are fulfilled and the queue could be either mostly empty or
growing. In this case, we choose, for each operation, the mean
of the two solutions, in order to minimize the discontinuities.

D. Instantiating the Throughput Model

We recall that, for all o and b, T (b)
o depends only on pwo ,

while Te and Td depend on both pwd and pwe . We denote
now by Td(pwd , pwe) (resp. Te(pwd , pwe)) the dequeuers’
(resp. enqueuers’) throughput as the amount of work in the
parallel section of the dequeuers is pwd and enqueuers’ one
is pwe . The estimate of a value is denoted by a hat on top,
while the measured value does not wear the hat.

Let ps = 1, pm = 20 and pb = 1000 be three distinctive
amounts of work, that corresponds to different states of the
execution. If pwo = pb, we can neglect the impact of operation
o on the queue, pwo = pm is a low intra-contention case since
the non-expanded critical sections are experimentally less than
2 units of time, and pwo = ps corresponds to a highly inter-
or intra-contention case. We note the we cannot use a 0 size
as amount of work since it leads to undesirable results due to
the back-to-back effect (a thread does not allow other threads
to access the queue for several consecutive iterations).

1) Low Intra-Contention: The basic throughputs that are
not intra-contented can be spawned from cw

(b)
o , which we

try to estimate here. We pick four points where the basic
throughputs are easy to approximate. We have Td(pm, ps) <
Te(pm, ps), as the order of magnitude of the amounts of work
in the retry loops is less than a few units. For the same
reason, at this point, we are in low intra-contention from the
dequeuers’ point of view. Altogether,

Td(pm, ps) = T
(-)
d (pm) =

n× f
pm + cw

(-)
d

, hence

̂
cw

(-)
d =

n× f
Td(pm, ps)

− pm.

Then, according to Equation 2, we have
nf

pm +
̂
cw

(+)
d

= T (+)
d (pm)

nf

pm +
̂
cw

(+)
d

=
Td(pm, pb)− Te(pm, pb)

1−

(
pm+

̂
cw

(-)
d

)
×Te(pm,pb)

n×f

,



from which we can extract
̂
cw

(+)
d since we know alreadŷ

cw
(-)
d .

In the same way, we can compute
̂
cw

(+)
e then

̂
cw

(-)
e , by

using (pb, pm) and (ps, pm).
2) High Intra-Contention: We aim here at estimating T (b)

o

on a high intra-contention point. ps = 1 and pm = 20 are
such that Td(ps, pm) ≥ Te(ps, pm). According to Equation 2,
we have

Td(ps, pm) = Te(ps, pm) +

1− Te(ps, pm)

T̂ (-)
d (ps)

× T̂ (+)
d (ps).

In addition, if Td(ps, ps) ≥ Te(ps, ps), then

Td(ps, ps) = Te(ps, ps) +

1− Te(ps, ps)

T̂ (-)
d (ps)

× T̂ (+)
d (ps),

otherwise, Td(ps, ps) = T̂
(-)
d (ps). In both cases, we can find

the two unknowns T̂ (-)
d (ps) and T̂ (+)

d (ps) thanks to the two
equations.

This last point is also used in the same way for enqueuers:
if Td(ps, ps) ≥ Te(ps, ps), then

Te(ps, ps) =
Td(ps, ps)× ps

n× f
× T̂ (+)

e (ps)

+

(
1− Td(ps, ps)× ps

n× f

)
× T̂ (-)

e (ps),

otherwise, Te(ps, ps) = T̂
(+)
e (ps).

Like previously, we have Td(pm, ps) < Te(pm, ps), hence

T̂ (+)
e (ps) = Te(pm, ps). This implies that in any cases we can

compute T̂ (+)
e (ps), but we do not have access to T̂ (-)

e (ps) if
Td(ps, ps) < Te(ps, ps). In this case, the bottleneck of the
queue is likely to be the dequeuers, hence we set the value

T̂ (-)
e (ps) = T̂ (+)

e (ps) by default.

All T̂ (b)
o are then obtained by joining T̂ (b)

o (ps) to the
leftmost point of the low intra-contention part:

T̂ (b)
o (pwo) =



f̂
cw

(b)
o

−T̂ (b)
o (ps)

(n−1) ̂cw(b)
o −ps

× (pwo − ps) + T̂
(b)
o (ps)

if pwo ≤ (n− 1)
̂
cw

(b)
o

n×f

pwo+
̂

cw
(b)
o

otherwise.

Finally, dequeuers’ and enqueuers’ throughput are reconsti-
tuted as explained in Section IV-C: if Equation 4 is fullfilled,
then they are computed through Equations 2 and 3 that can

be rewritten as:

T̂d(pwd , pwe) =

T̂ (+)
d (pwd )+T̂

(-)
e (pwe)

(
1−

T̂ (+)
d

(pwd )

T̂ (-)
d

(pw
d
)

)

1−
pw

d
nf

(
T̂ (+)
e (pwe)−T̂

(-)
e (pwe)

)(
1−

T̂ (+)
d

(pw
d
)

T̂ (-)
d

(pw
d
)

)

T̂e(pwd , pwe) =
T̂d (pwd ,pwe)×pwd

n×f × T̂ (+)
e (pwe)

+

(
1− T̂d (pwd ,pwe)×pwd

n×f

)
× T̂ (-)

e (pwe).

Otherwise, T̂d(pwd , pwe) = T̂ (-)
d (pwd) and

T̂e(pwd , pwe) = T̂
(+)
e (pwe).

E. Results
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Fig. 5: Enqueue throughput with pwd = 7
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Fig. 6: Enqueue throughput with pwd = 50

The throughput predictions are plotted in Figures 5 and 6
for the enqueuers, and in Figure 7 for the dequeuers (the
legend is in Figure 2). Points are measurements, while lines
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Fig. 7: Dequeue throughput with pwd = 7

are predictions. We will follow this rule for all comparisons
between prediction and measurement. In the actual execution,
the queue goes through a transient state when the amount
of work in the parallel section is near the critical point, but
the prediction is not so far from the actual measurements, as
illustrated in Figure 5 and 6. Under intra-contention, some of
the curves get flat, since only one thread can be succeeding
at the same time, according to the definition of the retry
loop. Some curves even decrease because the successful one is
stalled by other failing ones due to serialization of the atomic
primitives, namely expansion. The slope presumably indicates
the density of atomic primitives in retry loops which depends
on the algorithm.

The comparison of Figures 5 and 6 illustrates the impact
of inter-contention. A decrease of the highest point of Te , due
to an increase of cwe , can be observed for the more inter-
contented case. When cwe increases, some critical points shift
slightly towards the right as the intra-contention starts with
a larger pwe . In Figure 7, decomposition of Td is apparent.
When enqueue rate is low, i.e. when pwe is high, Td is ruled by
T (+)
d due to majority of NULL dequeues, and it tends towards
T (-)
d when the enqueue rate increases.
Graphs on a wider set of parameters are available in the

companion research report [20], in the form of animated
figures.

V. POWER ESTIMATION

We recall that we are interested only in the dynamic powers
as we assume that static and activation powers are known.

A. CPU Power

Firstly, as we map each thread on a dedicated core, there is
no interference between the CPU power of different cores, so
we can compute the dynamic power as

P (C) = n× P (C)
e + n× P (C)

d . (5)

Secondly, we assume that we can segment time and con-
sider that, given a thread performing operation o, the power
dissipated in the retry loop and the power dissipated in the
parallel section are independent. There only remains to weight
the previous powers by the time spent in each of these regions:

P (C)
o = ro × P (C)

o,RL + (1− ro)× P (C)
o,PS . (6)

As shown in Section IV-C, the ratio can be obtained through

ro = 1− To × pwo

n× f
. (7)

Altogether, we obtain the final formula for dynamic CPU
power

P (C) = n

 ∑
o∈{e,d}

P
(C)
o,RL +

To × pwo ×
(
P

(C)
o,PS − P

(C)
o,RL

)
n× f


(8)

B. Memory and Uncore Power
We have noticed in [20] that the dynamic memory power

is proportional to the intensity (number of units of memory
accessed per unit of time) of main memory accesses and
remote accesses, when the threads read separate places of the
memory.

Here, the data structure does not directly involve the
main memory since we keep its size reasonably bounded
(if the queue reaches the maximum size, we suspend the
measurements, empty the queue, and resume), hence the power
dissipation in memory is only due to remote accesses, which
only appears as the threads are spread across sockets (i.e. when
n > 4).

Moreover, as the parallel sections are full of pauses, com-
munications can only take place in the retry loop, and there is
no dynamic memory power dissipated in the parallel sections.
Concerning the retry loops, we make the following assump-
tion: the amount of data accessed per second in a retry loop
depends on the implementation, but given an implementation,
once a thread is in the retry loop, it will always try to access the
same amount of data per second. When the queue is highly
intra-contented, if a thread fails then it will retry and will
access the data in the same way as in the previous try; and if
there is expansion, then the thread will still try to access the
data for the whole time it is in the retry loop.

In addition, the dequeuers (and the same line of reasoning
holds for the enqueuers) tries here to access the same data.
Therefore either memory requests are batched together when
sent outside the socket, or the Home Agent keeps track of
the previous requests. This implies that the number of threads
attempting to access the data does not impact the dynamic
memory power greatly when the rate of requests is high.

All things considered, as a thread working on operation o
spends ro% of its time inside its retry loop, we obtain that
the dynamic memory power dissipated in the retry loop is
proportional to ro (times the amount of data accessed per unit
of time in the retry loop, which is a constant). Hence

P (M) = re × ρ(M)
e + rd × ρ(M)

d , (9)



where ρ(M)
e and ρ(M)

d are constants.
The dynamic uncore power is computed exactly in the same

way as the dynamic memory power.

C. Instantiating the Power Model

We use once again ps = 1, pm = 20 and pb = 1000 as three
distinctive amounts of work, that allows easy approximations
for the power dissipation expressions.

We have seen that if X ∈ {M,U}, then P (X) = rd ×
ρ
(X)
d +re×ρ(X)

e , which can be approximated at (pwd , pwe) =

(pb, ps) by P (X)(pb, ps) = re(ps) × ρ
(X)
e , since rd is then

nearly 0. It implies that

ρ̂
(X)
e =

P (X)(pb, ps)

1− Te(pb,ps)×psn×f

.

We obtain ρ̂(X)
d similarly at (pwd , pwe) = (ps, pb).

Concerning the dynamic CPU power, we firstly estimate
the power dissipated in the parallel sections. According to
the implementation, the CPU power dissipated by the parallel
section of enqueuers and dequeuers is the same for both, and
this power does not depend on the amount of work. These
restrictions are not a loss of generality, since the aim here is
to study the queue implementations. It can then be estimated
by using (pb, pb), where the ratios ro can be considered as 0,
which leads to

P̂
(C)
o,PS =

P (C)(pb, pb)

2n
.

We reuse the point (pb, ps), where rd is very close to 0, to
derive that

P (C) = n

(
re(ps)× P̂ (C)

e,RL + (1− re(ps))P̂ (C)
e,PS

)
+nP̂

(C)
d,PS ,

which is equivalent to

P̂
(C)
e,RL =

P (C)(pb, ps)

n
(
1− Te(pb,ps)psn×f

)−( 2

1− Te(pb,ps)psn×f

− 1

)
P̂

(C)
o,PS

Once again, we obtain P̂ (C)
d,RL with the same line of reason-

ing at (pwd , pwe) = (ps, pb).
Finally, P̂ (M) and P̂ (U) (resp. P̂ (C)) are computed by using

Equation 9 (resp. Equations 5 and 6), and the estimates of the
ratios that are issued from Section IV.

D. Results

As the retry loop, which is particular to each implemen-
tation, is mainly composed of memory operations, the main
difference between the various implementations in terms of
power occurs in the dynamic memory power, which we
represent in Figure 8 (legend is in Figure 2).

Overall, the prediction reacts correctly to the variations of
parallel section sizes, and some specifics of the algorithms are
caught, e.g. Hof detached from the others when pwe = 50
or Gid mostly well-predicted both absolutely and relatively
as the less power-dissipating implementation.
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Fig. 8: Dynamic memory power at f = 3.4GHz

One can observe once again the asymmetry between en-
queue and dequeue operations by comparing the power values
at (pwd , pwe) = (2, 1000) and (1000, 2); this asymmetry is
predicted by the model, with a lower impact though.

Other power comparisons can be found in the companion
research report [20], along with the results about the last
metric, namely energy per operation.

VI. TOWARDS REALISTIC APPLICATIONS: MANDELBROT
SET COMPUTATION

The performance and energy behavior of an application
using a lock-free queue depends on both the application
specific code and the implementation of the data structure. For
applications where the queue is used in a steady state manner,
predictions can be made using the model instantiated with
the synthetic benchmark, combined with information about the
behavior of the application specific code. What is needed is:
• The size of the parallel work part of the application, both

for enqueuers and dequeuers. These may be distributions
rather than single values.

• The dynamic power for these parts (as it may differ from
that of the parallel work in the synthetic benchmark).

A. Description of Mandelbrot Set Application

As a case-study we have used an existing application1 that
computes and renders an 8192 × 8192 pixel image of the
Mandelbrot set [22] in parallel using the producer/consumer
pattern. The program uses a concurrent queue to communicate
between two major phases:
• Phase 1 consists of computing the number (with a maxi-

mum of 255) of iterations for a given set of points within
a chosen region of the image. The results for each region
together with its coordinates are then enqueued.

• Phase 2 consists of, for each region dequeued from the
queue, computing the RGB values for each contained
point and draw these pixels to the resulting image.

1Previously used for evaluation in [21].



Half of the threads perform phase 1 and the rest perform
phase 2. The size of each square region is chosen to be one
of 16 × 16, 4 × 4, or 2 × 2 pixels which also determines
the amount of work to perform per queue operation and,
hence, the level of contention. Similarly to the synthetic
benchmark, the application uses a dense pinning strategy,
pinning producer/consumer pairs to consecutive pairs of cores.

B. Mandelbrot Prediction

There are two main differences between the Mandelbrot
application and the synthetic benchmark: (i) the instructions
in the parallel section differ; and (ii) the size of the parallel
section for producers varies in Mandelbrot.

Firstly, we need to measure the CPU power dissipation
for Mandelbrot; we cannot expect to be able to predict the
power dissipation of any application that uses a queue without
having any knowledge about the power characteristics of the
application. In contrast, memory power dissipation for the
computation intensive Mandelbrot parallel section is negligi-
ble in comparison to queue operations; hence, the dynamic
memory power that we have measured and extrapolated in the
synthetic benchmark is unchanged.

Secondly, Mandelbrot provides a variety of producer parallel
works. To deal with this, the pixel region is decomposed row-
wise in an interleaved manner among producer threads. This
decomposition leads to long enough execution intervals in
which the parallel sections of the producer threads are similar
and constant. This is due to the computationally expensive
pixels belonging to the Mandelbrot set being concentrated
together in the center of the domain and surrounded by
cheaper pixels which diverge quickly. This characteristic is
congruent with our model where the data structure is used in
a steady state manner. Thus, predictions can be made using
the instantiated model over a linear combination of execution
intervals.

We measure the latency of the computation intensive pro-
ducer and consumer parallel works for each frequency and
contention level (2 × 2, 4 × 4, 16 × 16). For this process,
we make use of CPUID, RDTSC and RDTSCP instructions
as specified in [23]. The distribution of parallel works reveals
that there are two main groups for producers, that corresponds
to regions belonging to the Mandelbrot set or not. Concerning
2 × 2 contention, due to the wide distribution, we gather the
parallel works into bins of width 10 pauses; the number of
elements in the ith bin is then denoted by size(i) and its
average amount of work by pw

(i)
e . We scale the width of bins

linearly with the area of the region for other contention levels.
For the consumers, parallel works are similar for the whole
execution.

To make predictions, we assume that all consumer/producer
pair (pwd, pw

(i)
e ) is executed in a steady state during an

interval of time. For each frequency, thread, algorithm and
contention of interest, we obtain the throughput T (i) =

T (pwd, pw
(i)
e ) and the powers P (X)

i = P (X)(pwd, pw
(i)
e ) for

this interval from the corresponding synthetic benchmark in-
put. The only part of the model, instantiated with the synthetic

benchmark that needs to be replaced by an application specific
entry, is the dynamic CPU power parameter. Then, we combine
intervals to obtain total execution time and average power
dissipation. This accumulation strategy should be applied with
care as the synthetic benchmark is based upon the steady
state assumption. An interval which is assumed to take place
with a mostly empty queue, could actually not be in this state
due to leftover items from the previous interval. Although our
model is capable of taking this initial state into consideration
and provide metrics accordingly, we assume that each interval
is independent. This approximation is reasonable since the
consumer parallel work corresponds to the producer bin with
one of smallest values, hence a mostly empty queue.

Note that we have implemented a constant back-off equiv-
alent to the consumer parallel work, after dequeuing a NULL
item instead of retrying immediately, because of several ad-
vantages. It cannot decrease the performance, since either
the queue is growing, and then the back-off never takes
place, or the queue is mostly empty, and then the producers
are the bottleneck of the queue. Conversely, it can increase
the performance by diminishing the queue contention. Those
motivations drove the design of the synthetic benchmark, that
we can accordingly reuse here.

For each frequency, thread, algorithm and contention con-
figuration, execution time and power estimates for Mandelbrot
application are obtained with the following equations:

Timetotal =

BinCount∑
i=1

size(i) × λ

T (i)

P (X) =

BinCount∑
i=1

(size(i) × λ
T (i) )× P

(X)
i

Timetotal

CPU power estimation is straightforward and memory
power results are very similar to the synthetic benchmark in
Figure 8, so we just present and discuss them in [20].
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Fig. 9: Mandelbrot Execution Time



In Figure 9, execution time estimates catch the queue
algorithm specific trend for high contention cases, which
exhibit a more complicated behavior than the low contention
cases. Also, they reveal the impact of different queue imple-
mentations to overall application performance, which does not
appear under low contention. For the highest contention level
with region size 2 × 2, an increasing trend in execution time
is observed after 8 threads for many algorithms. The reason
is the increasing latency of atomic synchronization primitives
originating from two main sources: (i) inter-socket communi-
cation, which starts after 8 threads due to our pinning strategy,
and (ii) the increasing serialization (expansion) probability for
atomic primitives due to increasing number of threads that
interfere in the retry loop. The ratio of atomic primitives
and the size of queue operations show variations between
algorithms which in turn leads to different behaviors. For the
4× 4 contention case, the difference between algorithms can
still be observed but the parallel sections are large enough to
avoid interference in the retry loop. Therefore, execution time
decreases with the increasing number of threads. The differ-
ence between algorithms is due to different queue operation
sizes which loses its significance gradually with the decreasing
contention level, as observed in low contention cases.

VII. CONCLUSION

In this paper we have:
(i) proposed models for predicting the throughput and power
behavior of lock-free concurrent queues under steady state
usage;
(ii) shown how these models can be instantiated for the queue
implementations and machine on hand using 10 measurements
per frequency and number of threads via a synthetic bench-
mark; and
(iii) demonstrated that the energy behavior of a parallel ap-
plication that uses a lock-free queue in a steady state manner
can be predicted using these models and only a small amount
of queue-implementation-independent empirical information
about the application.

As a future work, it would be of interest to study the strength
of the model that has been presented here by testing it on other
applications, in particular on more memory-intensive ones.

Furthermore, the model can hopefully be extended to several
directions. While staying focused on the queue data structure,
lock-based implementations may be included, and behave in
a similar way as their lock-free counterparts. To conclude, it
would be interesting to generalize the model to other data
types.
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