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Abstract—In this paper, we study the problem of finding opti-
mal mappings for several independent but concurrent workflow
applications, in order to optimize performance-related criteria
together with energy consumption. Each application consists in
a linear chain graph with several stages, and processes successive
data sets in pipeline mode, from the first to the last stage.
We study the problem complexity on different target execution
platforms, ranking from fully homogeneous platforms to fully
heterogeneous ones. The goal is to select an execution speed for
each processor, and then to assign stages to processors, with
the aim of optimizing several concurrent optimization criteria.
There is a clear trade-off to reach, since running faster and/or
more processors leads to better performance, but the energy
consumption is then very high. Energy savings can be achieved
at the price of a lower performance, by reducing processor
speeds or enrolling fewer resources. We consider two mapping
strategies: in one-to-one mappings, a processor is assigned a
single stage, while in interval mappings, a processor may process
an interval of consecutive stages of the same application. For
both mapping strategies and all platform types, we establish the
complexity of several multi-criteria optimization problems, whose
objective functions combine period, latency and energy criteria.
In particular, we exhibit cases where the problem is NP-hard
with concurrent applications, while it can be solved in polynomial
time for a single application. Also, we demonstrate the difficulty
of performance/energy trade-offs by proving that the tri-criteria
problem is NP-hard, even with a single application on a fully
homogeneous platform.

Index Terms—workflow; pipeline; complexity results; period;
latency; energy.

I. INTRODUCTION

In this paper, we aim at optimizing the execution of several
independent pipelined applications that execute concurrently
on a given platform. Indeed, pipelined applications are becom-
ing increasingly prevalent, see for instance [1]-[3]. Mapping
such applications onto parallel platforms is a challenging
problem, that becomes even more difficult when platforms
are heterogeneous (nowadays a standard assumption). Another
level of difficulty is added when considering several inde-
pendent applications which are executed concurrently on the
platform and that compete for available resources.

We focus in this work on pipelined applications with the
regular structure of a linear chain. Such applications are
ubiquitous in streaming environments, as for instance video
and audio encoding and decoding, DSP applications, image
processing, and so on [1]-[5]. Furthermore, the regularity of

these applications render them amenable to a high-level paral-
lel programming approach based on algorithmic skeletons [6],
[7]. Skeletons ease the task of the application developer and
make it easy to tailor his/her specific problem to a target
platform. In linear pipelined applications, a series of data sets
enter the input stage and progress from stage to stage until the
final result is computed. Each stage has its own communication
and computation requirements: it reads an input from the
previous stage, processes the data and outputs a result to the
next stage. Each data set is first input to the first stage, and final
results are output from the last stage. The pipeline operates
in synchronous mode: after a transient behavior due to the
initialization delay, a new data set is completed every period.

Typical performance-related objectives for such pipelined
operations are the period (which is defined as the inverse of the
throughput) or the latency (also called response time) [5], [8]-
[13]. Formally, the period of a mapping is defined as the time
interval required between the beginning of the execution of
two consecutive data sets. The period is dictated by the critical
resource: it is equal to the longest cycle time of a processor.
For instance under a strict one-port communication model
with no overlap of communications and computations, it is
the sum of the time to perform all incoming communications,
the time to perform all outgoing communications, and the
total computation time. As for the latency, it is defined as
the time elapsed between the beginning and the end of the
execution of a given data set, hence it measures the response
time of the system to process the data set entirely. Period and
latency already are conflicting objectives when executing a
single application. When several applications run concurrently,
the scheduler must decide which resources to select and assign
to each application, so that all users receive a fair share of the
platform.

In the recent years, another critical problem arose, namely
the energy consumption of computational platforms. As an
example, the Earth Simulator requires about 12 MW (Mega
Watts) of peak power, and PetaFlop systems may require
100 MW of power, nearly the output of a small power
plant (300 MW). At $100 per MW.Hour, peak operation of
a PetaFlop machine may thus cost $10,000 per hour [14].
Current estimates state that cooling costs $1 to $3 per watt of
heat dissipated [15]. This is just one of the many economical
reasons why energy-aware scheduling has proved to be an
important issue in the past decade, even without considering



battery-powered systems such as laptops and embedded sys-
tems.

The emphasis of this paper is on a multi-criteria approach,
where efficient trade-offs must be found between performance-
related objectives that are typical of pipelined applications,
namely period and latency minimization, and the total energy
consumed by enrolled resources. For this purpose, we consider
multi-modal processors: each processor has a discrete number
of speeds (or modes) of computation, which can be obtained
by changing the processor frequency: the faster the speed, the
less efficient energetically-speaking [16]. At the beginning of
execution, we must decide at which speed each computer will
operate, and this speed is then fixed for the whole execution.
The energy-oriented objective is to minimize the total energy
consumption of the platform; it is computed as the sum of
the energy consumed by each processor, which is a function
of its speed (dynamic energy) and of a fixed overhead (static
energy), similarly to the model in [17].

Our global aim is to execute all applications efficiently
while minimizing the energy consumed. Unfortunately, the
goals of low power consumption and efficient scheduling
are contradictory. Indeed, period and/or latency can be min-
imized by using more energy to speed up processors, while
energy can be minimized by reducing processor speeds, hence
performance-related objectives. How to deal with these con-
tradictory objective functions? In traditional approaches, one
would form a linear combination of the different objectives
and treat the result as the new objective to be optimized. But
is it natural for the user to maximize the quantity 0.7P +
0.3E, where P is the period and E the energy? Since criteria
are very different in nature, it does not make much sense
for a user to make a linear combination of them. Thus we
advocate the use of multi-criteria mappings with thresholds.
Now, each criteria combination can be handled in a natural
and meaningful way: one single criterion is optimized, under
the condition that a threshold is enforced for all other criteria.
This leads to two interesting questions. If we fix energy, we
get the laptop problem, which asks “What is the best schedule
achievable using a particular energy budget, before battery
becomes critically low?” Fixing schedule quality gives the
server problem, which asks “What is the least energy required
to achieve a desired level of performance?”

The optimization problem can then be stated as follows:
given a set of applications and a computational platform,
which stage to assign to which processor? We consider two
different mapping strategies: one-to-one mappings, for which
each application stage is allocated to a distinct processor; and
interval mappings, where each participating processor is as-
signed an interval of consecutive stages. These mapping strate-
gies have been widely used in the literature when mapping one
single application (see [8], [9], [12]), and we extend them
naturally to the mapping of several concurrent applications
without allowing any processor sharing. This assumption is
quite realistic from the point of view of the platform manager
whose goal may be to secure an efficient (albeit concurrent)
execution for each application, and is further motivated from

a theoretical point of view in Section III-C.

We target three different platform types: fully homogeneous
platforms have identical processors and interconnection links;
communication homogeneous platforms have identical links
but different-speed processors, thus introducing a first degree
of heterogeneity; and finally, fully heterogeneous platforms,
with different-speed processors and different capacity links,
constitute the most difficult problem instance.

Finally, we aim at optimizing several contradictory criteria,
namely period, latency and energy, and we study all com-
bination of these criteria. However, when taking energy into
account, we always include the period in the combination,
since the energy is an energy spent per time unit, which makes
sense only in a pipelined execution of the application, while
latency by its own takes only one single data set into account.
Thus we consider two mono-criterion problems consisting in
minimizing the period or the latency, and then two bi-criteria
problems combining period/latency or period/energy, and fi-
nally the tri-criteria problem combining all three optimization
criteria. Altogether, with two mapping strategies, three target
platforms and five criteria combination, we have 30 problems
to solve. A major contribution of this paper is to establish the
complexity of all these problems in the context of multiple
concurrent pipelined applications.

The problem of mapping a single linear chain application
onto parallel platforms in order to minimize latency and/or
period has already been widely studied, in particular on homo-
geneous platforms (see the pioneering papers [8] and [9]) and
later for heterogeneous platforms (see [12], [13]). These results
focus on the mapping of one single application, while we
add the complexity of satisfying several users who each have
different requirements for their applications. We were able to
extend polynomial time algorithms to this multi-application
setting, and to exhibit cases in which the problem becomes NP-
hard because of this additional difficulty. Of course, problem
instances which were already NP-hard with a single appli-
cation remain difficult with several concurrent applications.
Moreover, we consider a new and important objective function,
namely energy minimization, and this is the first study (to the
best of our knowledge) which combines performance-related
objectives with energy in the context of pipelined applications.
As expected, combining all three criteria (period, latency and
energy) leads to even more difficult optimization problems:
the problem is NP-hard even with a single application on a
fully homogeneous platform.

The paper is organized as follows. We start by illustrating
and motivating the problem with a simple example in Sec-
tion II. Then we describe the framework in Section III. The
next two sections constitute the heart of the paper: we assess
the complexity of all problem instances. Results for period or
latency minimization are reported in Section IV, while results
for multi-criteria problems are presented in Section V. Finally
we conclude in Section VI.



II. MOTIVATING EXAMPLE

In this small example, we have two applications and three
processors, as shown on Figure 1. We restrict to interval
mappings, where a processor can be assigned only a set of
consecutive stages of a single application. The first stage of
App; receives a data of size 1, then computes 3 operations,
and finally sends a data of size 3 to the second stage, and
so on. If both stages are assigned to the same processor, there
will be no communication cost to pay; otherwise this cost will
depend on the communication volume (3 in this case) and
on the link bandwidth between the corresponding processor
pair. For the computational platform, each processor has two
execution modes. For instance, P, can process 3 operations
per time unit in its first mode, and 6 in its second one, against
6 or 8 for P, and 1 or 6 for Ps. The energy consumption of a
processor is equal to the square of its speed, which is quite a
realistic assumption (see Section III-E for more details on the
model for energy consumption). Finally, all communication
link bandwidths are set to 1.

We compute the global period as follows: T' = max(Ty, T»),
where T is the period of the i" application (i = 1,2). The
global latency is defined in a similar way, as the maximum
of the latency achieved by all applications. Note that when
the energy is not a criterion to minimize, all processors can
run in their higher modes (as fast as possible), because this
can only improve the performance-related criteria (period and
latency). In this case, either a processor is used at its fastest
speed, or it is turned off. In order to minimize the period
without energy constraints, we map the whole first application
onto processor Ps, the first half of the second application onto
processor P, and the rest onto processor P;. The period is
then:
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Equation (1) reads as follows: we compute the cycle-time
of each processor as the maximum time spent for incom-
ing communications, computations, and outgoing communi-
cations, thus considering a model in which communications
and computations are overlapped. We then take the maximum

of these quantities to derive the period. Note that the cycle-
time of each processor is exactly 1 and there is no idle time on
computation, thus it is not possible to achieve a better period:
this mapping is optimal for the period minimization problem.

The minimum latency is obtained by removing all com-
munications and using the fastest processors. A mapping that
returns the optimal latency (in the absence of other criteria) is
for instance the one which maps the first application on P; and
the second application on P», thus achieving a global latency
of:
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In Equation (2), we simply compute the longest execution
path for each application. The bottleneck is the second ap-
plication, and we cannot achieve a better latency since we
pay no communication and use the fastest processor for this
application. This latency is thus optimal.

The minimum energy is obtained when we use fewer
processors, each running in slowest mode. Since we assume
that a processor cannot be assigned stages of two different
applications, two processors are required in the example. For
instance, we can map the first application on P; running in its
lowest mode and the second application on P; running in its
lowest mode too, thus achieving an energy of 32 + 12 = 10.
This is the minimum energy consumption required to run both
applications. We observe that the period is then:

3+2+1
3

max max(%7 ,%),max(%,%,%) =14

As expected, running at a slower pace to save energy
leads to poorer performances. Trade-offs must be found when
considering several antagonistic optimization criteria.

For instance, if we try to minimize the energy consumption
under the constraint that the period is not greater than 2,
we can use the first mode of each processor. Then the first
application is mapped onto Pj, the first three stages of the
second application are mapped onto P» and its last stage is
mapped onto Ps;. The global period is 2, and the consumed
energy is 32 + 62 + 12 = 46. This may be quite a reasonable
compromise between energy and period: indeed, with the
mapping minimizing the period (period of 1), the energy
consumption was 62 + 82 + 62 = 136.
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Figure 1.

Example with two applications and three multi-modal processors.



III. FRAMEWORK

We start with a formal description of the applicative frame-
work (Section III-A) and the target execution platform (Sec-
tion III-B). Next in Section III-C, we introduce and motivate
the mapping strategies. We are then ready to formally describe
the performance objective criteria (period and latency) in
Section III-D, and then to finally discuss the energy model
in Section III-E.

A. Applicative framework

We consider A independent application workflows (A > 1)
to be executed concurrently; each application operates on a
collection of data sets that are executed in a pipelined fashion.
For 1 < a < A, let n, be the number of stages of applica-
tion a, and N = Z:‘:l n, be the total number of stages. For
1<k <n,, 55 is the size of the output data of Sff, the kth
stage of application @ and w?” is its computation requirement.
The first stage S; of each application, 1 < a < A, receives an
input of size 52 from the outside world, while the last stage
of each application S}« returns the result (of size d; =) to the
outside world.

B. Target platform

The target platform is composed of p processors, which are
fully interconnected; there is a bidirectional link P, < P,
between any processor pair P, and P,, of bandwidth b, ,.
For simplification, we assume that 2A additional processors
Pn,,--y Pn, and Poyt,, - . ., Poyt,, are devoted to input/output
operations of the applications (in fact these additional proces-
sors are virtual processes that may well be shared by the same
physical resource). Initially, for each a € {1, ..., A}, the input
data for each task of the application a resides on P, , while all
results must be returned to and stored on Fyyt,. These special
processors are all connected to the p processors of the target
platform.

We use a linear cost model for communications; it takes
X /by, time units to send (resp. receive) a message of size X
to (resp. from) P,. With the mapping rules that we enforce
(see Section III-C below), it turns out that a processor never
has to perform two concurrent ingoing nor outgoing commu-
nications: at any time-step, a processor is involved in at most
one send, one computation and one receive. However, these
three operations can either be parallel (as in the example of
Section II) or serialized. With parallel operations, we have
the overlap model that corresponds to multi-threaded com-
munication libraries such as MPICH2 [18]. With sequential
operations, we have the no-overlap model that is well-suited
to single-threaded programs.

Processors are multi-modal: every processor P, is associ-
ated with a set of speeds Sy = {sy.1,-- -, Su,m, }. During the
mapping process, we need to choose one speed in S, for each
processor P, that is enrolled, and this speed is fixed during
the whole execution.

Then we classify particular cases which are important, both
from a theoretical and practical perspective. Fully homoge-
neous platforms have identical processors (all processors have

a common speed set: S, = S) and homogeneous commu-
nication devices (b,, = b for all link bandwidths). They
represent typical parallel machines. Communication homoge-
neous platforms are still interconnected with homogeneous
communication devices, but they may have processors with
different speed sets (S, # Sy). They correspond to networks of
workstations with plain TCP/IP interconnects or other LANS.
Fully heterogeneous platforms are the most general, fully
heterogeneous architectures. Hierarchical platforms made up
with several clusters interconnected by slower backbone links
can be modeled this way.

C. Mapping strategies and scheduling

We consider two mapping strategies, one-to-one and by
interval. One-to-one mappings obey the simplest rule: each ap-
plication stage is allocated to a distinct processor. While easier
to optimize and implement, this rule may be unduly restrictive,
and is likely to pay high communication costs. Obviously, it
also requires that p > N, thereby limiting its applicability to
larger platforms (or fewer and smaller applications). A natural
extension is to search for inferval mappings, where each
participating processor is assigned an interval of consecutive
stages. Intuitively, assigning several consecutive stages to the
same processors will increase their computational load, but
may well dramatically decrease communication requirements.
Interval mappings have been widely used in the literature,
see [3], [5], [8], [9], [12] among others.

We point out that both one-to-one and interval mappings
forbid any processor sharing, or re-use, across applications.
We could introduce general mappings that would allow any
processor to execute any number of stages, consecutive or not,
taken from one or several applications. However, there are
several reasons, both practical and theoretical, to restrict to
interval mappings:

e On the practical side, we envision a computer center
where applications, or jobs, cannot share resources be-
cause of security rules or of batch-assignment procedures.
The goal of the platform manager is to secure an effi-
cient (albeit concurrent) execution for each application
(performance-related criteria) while minimizing the en-
ergy consumption of the whole platform.

e On the theoretical side, there are two problems with
general mappings:

1) they immediately lead to NP-hard optimization prob-
lems, even for the simplest mono-criterion problem:
period minimization for a single application mapped
onto homogeneous and uni-modal processors, paying
no communication cost (straightforward reduction from
2-PARTITION);

2) they lead to intricate scheduling problems for pe-
riod/latency bi-criteria problems.

The latter problem is the most important, although we
discovered it only quite recently [19]. Basically, even when
the mapping is given, scheduling the execution is a problem
of combinatorial nature. With general mappings, a processor



typically has several incoming and/or outgoing communica-
tions, and it is difficult to orchestrate these operations so as
to minimize conflicting objectives such as period and latency.
This holds true both for the overlap and no-overlap models.
On the contrary, with interval mappings, we have two key
properties:
1) the execution graph is acyclic, meaning that data leaving
one processor never returns to that processor;
2) each processor has at most one incoming and one outgo-
ing communication.

Once the mapping has been determined, these two properties
allow for a straightforward scheduling: each operation is
executed as soon as possible.

D. Performance optimization criteria

We are now ready to formally define the period and the
latency of one-to-one and interval mappings. Because there is
no processor sharing, we can focus on a single application.

An interval mapping is a partition of the set of stages S*
to S™ into m intervals I; = [d;, e;] such that d; < e; for 1 <
j<m,di =1,dj41 =ej+1forl <j<m—1ande, =n.
Then, the function al : [1,n] — [1,p] associates a processor
number to each stage number. In a one-to-one mapping, this
function is a one-to-one assignment. In an interval mapping,
for 1 < j < m, the whole interval I; is mapped onto the same
processor Py(4), i.€., for dj <i <ej, al(i) = al(d;). Also,
two intervals (from the same application or from two different
applications) cannot be mapped onto the same processor, i.e.,
for 1 <j,5/ <m, j#j, al(d;) # al(d).

The period of this single application is expressed in the
overlap model as:
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The maximum in the previous expression is replaced by
a sum when considering the no-overlap model, since all
operations are serialized. The period is then:
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The latency is the time to process a single data entirely, so
it is identical in both communication models:
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Again, the simplicity of Equations (3), (4) and (5) is a very
useful property of interval mappings, and greatly simplifies
the solution of multi-criteria problems.

These are the period and latency of one single application,
and we need to define a global period and latency func-
tion to be optimized. The simplest approach is to minimize
X = maxgeqy,... a1 (X,), where X, is the period or latency
of application a, for a € {1,..., A}. However, the concurrent
applications can be of completely different nature and/or
economic value, so that their periods or latencies are not
always comparable. Therefore we aim at minimizing

X = max W, x X,, 6)

ae{l,...,A}

where W, > 0 is a weight associated to each applica-
tion and X, is the period or latency of application a, for
a € {l,...,A}. W, can be 1 (we retrieve a simple
maximum) or a priority ratio (fixed by the platform manager
and/or paid by the user). We can also let W, = 1/X, where
X is the objective function computed when the application
is executed alone on the platform; in this case W, x X, repre-
sents the slowdown factor of application a, and X corresponds
to the maximum stretch [20].

E. Energy model

The last criterion is the energy consumption of the platform,
which is defined as the sum of the energy F(u) consumed
by each processor P, enrolled in the mapping. We assume
that F(u) consists of a static part and of a dynamic part:
E(u) = Egq(u) + Eqyn(sy). The static part Egq(u) is
the static cost for a processor to be in service, and does not
depend on the speed s, at which the processor is running.
On the contrary, the dynamic part Egy,(s,) is of the form
Egyn(s) = s, where o > 1 is an arbitrary rational number.
It is sometimes assumed that o = 2 [17], as we did in the
example of Section II, but all our results hold for any value
of a.

The energy E(u) is an energy consumed per time unit, so
it must be associated with a duration. However, the execution
of a pipelined application with arbitrarily many consecutive
data sets may last for an unbounded amount of time. Hence
we always consider a combination of energy and period
objective criteria, because the latency by its own takes only one
single data set into account, and does not reflect a pipelined
execution.

IV. COMPLEXITY OF MONO-CRITERION PROBLEMS

Table I summarizes all mono-criterion complexity results.
Each column corresponds to a platform type: proc-hom de-
notes identical speed processors while proc-het represents
heterogeneous processors; com-hom means identical com-
munication links, while they differ for com-het. We also
report results for the case special-app, which corresponds to
applications whose stages are all identical (all w¥ are equal),
and no communication cost is paid (all 6 are equal to 0).

First, note that since we do not consider energy minimiza-
tion issues in our mono-criterion optimization problems, we
can systematically run processors at their highest speed, and
thus use classical results established in a context with no
energy. Most NP-completeness proofs come from the single



proc-hom
com-hom

proc-het

special-app \ com-hom com-het

Period - one-to-one

polynomial (binary search)

NP-complete

Period - interval

polynomial (dyn. prog. + greedy)

NP-complete(*) \ NP-complete

Latency - one-to-one polynomial

NP-complete(*) NP-complete

Latency - interval

polynomial (binary search)

NP-complete

Table T
COMPLEXITY RESULTS FOR MONO-CRITERION OPTIMIZATION PROBLEMS.

application problem which already was NP-hard, see [12], [21]
for the proofs. The two special entries denoted with (*) are
problem instances which could be solved in polynomial time
for a single application, but becomes NP-hard with several
ones. Remaining entries correspond to polynomial algorithms
that were already existing for a single application and that
have been extended for several ones. Finally, all results apply
to both the overlap and no-overlap models, and to all objective
functions introduced in Section III-D: more precisely, polyno-
mial problems remain polynomial for arbitrary weights W, in
Equation (6), while NP-complete problems are already difficult
with W, = 1. Due to space limitation, we report here only the
proofs for the period minimization problems. The other proofs
are provided in the companion research report [22].

A. One-to-one mappings

Theorem 1: On communication homogeneous platforms, a
one-to-one mapping that minimizes the period can be deter-
mined in polynomial time.

Proof: The following proof is an adaptation of the algo-
rithm described in [12], which finds the minimum period under
the same hypothesis but for a single application. The main
idea remains the same, since on communication homogeneous
platforms the application that the stage belongs to does not
matter for a one-to-one mapping.

The optimal period belongs to the set:

k=1 .k sk
T:{Waxmax((sa Ya 6“),
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because it is equal to the product of W, by the cycle-time
of some processor P,, running in its fastest mode s,, and
executing one of the N stages, S¥. First we compute the set 7°
and we sort its elements into an array 74. Then, we perform
a binary search on the array 7,4 to find the optimal period,
testing at each step whether the current element 7" is a feasible
value. To do so, we use the greedy assignment procedure of
Algorithm 1. Initially, the current element 7" is the median
of 74. If the greedy assignment procedure returns “failure”, we
increase the period by jumping to the median of the elements
of T4 which are larger than T, and if it returns “success”, we
jump to the median of the elements of 74 which are smaller
than 7. The algorithm terminates in [log 7] iterations.

Algorithm 1 Greedy-Assignment(T)

Work with fastest [NV processors, numbered P; to Py, where
51 <853 <+ <8y
Mark all stages S; to Sy as free
for u =1to N do
Pick up any free stage S* such that:

skt wk gk
Wa Xma.X( ba 7§7E) ST
Assign S¥ to P,
Mark S* as already assigned

if no stage found then

return “failure”
end if
end for
return ‘‘success”

Note that |[7| < N x p (IV stages and p processors), hence
the total computation time is O((N x p+costga) log(N xp)),
where costg 4 is the cost of the greedy assignment procedure.

We now describe the greedy assignment algorithm for
a prescribed value T of the achievable period. Recall that
there are N stages to map onto p > N processors in a
one-to-one fashion. Also, we target communication homo-
geneous platforms with different-speed processors (s, # Sy),
with different-capacity links between the applications, but
with links of same capacities within an application. First
we retain only the fastest [V processors, which we rename
P, P, ..., Py such that s < s5 < --- < sy. Then we
consider the processors in the order P; to Py, i.e., from the
slowest to the fastest, and greedily assign them any free (not
already assigned) task that they can process within the period.

The proof that the greedy procedure returns a solution if
and only if there exists a solution of period T is done by
a simple exchange argument. Indeed, consider a valid one-to-
one assignment of period T, denoted .4, and assume that it has
assigned stage Sl’fll to P;. Note first that the greedy procedure
will indeed find a stage to assign to P} and cannot fail, since
8511 can be chosen. If the choice of the greedy procedure is
actually Sffll, we proceed by induction with Ps. If the greedy
procedure has selected another stage 8522 for Py, we find which
processor, say P,, has been assigned this stage in the valid
assignment A. Then we exchange the assignments of P, and
P, in A. As P, is faster than P;, which could process Sfll
in time in the assignment A, P, can process S(’jll in time too.

As Sfjg has been mapped on P; by the greedy procedure,



P, can process ng in time. So the exchange is valid, we can
consider the new assignment which is valid and which did the
same assignment on P; than the greedy procedure. The proof
proceeds by induction with P, as before.

The complexity of the greedy assignment procedure is
costga = O(N?), because of the two loops over processors
and stages. Altogether, since N < p, the cost of Algorithm 1
can be neglected, and the complexity of the whole algorithm
is O((N x p)log(N x p)), which is indeed polynomial in the
problem size.

In addition we can observe that this algorithm works with
the no-overlap communication rnodel by reglacm% W, %

Sklwi Ea x wt
max(ba7§7§)<TbyW X(T+ + )ST
|

Theorem 2: On fully heterogeneous platforms, the problem
of finding a one-to-one mapping that minimizes the period is
NP-complete.

Proof: As the problem was already NP-complete with
one single application [12], it remains NP-complete with
concurrent applications. ]

B. Interval mapping

Theorem 3: On fully homogeneous platforms, an interval
mapping that minimizes the period can be determined in
polynomial time.

Proof: A polynomial algorithm has already been found
to exhibit the minimal period with one application, under
a communication model without overlap [12], and it can
easily be extended to the overlap model, so the following
proof is valid for both models. We exhibit an algorithm (see
Algorithm 2) which finds an optimal interval mapping for
concurrent applications, thanks to the previous polynomial
algorithm for a single application, and we show its validity.

Algorithm 2
Assign all stages of each application to one processor
Compute the period of all applications
for a = (p— A) to p do
Find an application a’ such that W, x T
Add one processor to this application
Compute the new period T, of this application
end for

1S maximum

First, here are some notations:

o (k¥,) is a A-tuple which represents the processor distri-
bution among the applications at step i of Algorithm 2.

o (kg ;) is an optimal processor distribution with i proces-
sors.

o To(n) is the period of the application numbered a,
where n is the number of processors the application a
is assigned to.

o T(d) = max,eqy,
tuple.

Let us prove now the optimality of Algorithm 2.

o (ky ) is the best distribution with A processors, because
it is the only one.

o Let us assume that (kj ; ) is optimal with 4 processors.
We want (k7 ;, ;) to be an optimal distribution with 741
processors.

- Either:  da, kg ;1 <k,
In this case, by construction,

3" < i, T((K ;1)) = WaxTa(k 1) = WaxTa(kS 111

Now, because every T, and z — W, X x are non-
decreasing, T'((ki ;1)) < T((k} ;) < T((k},)), and
by definition W, x T, (kg ;1) < T((kg, i11))-
Finally, T((k2 1)) < T((k2141)).
- Or: Jlakg 0 =ky,;+1
* either: ka = kg ; + 1 and we are done,
* or: Ja’ #a, kg =k + 1
In this case, by construction,
T((ka) = far(Tar (kg 1)) = far(Tar (K3 141))

because ki i = kg iiq. Thus T((kg, )) <

T((kq, L+1)) Flnally, T((kg,z—&-l)) < T((kg, L+1))
Overall we have shown that (ky,, ;) was as good
as (kg ;11)-

« By induction, the algorithm finds an optimal solution to

map A applications onto p processors.

The complexity of computing the period of application a
with ¢ < p processors, keeping the intermediate result with
q — 1 processors, is bounded by O((n,)3q) [12]. Let
Nnae = MAXqe(1,..., A} Na- Since we perform at most p steps
in the algorithm, and q < p, the complexity of Algorithm 2
is bounded by O(n2,,,p*), which is indeed polynomial in the
problem size. [ ]

Theorem 4: On communication homogeneous platforms,
the problem of finding an interval mapping that minimizes
the period is NP-complete.

Proof: As the problem was already NP-complete with
one single application [12], it remains NP-complete with
concurrent applications. [ ]

The case special-app is more interesting, because a poly-
nomial algorithm exists to find an interval mapping which
minimizes the period of one single application [13]; however,
the problem becomes NP-complete with several applications.

Theorem 5: With more than one application, heterogeneous
processors, homogeneous pipelines without communication,
the problem of finding an interval mapping which minimizes
max,eq1,...,A} Lo is NP-complete (in the strong sense).

Proof: We consider the associated decision problem:
given a period T, is there a mapping of period less than T? The
problem is obviously in NP: given a period and a mapping, it is
easy to check in polynomial time that it is valid by computing
its period.

To establish the completeness, we use a reduction from 3-
PARTITION [23]. We consider an instance Z; of 3-PARTITION:

given an integer B and 3m positive integers ai, as, ..., a3m
such that for all ¢ € {1,...,3m}, B/4 < a; < B/2 and
with 2111 a; = mDB, does there exist a partition Iy,..., I,



of {1,...,3m} such that for all j € {1,...,m},
Zie]i a; = B?

As 3-PARTITION is NP-complete in the strong sense, we
can encode the 3m numbers in unary, and assume that the
size of Z; is O(mB).

We build an instance Zy of our problem with m identical
applications such that each application is composed of B
stages, with w = 1, and p = 3m processors with speeds a;
for each j € {1,...,3m}. We ask whether it is possible to
realize a period of 1. Clearly, the size of Z, is polynomial in
the size of Z; (coded in unary). We now show that instance Z;
has a solution if and only if instance Z, does.

I;] =3 and

Suppose first that Z; has a solution. Let I; =
{ay,a5 ,a3;}, for j € {1,...,m}. For each j €
{1,...,m}, we assign the a’l,j first consecutive stages of the

application j to the processor of speed a’l’j, the a’z’j next
stages to the processor of speed a’2}j, and the agyj remaining
stages to the processor of speed a{,,, ;- As the period of every
processor is clearly equal to 1, the period is 1.

Suppose now that Z, has a solution. As the sum of all
computation times is equal to the sum of all processor speeds,
and a processor cannot be assigned stages of two different
applications, for each application, the sum of its computa-
tion times is equal to the sum of the speed of processors
which are assigned a stage of this application. Now, for all
i€{l,...,3m}, B/4 < a; < B/2, so there are exactly three
processors involved in the processing of each application. We
can derive easily a solution to 7Z; (set I; corresponding to
processors of application 7).

As there is no communication, this proof is valid for both
communication models. ]

Theorem 6: With more than one application, heterogeneous
processors, homogeneous pipelines without communication,
the problem of finding the optimal interval mapping which
minimizes max,eq1,..., A} Wa X T, is NP-complete (in the
strong sense).

Proof: We follow the previous proof, but we assume now
that, for each a € {1,...,A}, for k € {1,...,m}, wk =
1/W,. Then we scale each application: each w* is multiplied
by W, so that the new period T, of the application a will be
W,T,. We are now in the case of the previous theorem. N

Theorem 7: With more than one application, heterogeneous
processors, homogeneous pipelines without communication,
the problem of finding the optimal interval mapping which
minimizes maxqeq1,...,a} Ta/T,; is NP-complete (in the strong
sense).

Proof: We build the same instance as the one of the first
proof. As the pipeline applications are all similar, the period of
those applications when they are alone on the platform are all
the same. We finally just have to minimize max,ey1,..., 4} Ta-

|

V. COMPLEXITY OF MULTI-CRITERIA PROBLEMS

When dealing with multiple criteria, our approach is to
minimize one of them, given a threshold on the others.

Actually, fixing the period or the latency means fixing a
threshold on the period or latency of each application, thus
providing a table of period or latency values. Equivalently, we
minimize the value of Equation (6) with suitable coefficients.
For the energy, only a bound on the global energy consumption
is required. All complexity results are summarized in Table II.
Just as before, all results apply to both the overlap and
no-overlap models, and to all objective functions introduced
in Section III-C. As shown in Table II, we consider the
three following combinations: period/latency, period/energy
and period/latency/energy. In this section, we briefly summa-
rize results for the period/latency combination, and we put
an emphasis on the last two combinations involving both
performance and energy criteria.

A. Period/latency minimization

In this section again, we are not concerned with energy
minimization issues, so, similarly to results of Section IV, all
processors can be run systematically at their highest speed.
Therefore, on fully homogeneous platforms, all one-to-one
mappings are identical, and it is straightforward to minimize
the latency for a given period, or the converse.

However, for interval mappings, we must decide where to
split applications into intervals, and we provide a dynamic
programming algorithm which solves both variants of the
problem with a single application. When considering multiple
applications, we need to run the dynamic programming algo-
rithm once per application with the corresponding period (resp.
latency) threshold, and the minimum latency (resp. period) that
can then be achieved is the maximum over all applications.
Please see [22] for details. When moving to a platform with
heterogeneous processors, even if the application is homoge-
neous with no communication (case special-app), the problem
of finding a one-to-one or interval mapping that solves the bi-
criteria period/latency problem is NP-complete. This result is
a direct consequence of the NP-completeness of the mono-
criterion cases, see Section IV.

B. Period/energy minimization

We first provide results for one-to-one mappings, and then
discuss interval mappings. For fully heterogeneous platforms,
the problem is NP-hard because the period minimization
problem already is NP-hard on such platforms. The interesting
result is the following:

Theorem 8: On communication homogeneous platforms, a
one-to-one mapping which minimizes the energy consumption
while enforcing a given period for each application can be
determined in polynomial time.

Proof: We build a bipartite graph G = (U, V, E),
and prove that the problem amounts to finding a minimum
weighted matching in this graph. U is the processor set, and V'
the stage set. For each processor and each stage, the weight of
the edge between the two vertices is set to +oo if the processor
cannot execute the stage within the period, and else it is the
energy consumed by the processor when it is running in the
smallest mode allowing to execute the stage within the period.



proc-hom proc-het
com-hom special-app | com-hom |  com-het
| Period/Latency - both \ polynomial \ NP-complete \

Period/Energy - one-to-one

polynomial (minimum matching)

| NP-complete

Period/Energy - interval

polynomial (dyn. prog.) \

NP-complete

| Period/Latency/Energy - both |

NP-complete \

Table II
COMPLEXITY RESULTS FOR MULTI-CRITERIA OPTIMIZATION PROBLEMS.

Finding a minimum weighted matching gives us the minimum
power consumption, in polynomial time O ((N + p)%) ]

For interval mappings, first note that the problem be-
comes NP-complete as soon as we consider different speed
processors, because of the NP-completeness of the period
minimization problem for such platforms. Thus we focus on
fully homogeneous platforms.

Theorem 9: On fully homogeneous platforms, an interval
mapping which minimizes the energy consumption while en-
forcing a given period for each application can be determined
in polynomial time.

Proof: We first exhibit a dynamic programming algorithm
that returns the optimal energy consumption for a single
application, when using exactly k processors to compute the
application. This algorithm is fixing the processor speeds so
as to minimize the energy. Then, the multiple application case
can be solved using another dynamic programming algorithm,
which decides how many processors should be allocated to
each application.

For a single application a € {1,..., A}, and a processor
number ¢ € {1,...,p}, we compute EZ, the minimum energy
consumed for the application a using at most g processors. We
recursively compute the value E (3, j, k), which is the optimal
energy consumption that can be achieved by any interval-
based mapping of stages S¢ to SJ using exactly k processors.
The goal is to determine £ = mingegy,... g} £(1, 74, k). The
recurrence relation can be expressed as:

i<e<j—1
with the initialization:

o E(i,i,r) =400 if r>1
¢ Defining

-7:1] = {Edyn(sﬁ) + Estat,

§imt S w5
max( ) 5 <T,tedl, ,m}},
we have:
B(i.d.1) = {

Here, m is the number of speed modes, and 7" is the period
bound for the application a. The complexity of this dynamic

min F! if F/ # @
+o00 otherwise

programming algorithm is bounded by O(n2(p + m)).
Note that for the no-overlap model, we simply replace
J

i—1 Tw j i—1
[ [ by 6b +

max

= T v S % in the
definition of .7-7 .

Note also that E¥ = +oo if the algorithm fails to match
the period 7.

For several applications, let F(a, k) the minimum energy
consumed by k processors on the first applications 1,...,a,
so we are looking for F (A, p). This energy can be computed

recursively, thanks to the recurrence relation:

Vke{l,...,p},Vae{2,..., A},
E(a, k) = i El+ E(a—1,k—
(a.k) = _ min_ (Eg+E(a—1k=q))

and the initialization:

Vke{l,...,p}, E(Q,k)=E}

The overall complexity is O(AN3p?).

C. Period/latency/energy minimization

When mixing the three criteria, the problem becomes NP-
hard even for fully homogeneous platforms, no communica-
tion, and a single application. The combinatorial nature of
the problem comes from the fact that even if processors are
identical, they are multi-modal and each of them may run at
a different speed.

Theorem 10: On fully homogeneous platforms, with a sin-
gle application and without any communication cost, finding
a one-to-one mapping that solves the tri-criteria problem is
NP-hard.

Proof: We consider the associated decision problem:
given a period T, a latency L and an energy E, does there
exist a one-to-one mapping of period less than T, latency less
than L and energy less than E?

The problem is obviously in NP: given a period, a latency,
an energy and a mapping, it is easy to check in polynomial
time that the mapping is valid.

To establish the completeness, we use a reduction from 2-
PARTITION [23]. We consider an instance Z; of 2-PARTITION:
given n strictly positive integers ai,as,...,a,, does there
exists a subset / of {1,...,n} suchthat 3, ;a; = >, 7 a;?
Let S =", a;. Let K = ax S+2, where « is the exponent
used in the computation of the energy (see Section III-E).



We build an instance Z, of our problem with n identical
processors, each with m = 2n + 1 modes such that:

. s9i—1 =K'
Vie{l,...,n} { 5 — K 4+

and a pipelined application composed of n stages, with com-
putation costs w; = K@+,
Intuitively, the idea is to choose K such that:

a; X
Kila—1)

1) stage weights are far enough from one another;
2) there is a gap between (s2;_1,52;) and (s2j_1, S2;).

Then the mapping will use exactly one component of every
pair (522'_1, 821').
We claim that for each j € {2,...,

ca(2_ 1
“\2 72

J
| | B s
KJO(+1 > 2_1 K + (Kl X aj,1 —+ 1-— 2> .

To prove the claim, let j € {2,...,

j—1
i S 1

i=1

n}, we have

K7 > iK”
=1

and

n}. On the one side:

-1

<Y K“+aS<(j-
i=1

< jK(j_l)a

DKUY 4 g

< Ko

On the other side:
J

zKia+

=1

<K1a X CLj_l —+ 1-—

5
2
j .
<Y K4+ K" x K
=1
< jKI*

+ K27 < (j+ 1)K < Kiot!

Foreach j € {2,...,n} andeach 0 < X < 1:

. -t S 1
Kja>;Kla+OéX (2—2>
and
ja+1 ! (16 11—« S
Ko+ >;K +X(K ><aj_1—|—1—2).

For all i € {1,...,n}, if we choose speed so; instead of
speed so;_1, the additional energy is:

e a % aiX « 2o
s9; — 851 = (K" + 7[(1'(@*1)) -K
. a; X )
= K(1+ a5 4 o(X)) - K™
(14095 4 o(X))

= aaq; X + fZ-E(X)

where f£(X) = o(X).

In the same way, for each ¢ € {1,...,n}, the difference in
latency when using speed ss; instead of speed so;_1 to execute
stage S, is:

w; w; Ki(a+1) Ki(a-i—l)
Spic1 sz K Ki4 uXs
Ki(at1) Ki(a+1) X
== 2 (1-%2 LX)
Kz Kz Kza
where fL(X) =, o(X).
For all i € {2,...,n}, the time to execute S; at speed
So9i_9 iS:
w; Ki(a+1)
82i—2 Ki—1 4+ ‘K(?_iz)l(i(_l)
Ki(oc+1) a;—1 X
T TRt ( - K(G-Da + O(X))
= Kot K7 g X 4 fE(X)

So we choose X < 1 small enough, so that for each

i e {1,...,n},

FEX) <X x &
FEX)] < X x o

and for alli € {2,...,n}, |[fF(X)| < X x %

Finally, we have to decide for the latency, the energy
and the period bounds. Let E* and L* be the energy and
latency obtained when S; is executed at speed S9;—1 for all
i € {l,...n}, B¥ = 3" s% = > K and
L* = YL, 5%~ = E*. We ask whether it is possible to
achieve an energy E° = E* + aX(5/2 + 1/2), a latency
L°=L*—X(S/2—1/2) and a period T° = L°.

Clearly, the size of Zy is polynomial in the size of Z;. We
show that Z; has a solution if and only if 75 does.

Assume first that 7; has a solution. For each ¢ € I, stage
S, is executed at speed sg;, and for each ¢ € {1,...,n}\ I,
stage S; is executed at speed So;_1.

The mapping consumes an energy E and has a latency L,
where:

E= E*—l—Z(sl 5211
i€l
<E*+Z aalX+><E*+aX<S+1>
- - 2

. 2
i€l

=E*+) (0a: X + fF(X))

i€l




Because 7° = L°, and because we fulfill the latency con-
straint, we fulfill the period constraint too. We conclude that
7> has a solution.

Suppose now that Z5 has a solution. We first show that for
eachi € {1,...,n}, stage S; is executed at speed either sg;_1
or sg;. Let (P;) be the property: for each i € {j,...,n},
there is a single processor running at speed sg;_1 Or Sg;, and
this processor is assigned stage S;. We first prove that (P,,)
is true. On the one hand, if two processors were running at
speed So2,—1 OF S2,, they would consume an energy

n—1
: S 1
E>2s8, | >K"™+Y K*+aX <2+2> > E°
=1

On the other hand, if no processor was running at speed So,,—1
or Sa,, the latency would verify

L> Unospgmetl _gl-e g X+ fhiX)
Son—2
LN S
> Y K4+ X (Kl—a X ap_1+1— 2)

i=1

— K% xa, 1 X + fLi(X)

> ZKia—X(g—;>+<§+fLi(X)>
i=1
> L°

We conclude that (P,,) is true. We now proceed by induction.
If for some j € {3,...,n}, (P;) is true, then we show that
(Pj_1) is true in a quite similar way. In the end, (P2) is true
(and the processor that is assigned stage S; is running either at
speed s1, or at speed s3). Let I the subset of {1,...,n} such
that the processor that is assigned the stage S; is running at
speed s2;. Then for each ¢ € {1,...,n}\I, the processor that
is assigned stage S; is running at speed sg;—1. The consumed
energy is
E=E"+Y (aa;X + fF(X))
il
But £ < E°, hence

S (1 i fE)
DSy (2 - ax>

Za,<§+ 1.1
ity T\a"a)

iel

Therefore

As the a; are integers, we derive that Zie 1a; < %

The achieved latency is L = L* — Y, ; (a;X — fF (X)),
and L < L°, hence

S (1 Y fHX)
Pt (1)

iel
Ziel 0
X

|
Lo

Since

IA
[N
<
(¢}
[0)°]
(¢}
—
=
~
£
v
[

Finally, Zie 0 = % and Z; has a solution, which con-
cludes the proof. [ ]

Theorem 11: On fully homogeneous platforms, with a sin-
gle application and without any communication cost, finding
an interval mapping that solves the tri-criteria problem is NP-
hard.

Proof: We only give the sketch of the completeness
proof, which reuses the proof of Theorem 10. To construct
the instance Z,, we insert big stages between the previous
stages. We add a big speed to the processor modes, adjusted
to allow the execution of exactly one big stage during the
period. More formally, we build a pipeline composed of 2n—1
stages, such that Vi € {1,...,n},wy_; = K*ot1) and
Vi€ {1,...,n — 1},wy = KMtV We use 2n — 1
identical processors, that can run 2n 4+ 1 modes, such that
Vie{l,...,n}, 89,1 = K’ and s9; = K' + ?g),f We also
let Sop41 = Kntt

We search for an interval mapping, whose energy does not
exceed E° = (n— 1)Kt 4 B* 4 X (S/2+1/2), whose
latency does not exceed L° = (n—1)K (Do * — X (S/2—
1/2), and whose period does not exceed 7° = K(+De If
the instance 7Z; of 2-PARTITION has a solution, we proceed
like in the previous proof, and map every big stage onto a
processor that is running in its highest mode. All constraints
are fulfilled.

If the instance Z, has a solution, we have to run processors
that are assigned a big stage in their highest mode. Moreover,
these processors cannot be assigned other stages. All we have
to do next is to find a one-to-one mapping of the unassigned
stages, with the additional constraint that we cannot run the
remaining processors in their highest modes without exceeding
the energy bound. We then conclude as in the proof of
Theorem 10. |

We conclude this section with some remarks on uni-modal
processors. If we restrict to processors with a single execution
mode, the problem becomes polynomial on fully homogeneous
platforms, while it remains NP-hard otherwise (because of
the NP-completeness of the period/latency problem which is
also established with uni-modal processors). For one-to-one
mappings, all mappings are equivalent on fully homogeneous
platforms, but the algorithm is more sophisticated for interval
mappings. We first write an algorithm which partitions the
stages of a single application into intervals, for each of the
three variants of the tri-criteria optimization problem, and then
we use this algorithm for the multiple application problem.
Details can be found in [22].

VI. CONCLUSION

In this paper, we have studied the problem of mapping
concurrent applications onto computational platforms accord-
ing to three criteria: period, latency and energy. We restricted
the study to the class of applications which have a pipeline
structure, and we established the complexity of the problems
for different variants of mapping strategies (one-to-one and



interval mappings), and different types of platforms (ranking
from fully homogeneous to fully heterogeneous).

First we considered performance criteria, namely period
or latency minimization. From this study of mono-criterion
problems, one striking result is the impact of having multiple
concurrent applications on the problem complexity. Indeed,
when several applications are in competition for resources,
the period minimization problem turns out NP-hard for in-
terval mappings with heterogeneous processors, homogeneous
pipelines and without communication, while a polynomial
algorithm had been found to solve the same problem with a
single application. The same phenomenon happens for latency
minimization with one-to-one mappings. For other period
or latency minimization problems, either we were able to
extend polynomial algorithms for the single application case,
or the problem remained NP-complete. Considering bi-criteria
problems, we put a particular emphasis on problems involv-
ing both performance and energy criteria. We were able to
derive nice sophisticated multi-criteria polynomial algorithms,
through the construction of bipartite graphs or the use of
dynamic programming. Trade-offs were found to allow for
an efficient albeit energy-aware execution. Finally, the most
challenging tri-criteria problem period/latency/energy turned
out to be NP-hard even with a single application on a fully
homogeneous platform and no communication cost.

We believe that this exhaustive complexity analysis provides
a solid theoretical foundation for the study of multi-criteria
mappings of several concurrent applications, in particular
when combining performance and energy optimization criteria.

As future work, on the theoretical side, we envision to add
replication into the mappings: a stage could be mapped onto
several processors, each in charge of different data sets, in
order to improve the period, as was investigated in [13]. The
problem would become even more challenging in a framework
accounting for energy issues. On a more practical side, we plan
to design some polynomial-time heuristics to solve the tri-
criteria optimization problem in a general framework, in order
to offer practical solutions to a difficult problem. It would
also be challenging, both from a theoretical and a practical
perspective, to assess the impact of processor sharing between
applications, for situations in which it would be allowed by
the platform manager.
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