
Optimal algorithms and approximation algorithms for replica placement with
distance constraints in tree networks

A. Benoit1, H. Larchevêque2, P. Renaud-Goud1

1. LIP, Ecole Normale Supérieure de Lyon, France, {Anne.Benoit|Paul.Renaud-Goud}@ens-lyon.fr
2. LABRI, University of Bordeaux I, France, hubert.larcheveque@labri.fr

Abstract—In this paper, we study the problem of replica
placement in tree networks subject to server capacity
and distance constraints. The client requests are known
beforehand, while the number and location of the servers
are to be determined. The Single policy enforces that
all requests of a client are served by a single server in
the tree, while in the Multiple policy, the requests of a
given client can be processed by multiple servers, thus
distributing the processing of requests over the platform.
For the Single policy, we prove that all instances of the
problem are NP-hard, and we propose approximation
algorithms. The problem with the Multiple policy was
known to be NP-hard with distance constraints, but we
provide a polynomial time optimal algorithm to solve the
problem in the particular case of binary trees when no
request exceeds the server capacity.

Keywords-Replica placement, distance constraints, opti-
mal algorithms, approximation algorithms, tree networks,
binary tree, single vs multiple policy.

I. INTRODUCTION

We revisit the well-known replica placement problem
in tree networks [1], [2], [3], and derive new complexity
results and approximation algorithms. In a nutshell, the
replica placement problem is the following: we are
given a tree-shaped network where clients are periodi-
cally issuing requests to be satisfied by servers. A client
is a leaf node of the tree, and it may either process
its requests locally, or forward them to a server further
up in the tree. Note that the distribution tree (clients,
nodes, number of requests) is fixed in the approach. This
key assumption is quite natural for a broad spectrum
of applications, such as electronic, Internet Service
Provider, or Video on Demand service delivery (see [4],
[1], [5] and additional references in [2]). The root server
has the original copy of the database but cannot serve
all clients directly, so a distribution tree is deployed to
provide a hierarchical and distributed access to replicas
of the original data. The objective is to decide where
to place replicas, and which requests each server will
be processing, so as to minimize the number of servers.
When equipped with a replica, a node can process a
number of requests, up to its capacity limit, from clients
located in its subtree. In addition to these server capac-
ity constraints, we consider that the distance between

a client and the server processing some of its requests
cannot exceed dmax. A weight assigned to each edge of
the tree represents the inter-node distance, it may for in-
stance correspond to a communication cost, or quality of
service (QoS) requirements [6], [7]. Hence, the requests
must be served in limited time, thereby prohibiting too
remote or hard-to-reach replica locations. Moreover, we
consider two policies: the Single policy enforces that
all requests of a client are served by a single server in
the tree, while in the Multiple policy, the requests of a
given client can be processed by multiple servers, thus
distributing the processing of requests over the platform.

Many authors deal with variants of these replica
placement problems in networks. Some variants of
server location problems can be found in [8], [9], [10],
[11]. In most of these problems, a set of users in a
network want to have access to a given service. The
aim is then to identify a set of service providers able to
offer a sufficient amount of resources in order to satisfy
the requests of the clients, where servers are subject
to capacity constraints. In some variants, a quality of
service must be guaranteed, in terms of latencies to
process the requests. Hence, a smart repartition of the
servers in the network may enable to minimize the
latencies between any client and its associated server,
and also to ensure good fault tolerance properties.

In general graphs, and when no distance constraints
are imposed, those problems are very similar to BIN-
PACKING, a classical optimization problem [12] for
which an APTAS (Asymptotic Polynomial Time Ap-
proximation Scheme) is known [13]. The server capac-
ities correspond to the size of the bins. The three main
features of our problem that differ with BIN-PACKING
are (i) the fact that bins are associated to servers, and
must be placed in the network; (ii) the tree network,
which imposes that a server can process only clients
in its subtree; and (iii) the distance constraints that we
enforce.

The BIN-PACKING problem with distance constraints
has been studied in [14], where groups of clients are
built. The sum of the requests inside a group should
not exceed a fixed capacity, and a maximal distance is
fixed between two clients of a same group. The aim is

therefore to build a minimum of groups (i.e., to use a
minimum number of servers) so that each client belongs
to one group. The difference with our problem is that
the distance constraint is on the diameter of each group,
whereas in our case, a server has to be chosen, and the
distance constraint is between the server and its clients.

More generally, when tackling the replica placement
problem in general graphs, the aim is usually first to
extract a “good” spanning tree, i.e., a spanning tree that
will optimize some global objective function, and then
to place replicas along the spanning tree, typically in
order to optimize a more refined function. However, the
process of extracting a spanning tree is of combinatorial
nature, as it generalizes the well-known NP-hard K-
center problem [15]. Therefore, several authors propose
sophisticated heuristics whose goal is to solve both
steps simultaneously (see [16] for a survey). In this
context, some approximation algorithms are provided
in [17], [18] for the uniform weights capacitated K-
center problem.

In [19], the authors investigate hierarchical bin pack-
ing, and prove some approximation results. Even though
this is the closest work to ours that we could find, the
problem is different since servers do not need to be
physically placed in the tree, but rather the objective
is to minimize the dispersal of the bins in the tree.
Moreover, they do not consider any distance constraints.

The first contributions of this paper are targeting
problems with the Single policy. The simplest prob-
lem instance, with no distance constraints on a binary
tree, turns out to be NP-hard in the strong sense, and
therefore we establish approximation results. To the best
of our knowledge, this is the first attempt to derive
approximation algorithms for this replica placement
problem on tree networks. We propose a (∆ + 1)-
approximation algorithm for this problem with the Sin-
gle policy, where ∆ is the arity of the tree. For the
problem without distance constraints, we design a 2-
approximation algorithm that works for general trees,
and whose approximation ratio is independent of ∆.

Concerning problems with the Multiple policy, we
establish several new complexity results. While it is
already known that the general problem is NP-hard, and
that it can be solved in polynomial time without distance
constraints (see [3]), we prove that, surprisingly, this
problem with distance constraints in the specific case
of a binary tree can also be solved in polynomial time,
by exhibiting an involved polynomial time algorithm.
Note that this result holds only when all requests of a
client can always entirely be served locally. Otherwise,
we prove that the problem remains NP-hard.

II. FRAMEWORK

This section is devoted to a precise statement of the
optimization problems that we study in this paper.

We consider a distribution tree T = C∪N . The set of
internal nodes is N and the set of leaf nodes is C. The
root of the tree is denoted by r. For j ∈ C ∪ N \ {r},
parent(j) ∈ N is the parent of node j in the tree. For
j ∈ N , children(j) ⊂ C ∪ N is the set of children
of node j in the tree, and subtree(j) ⊆ C ∪ N is the
subtree rooted in j, including j. ∆ is the arity of the
tree. Moreover, for each node j ∈ C ∪ N \ {r}, δj is
the distance from node j to parent(j): it can be seen
as a weight assigned to each edge of the tree, and it
can correspond for instance to a communication cost.
At the root of the tree, we set δr = +∞.

Each node i ∈ C is sending ri requests per time unit
to a database object (note that the number of requests
is usually assumed to be integer), and the distance
between node i and any node processing some of these
ri requests cannot exceed dmax. A node j ∈ C ∪ N
may or may not have been provided with a replica of
the database. If node j has been equipped with a replica
(i.e., it is a server), then it can process requests from
any node i in its subtree, given that the distance between
node i and node j is not greater than dmax. Note that
it cannot process requests from a node that is not in its
subtree, as for instance its parent node. In other words,
there is a unique path from a client node i to the root r
of the tree: i = i1 → i2 → · · · → ik = r, and each
node i` in this path (with 1 ≤ ` ≤ k) is eligible to pro-
cess some or all the requests issued by i when provided
with a replica, given that

∑
1≤`′<` δi`′ ≤ dmax.

For each client i ∈ C, let servers(i) be the set of
servers responsible for processing at least one of its
requests. There are two scenarios for the number of
servers assigned to each client. With the Single policy,
each client i is assigned a single server that is responsi-
ble for processing all its requests, and |servers(i)| = 1.
With the Multiple policy, a client i may be assigned
several servers, and we let ri,s be the number of requests
from client i processed by server s. All requests must
be processed, thus

∑
s∈servers(i) ri,s = ri. In the Single

case, a unique server si is handling all ri requests, and
ri,si = ri.

Let R be the set of replicas: R =
{s ∈ C ∪ N | ∃i ∈ C , s ∈ servers(i)} . The processing
capacity of each node is fixed to W , which is the total
number of requests that it can process per time unit
when it has been assigned a replica. In addition to the
distance constraints, the constraints on server capacities
must be fulfilled: ∀s ∈ R,

∑
i∈C|s∈servers(i) ri,s ≤ W.

2

Finally, the objective function is to minimize the
number of replicas that are placed, i.e., minimize |R|.

We are now ready to formally define the various
instances of the problem. The objective is to mini-
mize the number of replicas, while ensuring that both
server capacities and distance constraints are enforced,
either with the Single or with the Multiple policy. The
problem names are respectively SINGLE or MULTIPLE.
For the distance constraints, we consider the particular
case with no constraint (NOD). Hence, SINGLE-NOD
(resp., MULTIPLE-NOD) is the problem with the single
server (resp. multiple servers) policy and no distance
constraints. Finally, we give a particular attention to
instances in which the distribution tree is binary, i.e.,
∆ = 2. For instance, the MULTIPLE problem on
binary trees is denoted MULTIPLE-BIN, and the SINGLE
problem with no distance constraints on binary trees is
denoted SINGLE-NOD-BIN.

III. SINGLE POLICY

In this section, we first prove that SINGLE-NOD-BIN
is NP-hard in the strong sense, and therefore all problem
instances with the Single policy are NP-hard, since the
reduction is done for the simplest problem instance (see
Theorem 1). Then, we prove that for all ε > 0, there
is no (3

2 − ε)-approximation algorithm for this problem,
unless P=NP (see Theorem 2). We provide a (∆ + 1)-
approximation algorithm for the SINGLE problem in
general trees, where ∆ is the arity of the tree (see Sec-
tion III-C). This algorithm is a ∆-approximation algo-
rithm when there are no distance constraints (SINGLE-
NOD). Then we refine the previous algorithm in the
case where there are no distance constraints to obtain a
2-approximation algorithm, hence getting closer to the
bound of Theorem 2 (see Section III-D).

Note that we assume that for all i ∈ C, ri ≤ W ,
otherwise there is no solution. Also, the solution with
servers(i) = {i} for all i ∈ C, and hence R = C,
is always a valid solution, in which no distance nor
capacity constraints are exceeded. However, our goal is
to exploit the server nodes of N to reduce the number
of replicas.

A. NP-completeness result of SINGLE-NOD-BIN

Theorem 1: SINGLE-NOD-BIN is NP-hard in the
strong sense.

Proof: We consider the associated decision prob-
lem: given an integer K, is there a solution with no more
than K servers? The problem is clearly in NP: given a
set of servers and for each server, the set of all requests
handled by the server, it is easy to check in polynomial
time if the server capacities are not exceeded.

Figure 1. Instance I2.

Figure 2. Instance I4.

To establish the completeness, we use a reduction
from 3-PARTITION. We consider an instance I1 of
3-PARTITION [15]: given 3m + 1 positive integers
a1, a2, . . . , a3m and B such that B/4 < ai < B/2 for
i ∈ {1, . . . , 3m} and

∑3m
i=1 ai = mB, can we partition

these integers into m triples, each of sum B? We build
the instance I2 of SINGLE-NOD-BIN depicted in Fig. 1,
and we let ci be the client with ai requests. Finally
we ask whether there exists a solution with K = m
replicas of capacity W = B. Clearly, the size of I2 is
polynomial in the size of I1.

We now show that I2 has a solution if and only if
I1 does. Suppose first that I1 has a solution. Let then
(ak1

, ak2
, ak3

) the kth triple in I1, for 1 ≤ k ≤ m. We
place a server at node nk, which is processing requests
from ck1 , ck2 and ck3 . Clearly, we have m servers, no
server capacity is exceeded, and all requests are handled,
thus I2 has a solution.

Suppose now that I2 has a solution. There are at most
m servers of capacity B, and the sum of all requests
is equal to mB, therefore exactly m replicas are set,
and each of them handles a sum B of requests. Since
B/4 < ai < B/2 for i ∈ {1, . . . , 3m}, a server cannot
handle neither more than three requests, nor less than
three requests. We conclude that I1 has a solution.

B. Inapproximability result with the Single policy

Theorem 2: Unless P=NP, for all ε > 0, there is no
(3

2−ε)-approximation algorithm for SINGLE-NOD-BIN.
Proof: Let us assume that there exists ε > 0 such

that there is a (3/2 − ε)-approximation to SINGLE-
NOD-BIN. We denote by algo this polynomial time
algorithm. We prove that this algorithm allows us to
solve 2-PARTITION in polynomial time, and since 2-
PARTITION is NP-complete [15], this proves that P=NP.

We consider an instance I3 of 2-PARTITION: given
m positive integers a1, a2, . . . , am, does there exist a

3

subset I of {1, . . . ,m} such that
∑

i∈I ai =
∑

i/∈I ai?
Let S =

∑m
i=1 ai. We build the instance I4 of SINGLE-

NOD-BIN, see Fig. 2, where the server capacity is
W = S/2. Note that if I3 has a solution, then there
is a solution to I4 with two replicas, that can be placed
at nodes r and n1.

Then, we use algo to solve I4 in polynomial time. If
the solution returns two servers (algo(I4) = 2), then we
have a solution to I3, since the solution is necessarily
a 2-partition of the ai. Otherwise, the solution returns
at least three servers (algo(I4) ≥ 3), and since it is
a (3/2 − ε)-approximation algorithm, if opt(I4) is the
optimal solution for this instance, it means that 3 ≤
algo(I4) < 3

2opt(I4), and therefore opt(I4) > 2, which
means that there is no solution to I3. Therefore, this
(3/2−ε)-approximation algorithm allows us to solve I3

in polynomial time, which concludes the proof.

C. Approximation algorithm with distance constraints
First we propose a polynomial time algorithm, named

single-gen, to solve the SINGLE problem (see Algo-
rithm 1). The solution is obtained by a call to single-
gen(r), where r is the root of the tree. Initially, the
set of servers is empty (R = ∅), and the procedure
greedily adds servers to this set. It works recursively:
single-gen(j) performs one call to single-gen(j′) for
each j′ ∈ children(j), and then decides where to place
servers. The procedure returns a couple (req, dist),
where req ≤W is the number of requests that still need
to be processed at or above node j in the tree, and these
requests have to be served at a maximum distance dist
from node j. The algorithm always returns single-
gen(r) = (0, dmax), i.e., all requests are processed by
the servers that have been placed.

The call to single-gen(i), where i ∈ C is a leaf
node of the tree, returns the result (ri, dmax). For any
other node j ∈ N , we recursively call the procedure
on each child node j′ ∈ children(j), and collect
the corresponding couples (reqj′ , distj′). Then several
cases occur.
1) First, we check whether the requests of a node j′ ∈
children(j) can be processed at node j or above. If
they cannot, i.e., δj′ > distj′ , we add node j′ to the
set of replicas: R = R ∪ {j′}, and we set reqj′ = 0
and distj′ =dmax (i.e., no more requests are arriving to
node j from node j′). Otherwise, we update the distance
distj′ = distj′ − δj′ .
2) If

∑
j′∈children(j) reqj′ > W , then we place a server

on each child node of j that has at least one request:
R = R ∪ {j′ ∈ children(j) | reqj′ > 0}. Therefore,
no requests are going up in the tree, and the procedure
returns (0, dmax).

Algorithm 1: (∆+1)-approx. algorithm for SINGLE.

1 procedure single-gen(j)
2 begin
3 if j ∈ C then
4 return (rj , dmax);

5 else
6 for j′ ∈ children(j) do
7 (reqj′ , distj′) =single-gen(j′);
8 if δj′ > distj′ and reqj′ > 0 then
9 R = R∪ {j′};

10 reqj′ = 0; distj′ = dmax;

11 else distj′ = distj′ − δj′ ;
12 if

∑
j′∈children(j) reqj′ > W then

13 for j′ ∈ children(j) do
14 if reqj′ > 0 then R = R∪ {j′};
15 return (0, dmax);

16 else
17 if j = r then
18 if

∑
j′∈children(j) reqj′ > 0 then

19 R = R∪ {r};
20 return (0, dmax);

21 else return
(∑

j′∈children(j) reqj′ ,

22 minj′∈children(j) distj′
)

;

3) Otherwise,
∑

j′∈children(j) reqj′ ≤ W , and we op-
erate differently, depending on whether j is the root of
the tree or not.
a) If j = r, (root of the tree), we place a server if

needed (there is at least one request to process), and
the procedure returns (0, dmax):
if
∑

j′∈children(r) reqj′ > 0, then R = R∪ {r}.
b) If j 6= r, there are

∑
j′∈children(j) reqj′ ≤ W

requests that can be processed at node j or above,
and the maximum distance for these requests is
minj′∈children(j) distj′ . Therefore, the procedure
returns(∑

j′∈children(j)

reqj′ , min
j′∈children(j)

distj′
)
.

Theorem 3: The call to single-gen(r) is a (∆ + 1)-
approximation algorithm for SINGLE, and its time com-
plexity is O(∆× |T |).

Proof: Consider an instance of SINGLE. Let Ropt

be the set of servers in an optimal solution, and Ralgo is
the set of servers returned by the call to single-gen(r)
(see Algorithm 1). The call to single-gen(j) may add
some children of j into the set of replicas, but it never

4

adds j to Ralgo (except for the root node). Hence, it
is always possible, when going up in the tree, to add a
replica to a children node, since it is not yet in the set
of replicas. Also, the procedure is such that the number
of requests going up in the tree is never greater than W ,
therefore it is always possible, by adding a replica to
a child node, to cover all requests in its subtree, and
therefore the algorithm always succeeds.

Let R1 be the set of replicas that are added by the
algorithm either at step 1 (line 9 of Algorithm 1) or at
step 3a (line 19), while R2 is the set of replicas that are
added at step 2 (line 14). Note that Ralgo = R1 ∪R2,
and we provide upper bounds on the cardinality of these
two sets.

Let j ∈ R1 be such that there is no other server inR1

in the subtree rooted in j, subtree(j). This server is pro-
cessing some requests that cannot be processed upper in
the tree. To process such requests, the optimal solution
also needs to place at least one server in subtree(j).
Since the algorithm does not let any request from the
subtree traverse j, we consider the tree T \ subtree(j),
and use the same argument recursively, to prove that
|R1| ≤ |Ropt |.

If some servers are added in R2, it means that at
some point, a node j had strictly more than W requests
in its subtree, and we add at most ∆ servers to process
all these requests. Since a server cannot handle more
than W requests, the optimal solution must place at
least one replica for each of such groups of requests,
and therefore |R2| ≤ ∆× |Ropt |. Finally,
|Ralgo | = |R1|+ |R2| ≤ |Ropt |+ ∆× |Ropt |

≤ (∆ + 1)|Ropt | ,
which concludes the proof.

Note that the algorithm performs exactly |N ∪ C|
calls to single-gen, and that all operations performed
in single-gen can be done in time O(∆), and therefore
the algorithm has a time complexity in O(∆ × |T |),
which is clearly polynomial in the problem size.

We now show that this ∆ + 1 factor cannot be
improved; in other words, we prove that there does not
exist ε > 0 such that Algorithm 1 is a (∆ + 1 − ε)-
approximation. Consider the instance Im depicted on
Fig. 3 (n0 is the root and the tree is laid on its side). Im
is built by the concatenation of A1,A2, . . . ,Am. We set
dmax = 4m; in addition, all distances are set to 1, except
the distance between ci,∆ and ni,1, for 1 ≤ i ≤ m,
which is equal to dmax. Therefore, all requests from
ci,∆ must be processed either locally by ci,∆, or by
its parent node ni,1, while all other requests can be
processed anywhere on the path from the node issuing
the requests to the root n0 of the tree. The number of

(a) Notations (b) Request values

(c) Instance Im

Figure 3. An instance on which Algorithm 1 reaches an approxima-
tion ratio of ∆ + 1.

requests of each node ci,j in C, for 1 ≤ i ≤ m and
1 ≤ j ≤ ∆ + 1, are given in Fig. 3. Finally, we fix
W = m∆ + ∆− 1.

The first servers that are placed by Algorithm 1
correspond to the call to single-gen(nm,2), because the
sum of requests of its children nodes is m∆+(∆−2)×
1 + 2 = m∆ + ∆ > W . Therefore, the algorithm adds
∆ servers to R, at nodes cm,1, . . . , cm,∆−1 and nm,3.
Then, a server is placed on nm,1, because of the
distance constraint, and there are no requests going up
to Am−1. We can therefore reiterate on Am−1, . . . ,A1,
and the algorithm adds ∆ + 1 servers at each step.
Overall, the algorithm places m × (∆ + 1) servers:
Ralgo = {ci,j , ni,1, ni,3}1≤i≤m, 1≤j≤∆−1.

Since the sum m× (m∆ + 2∆− 1) of all requests is
strictly greater than m×W = m×(m∆+∆−1), we must
place at least m + 1 servers to handle all the requests.
Let Ropt = {n0, ni,1}1≤i≤m be a set of m+1 servers.
Node ni,1 is processing the W requests of clients ci,∆
and ci,∆−1, for 1 ≤ i ≤ m, while the root is processing
the requests of ci,1, . . . , ci,∆−2 and ci,∆+1, for 1 ≤ i ≤
m, hence a total of m∆ ≤ W requests. This is an
optimal solution since it involves m+ 1 servers.

On this instance, the ratio between the solution
found by the Algorithm 1 and the optimal solution is

ratio
(m)
single−gen =

m× (∆ + 1)

m+ 1
−→

m→+∞
∆ + 1.

This shows that the approximation factor of Algorithm 1
cannot be improved.

Corollary 1: Algorithm 1 is a ∆-approximation al-
gorithm without distance constraints (SINGLE-NOD).

Proof: The previous algorithm can be substantially
simplified when there are no distance constraints, since
the condition on line 8 is never satisfied, and hence R1

5

is either the empty set or it contains only the root of the
tree. A set of at most ∆ replicas is added each time a
node j has strictly more than W requests in its subtree,
and we process all these requests. Since the inequality
is strict, |R2| < ∆ × |Ropt|, and Ralgo ≤ 1 + |R2| ≤
∆× |Ropt|, which concludes the proof.

D. Approx. algorithm without distance constraints
Here we propose a polynomial time algorithm, named

single-nod, to solve the SINGLE-NOD problem. The
solution is obtained by a call to single-nod(r), where
r is the root of the tree. Initially, the set of servers is
empty (R = ∅), and the procedure greedily adds servers
to this set. The procedure single-nod(j) returns a value
req corresponding to the number of requests that still
need to be processed at or above node j in the tree.
The algorithm always returns single-nod(r) = 0, i.e.,
all requests are processed by the servers that have been
placed.

The call to single-nod(i), where i ∈ C is a leaf
node of the tree, returns the result ri. For any other
node j ∈ N , we recursively call the procedure on each
child node j′ ∈ children(j), and collect the corre-
sponding values reqj′ . Also, we change the structure
of the tree during the procedure, and hence we keep an
updated list of children for each node j, denoted by Cj ,
and initially Cj = children(j). We may then add new
children to a node. Then several cases occur.
1) If

∑
j′∈Cj

reqj′ > W , then we place a server on
node j. We sort the nodes of Cj by non-decreasing
number of requests, and we greedily assign requests to
server j (starting with the smallest requests), while the
total capacity W is not exceeded. We also add a server
at node jmin, where jmin is the first node of Cj whose
requests could not be processed by j. The procedure
returns 0, and we consider two cases:
a) if j is not the root of the tree, and if some requests

of Cj have not yet been handled by the two servers
j and jmin, we add the corresponding nodes to
Cparent(j);

b) otherwise, if j is the root r of the tree, we add all
nodes of Cr whose requests are not yet processed in
the set of servers R.

2) Otherwise,
∑

j′∈Cj
reqj′ ≤ W , and those requests

can be processed either at node j or upper in the tree.
Therefore,
a) if j is not the root of the tree, the procedure returns∑

j′∈Cj
reqj′ ;

b) otherwise, if j = r, we add r in R and it can handle
all remaining requests; the procedure returns 0.

Note that the pseudo-code for this algorithm can be
found in the companion research report [20].

Theorem 4: The call to single-nod(r) is a 2-
approximation algorithm for SINGLE-NOD, and its time
complexity is O((∆ log ∆ + |C|)× |T |).

Proof: Consider an instance of SINGLE-NOD. Let
Ralgo be the set of servers returned by the call to single-
nod(r). We denote by R1 the set of servers j added at
step 1 of the algorithm; R2 is the set of servers added as
extra servers (jmin): to each j ∈ R1, we can associate
j′ ∈ R2 and proc(j)+proc(j′) > W , where proc(j) is
the number of requests processed by a server j ∈ Ralgo

(with the allocation done by the algorithm). Note that
|R1| = |R2|. Finally, R3 is the set of servers that are
eventually added at step 1b.

If R3 = ∅ and we finished the procedure at step 2b,
then we have Ralgo = R1 ∪ R2 ∪ {r}, and hence
|Ralgo | = 2× |R1|+ 1. Moreover, the total number of
requests in the tree is strictly greater than |R1|×W by
construction, and therefore the optimal solution needs
at least |R1|+ 1 servers, hence the 2-approximation.

Otherwise, we have Ralgo = R1∪R2∪R3 (note that
r ∈ R1 in this case), and we aim at proving that any
solution must use at least |R1|+ |R3| servers. Our aim
is to provide a lower bound on the number of servers
that must be added in a subtree to cover all requests,
by building a relaxed set of servers that can process all
requests in the tree. First, we formally define the lower
bound, and we establish a few properties. Note that if a
client has no requests (ri = 0), we suppress it from the
tree, as well as any internal node that becomes a leaf
of the tree.

Definition 1. For all j ∈ N , nb(j) is a lower bound
on the number of nodes with requests that cannot be
grouped together in subtree(j) (and hence, either they
will be grouped with other nodes higher in the tree, or
it will be necessary to cover each of these nodes with
a server).

Property 1. For j ∈ N , if there are less than W re-
quests in subtree(j), i.e., 0 <

∑
i∈subtree(j)∩C ri ≤W ,

then there is an optimal solution with no replica in
subtree(j) \ {j}, and nb(j) = 0.

If there was a replica in subtree(j) \ {j}, we could
always move it to node j, and this replica would process
the whole subtree, hence letting no requests go up
in the tree. All requests can be grouped at node j,
and therefore nb(j) = 0. In this case, we aggregate
subtree(j) at node j, hence node j becomes a client
node: j ∈ C′, where C′ is the set of clients generated
by aggregating requests. For such nodes, we define
rj =

∑
i∈subtree(j)∩C ri. We prove later that aggregation

can always be done in the relaxed solution.

Property 2. Let us consider j ∈ N , such that ∀i ∈

6

children(j), i ∈ C ∪ C′, and
∑

i∈children(j) ri > W .
Let i1, . . . , inj

be the nj children of j, ordered by
non-decreasing values of rik (i.e., 0 < ri1 ≤ ri2 ≤
· · · ≤ rinj

≤ W). Let mj ≥ 2 be the index such

that
∑mj−1

k=1 rik ≤ W and
∑mj

k=1 rik > W . Then
nb(j) = nj −mj + 1.

In this case, requests can only be covered together by
a server if node j is this server, and therefore the aim
is to cover as many clients as possible with a server at
node j. This is done by covering the clients with the
least number of requests, hence clients i1, . . . , imj−1.
There remain nj −mj + 1 nodes to be covered.

Note that thanks to Property 1, even if a child node i
is an aggregated node (i ∈ C′), then we do not benefit
of covering only a subset of the requests in subtree(i).
Indeed, if node j is covering only some of the requests
of subtree(i) (but not all of them), then there is at
least one node i′ in subtree(i) that cannot be grouped
in subtree(j). We can rather assume that no request
from subtree(i) is covered by j, hence decreasing
the load at node j and keeping the same (or even
decreasing) number of nodes that remain to be grouped
higher in the tree (by replacing i′, and eventually other
nodes in subtree(i) that were not covered, with i).

Next we need to extend this property recursively
when going up in the tree.

Property 3. Let us consider a node j that has
only children satisfying Property 1 (children in P1) or
Property 2 (children in P2): children(j) = P1∪P2. Let
Cj = P1 be the set of client nodes of j. For all j′ ∈ P2,
we add nodes mj′ + 1 to nj′ (as defined in Property 2)
to the set Cj , and we order the nj nodes in Cj by
non-decreasing values of rik . If

∑nj

k=1 rik ≤W (Prop-
erty 3a), then nb(j) = 0. Otherwise (Property 3b), let
mj ≥ 2 be the index such that

∑mj−1
k=1 rik ≤ W and∑mj

k=1 rik > W . Then nb(j) = nj −mj + 1 .
Property 3a comes directly from the fact that all re-

quests can be grouped at node j, similarly to Property 1.
Now we consider that we are in the case of Prop-

erty 3b. Requests can be grouped in subtree(j) by
placing servers at each node j′ ∈ P2, and a server at
node j. First consider a node j′ ∈ P2. By definition
of P2, there are strictly more than W requests coming
from j′, and hence potentially W of these requests could
be covered by a single server placed at node j′. Let X be
the set of children of node j′: X = {i1, . . . , inj′}, where
the children are ordered by non-decreasing number of
requests as before. Consider that the set X1 ⊆ X of
children is covered by j′, and that the set X2 ⊆ X is
covered by j. There remain |X \ (X1 ∪X2)| servers in
subtree(j′) that cannot be grouped in subtree(j). First

note that if X1 ∪X2 does not contain the smallest chil-
dren of X , i.e., there is ia ∈ X1∪X2 and ib /∈ X1∪X2,
with b < a, then we can exchange ia and ib: we cover ia
instead of ib, hence decreasing the amount of requests
to be handled by j or j′, and keeping identical the
number of servers requested to cover the subtree. Next,
if X1 does not contain the smallest children of X1∪X2,
we change the assignment to process children 1 to mj′

with server j′ (this is actually not possible since these
children have a total of strictly more than W requests,
but we perform relaxed grouping so as to obtain a lower
bound on the remaining nodes that cannot be grouped).
Since the sum of the other requests from X1 ∪X2 do
not exceed the sum of the requests initially in X2, j can
cover these requests together with the requests that are
coming from other children of j (even if these requests
may be individually larger than the previous requests
assigned to j).

We still need to discuss if it would not be beneficial
to cover individually some requests that have been
aggregated in our reasoning. Let us consider an opti-
mal solution (that may not have necessarily aggregated
nodes as we are doing with Property 1 and 3a). Then
the sum of the requests that can be grouped at node j′

is less or equal to W (since we are not considering a
relaxed solution anymore, but a valid solution). Even
if this optimal solution is covering only some of the
requests of subtree(i), where i is a children node of j′

and i ∈ P1, the number of nodes that cannot be grouped
in subtree(j′) cannot be lower than nb(j′). Moreover,
the sum of the requests is greater than the sum of the
requests that comes from the relaxed solution. Since we
cover always more than W requests with the relaxed
solution, any optimal solution cannot perform more
grouping, even by exploiting smaller requests that have
not been aggregated.

If we proceed similarly with all children j′ ∈ P2, we
decrease the amount of requests to be processed by j,
hence computing a lower bound on the number of nodes
with requests that cannot be grouped in subtree(j).
Similarly to the proof of Property 2, it is then easy to
see that j should cover the smallest remaining children
in order to minimize this number, hence the result.

Building a relaxed replica set Rrel. Thanks to
the properties that have just been presented, we build
an equivalent tree corresponding to a relaxed solution
where there is no problem to group requests, since
servers can process more than W requests. Indeed, as
we have said at the beginning of the proof, it is easy to
see that the algorithm is a 2-approximation if R3 = ∅,
but otherwise the algorithm has failed to group requests

7

in R3, and we need to prove that any solution could not
have done better.

Initially, Rrel = ∅, and we build recursively the
tree T ′ of requests that cannot be processed by a
common node, starting with T ′ = T . First we replace
subtree(j) by j on nodes following Property 1, i.e., we
aggregate these nodes. Then, if a node j follows Prop-
erty 2, following the insight of Property 3, the relaxed
solution groups the mj smallest children of j and pro-
cesses them at node j, hence we let Rrel = Rrel ∪{j}
and we remove node j and the processed children
from T ′. The remaining children of node j are then
attached to parent(j), which is the next node where
these children may be potentially grouped together. We
go up in the tree until we reach the root r. Note that
when we encounter a node j following Property 3b, we
have already added the |P2| children of j to Rrel at a
previous step, and then we keep only a single node j
with the sum of all requests that are remaining in its
subtree (similarly to the aggregation performed with
Property 1).

At the end, since the algorithm follows the construc-
tion of Rrel, we have Rrel = R1, and the difference is
that the algorithm has added two replicas instead of one
at each node j following Property 2, in order to cover
the same amount of requests (strictly greater than W).
Note that when going up in the tree recursively, each
node will either follow Property 1 (identical to Prop-
erty 3a) or Property 2 (identical to Property 3b).

Even in the relaxed solution that groups requests in
the best possible way, there may remain some requests
to cover in T ′, and the nodes that are in T ′ at the end
of the tree transformation are by construction the nodes
of R3 of the algorithm. Therefore, any solution must
use at least |Rrel|+ |R3| replicas, and finally

|Ropt| ≥ |Rrel|+ |R3| = |R1|+ |R3| ≥
1

2
|Ralgo|,

which concludes the proof.
The algorithm performs exactly C∪N calls to single-

nod, and all operations performed in single-nod can be
done in time O(∆ log ∆ + |C|): in the worst case, there
are ∆ children nodes whose requests need to be sorted
(in O(∆ log ∆)). We do not sort Cj , but rather keep
sorted lists and merge two sorted lists when moving
nodes in the tree. The cost of the merge procedure can
be in O(|C|) at each call of single-nod. All together,
the time complexity of the algorithm is O((∆ log ∆ +
|C|)× |T |).

We now show that this factor of 2 cannot be im-
proved. Consider the instance depicted on Fig. 4, with
W = K. Nodes n1, . . . , nK are satisfying Property 2

Figure 4. An instance on which single-nod reaches an approximation
ratio of 2.

and hence they are added by the algorithm in set R1.
Their client node with K requests are added in set R2.
Therefore, |Ralgo| = 2K. However, the optimal solu-
tion processes exactly K requests at each node ni (with
1 ≤ i ≤ K), and places one extra server at the root that
can process the requests of all K clients with only one
request, hence |Ropt| = K + 1, and the ratio of 2.

IV. MULTIPLE POLICY

In this section, we target the problems with the Mul-
tiple policy. While it is already known that MULTIPLE-
NOD can be solved in polynomial time and that MUL-
TIPLE is NP-hard (see [3]), we prove that, surprisingly,
MULTIPLE-BIN can also be solved in polynomial time,
by exhibiting an involved polynomial time algorithm.
Note that this result holds only when all the ri’s are
smaller or equal to W , i.e., all the requests of a client
i ∈ C can always be served locally by adding a replica
at node i. Otherwise, we prove that the problem remains
NP-hard.

A. NP-completeness of MULTIPLE-BIN

Theorem 5: MULTIPLE-BIN is NP-hard.
Proof sketch: Due to space limitation, we give

only a sketch of the proof, and the detailed proof
can be found in the companion research report [20].
The completeness comes from a reduction from 2-
PARTITION-EQUAL [15]. We consider an instance I5

of 2-PARTITION-EQUAL: given 2m positive inte-
gers a1, a2, . . . , a2m, does there exist a subset I ⊂
{1, . . . , 2m} of cardinal m such that

∑
i∈I ai =∑

i/∈I ai. Let S =
∑2m

i=1 ai, W = S
2 + 1 and bi =

S
2−2ai for 1 ≤ i ≤ 2m. We build the instance I6 of our
problem depicted in Fig. 5, and we ask whether there

Figure 5. Instance I6.

8

exists a solution with 4m servers. We set dmax = 3m,
and distances are indicated on the edges in the figure.

Because of the constraints, any solution is forced
to place a replica on nodes n2m+1, n2m+2, . . . , n5m−1,
and then the 2-partition comes from the fact that we
need to place m replicas between nodes n1, . . . , n2m.
Details can be found in [20].

B. A polynomial-time optimal algorithm

Theorem 6: MULTIPLE-BIN can be solved in poly-
nomial time if ri ≤ W for all i ∈ C (i.e., each client
can entirely be served locally).

Proof: We exhibit a polynomial time algorithm,
multiple-bin, which returns the optimal solution to
MULTIPLE-BIN, for the special case where for all i ∈ C,
we have ri ≤ W . The solution is obtained by a call
to multiple-bin(r), where r is the root of the binary
tree. For each node j ∈ N ∪ C, we keep a list of
requests that are currently at this node and should still
be processed, req(j), and also a list of requests that
are assigned to this node if it has been provided with a
replica, proc(j). These lists consist of triples (d,w, i),
where an amount w of requests is issued by client i ∈ C,
and these requests can be served at a distance dmax−d
from node j. Each list is sorted by non-increasing values
of d. Moreover, the total number of requests in a list is
never exceeding W , the server capacity.

The procedure is recursively updating these lists:
initially, all lists are empty, and at the end, all client
requests should appear in a list proc(j). Initially, the
set of servers is empty: R = ∅. The call to multiple-
bin(j) may lead to several cases.

1) If j ∈ C is a client node (i.e., a leaf node), and if
δj > dmax, then the requests must be processed locally,
therefore we place a server at node j (i.e., R = R ∪
{j}) and we set proc(j) = {(0, rj , j)} and req(j) =
∅. Otherwise, we do not place any server yet, and we
rather set req(j) = {(0, rj , j)}. We will then attempt to
process these requests further up in the tree.

2) Otherwise, if j ∈ N is an internal node, we
first recursively call the procedure on both children
nodes (recall that the tree is binary), denoted respec-
tively lchild(j) and rchild(j), and therefore update
all lists for nodes in subtree(j), excluding j. We
merge req(lchild(j)) and req(rchild(j)) as a tempo-
rary list temp (remember that the lists are sorted by
non-increasing d). Note that we add δlchild(j) (resp.
δrchild(j)) to the distances of the list req(lchild(j))
(resp. req(rchild(j))). If the first element of temp is
such that d + δj > dmax, some requests of the subtree
cannot be processed upper in the tree, and therefore we

add a server at node j. We also add a server at node j
if there are more than W requests in temp, so that we
keep less than W requests going up in the tree. In both
cases, this server will be processing the first requests
of the list, up to the server capacity, hence processing
the requests that are the most constrained by distance.
Because of the Multiple policy, we can process only
a subset of the requests of a client to reach the exact
capacity W , if there are more than W requests in the
temp list. We define proc(j) as the first (at most) W
requests of the list, and req(j) contains the remaining
requests. Note that there are no more than W requests
in req(j). Then, several cases occur.
a) If req(j) is empty, we were able to process all

requests of subtree(j) at node j.
b) Otherwise, if the first request of the list req(j) is

such that d+δj > dmax, then there are more requests
that cannot be processed upper in the tree. In this
case, we place a new server in subtree(j) and we
may need to modify the assignment of requests to
servers. This step is detailed below, it is done through
a call to the procedure extra-server(j).

c) Otherwise, all requests of req(j) may be pro-
cessed by parent(j), and we are ready to handle
node parent(j).

The procedure extra-server(j) works as follows. It
adds a server on the first node that has not yet a server
on the rightmost path of subtree(j). To do so, we assign
requests in a different way as was done at the beginning
of step 2. Since all requests need to be processed
in subtree(j), and all requests in req(lchild(j)) and
req(rchild(j)) can be processed at node j (otherwise,
they would have been processed directly at the child
node), we assign all requests from req(lchild(j)) to
node j (i.e., we add these requests to proc(j)). If
rchild(j) /∈ R, we just need to place a server at
this node. Otherwise, we perform the recursive call
extra-server(rchild(j)), which will eventually move
requests in subtree(rchild(j)). Note that the requests
that may then be moved to rchild(j) were going upper
in the tree, and therefore they can be processed at
node rchild(j) without violating the distance constraint.
Since the client nodes are leaves of the tree, with no
more than W requests, we eventually reach a node that
has no server and that can handle the remaining requests
(it might be the rightmost client in subtree(j)).

This algorithm is formalized as Algorithm 2. We now
prove that it returns an optimal solution to MULTIPLE-
BIN. Given a problem instance, let Ropt be the set of
servers chosen by an optimal solution, and let Ralgo be
the set of servers returned by our algorithm. Moreover,

9

Algorithm 2: Optimal algorithm for MULTIPLE-BIN.

1 procedure multiple-bin(j)
2 begin
3 proc(j) = ∅; req(j) = ∅;
4 if j ∈ C then
5 if δj > dmax then R = R∪ {j}; proc(j) = {(0, rj , j)};
6 else req(j) = {(0, rj , j)};
7 else
8 multiple-bin(lchild(j)); multiple-bin(rchild(j));
9 temp = merge(add-dist(req(lchild(j)), δlchild(j)), add-dist(req(rchild(j)), δrchild(j)));

10 Let temp = {(d,w, i), temp′} and wtot =
∑

(d′,w′,i′)∈temp w
′;

11 if d+ δj > dmax or wtot > W then
12 R = R∪ {j}; wproc = 0;
13 while temp 6= ∅ and wproc < W do
14 Let temp = {(d,w, i), temp′};
15 if wproc+ w ≤W then
16 wproc = wproc+ w;
17 temp = temp′; proc(j) = {proc(j), (d,w, i)};
18 else
19 w′ = W − wproc; wproc = W ;
20 temp = {(d,w − w′, i), temp′}; proc(j) = {proc(j), (d,w′, i)};

21 req(j) = temp; /* At this point,
∑

(d′,w′,i′)∈req(j) w
′ < W */

22 if req(j) 6= ∅ then
23 Let req(j) = {(d,w, i), req′};
24 if d+ δj > dmax then extra-server(j); req(j) = ∅;

25 procedure merge(req1, req2)
26 begin
27 if req1 = ∅ then return req2;
28 else if req2 = ∅ then return req1;
29 else
30 Let req1 = {(d1, w1, i1), req′1} and req2 = {(d2, w2, i2), req′2};
31 if d1 ≥ d2 then
32 return {(d1, w1, i1), (d2, w2, i2), merge(req′1, req

′
2)};

33 else return {(d2, w2, i2), (d1, w1, i1), merge(req′1, req
′
2)};

34 procedure add-dist(req, dist)
35 begin
36 if req = ∅ then return ∅;
37 else
38 Let req = {(d,w, i), req′};
39 return {(d+ dist, w, i), add-dist(req′, dist)};

40 procedure extra-server(j)
41 begin
42 proc(j) = req(lchild(j));
43 if rchild(j) /∈ R then R = R∪ {rchild(j)}; proc(rchild(j)) = req(rchild(j));
44 else extra-server(rchild(j));

10

let Wtot =
∑

i∈C ri be the total number of requests.
Finally, let K be the set of servers that follow one of
these properties: (i) it has been added at line 5 of the
algorithm; (ii) it has been added at line 12 and it is
processing strictly less than W requests (wproc < W
at the end of the loop); (iii) it leads to a call to extra-
server at line 24. In all cases, if j ∈ K, then req(j) = ∅.

First note that, for all j ∈ C ∪ N , we have∑
(d,w,i)∈req(j) w ≤W . This property is true for j ∈ C

(see line 6) since rj ≤ W by definition. For j ∈ N ,
if there are too many pending requests arriving to
the node, we place a server at node j processing W
requests, and since the tree is binary, the remaining
requests that are in temp, and then req(j) (see line 21)
are not exceeding W . Moreover, requests in req(j)
can always be processed by parent(j) because of the
distance constraint. Otherwise, either a server is placed
line 5, or the procedure extra-server is called line 24.
Note that at the root of the tree (j = r), we have
δr = +∞, and therefore req(j) = ∅ at the end.

We partition the servers according to the set K:
we assign each server j ∈ R to its closest ancestor
k ∈ K. Let serv(k) be the set of servers whose closest
ancestor in K is k. Then, p(k) = ∪j∈serv(k)proc(j)
is the set of requests processed by servers in serv(k),
and r(k) =

∑
(d,w,i)∈serv(k) w is the total number

of requests processed in the subtree of k from which
we have removed subtrees rooted in nodes k′ ∈ K.
By definition of K, no request is going through a
node k ∈ K. We have therefore partitioned the tree:
Wtot =

∑
k∈K r(k), and |Ralgo| =

∑
k∈K |serv(k)|.

Given a node k ∈ K, we now show that an amount of
requests strictly greater than (|serv(k)|−1)W included
in r(k) could not have been handled by a node upper
in the tree than k, even by an optimal solution. We
differentiate two cases.
• If k has been added on line 5 or 12, all servers

in serv(k) (excepting k) are processing exactly W
requests, and by construction, these requests are
more constrained by distance than the requests
processed by node k. Since some of the requests
processed by node k cannot be handled by a node
upper in the tree because of the distance constraint,
it is also the case for those (|serv(k)| − 1)W
requests.

• If k leads to a call to extra-server(k), the reasoning
is the same before the call to extra-server. At this
moment we had |serv(k)|−1 servers, including k,
each of them processing exactly W requests, but
some more requests could not be handled higher
in the tree. The total amount of requests processed

in the subtree (from which we remove subtrees
rooted in nodes in K) is therefore strictly greater
than (|serv(k)| − 1)W .

We further need to prove that the extra-server pro-
cedure always succeeds in re-arranging requests and
adding an extra server. The key is that we never violate a
distance constraint. Indeed, we consider the requests in
req(j′), and these requests can always be processed by
parent(j′). Therefore, when calling extra-server(j), it
is always possible to process at node j all the requests
from req(lchild(j)). We do not need to fill server j
to W requests, since we already have a lower bound
on the total number of requests in the subtree rooted
in k ∈ K. If there is already a server at node rchild(j),
by construction it is processing W requests, but we
can iterate the procedure. We will eventually reach the
case rchild(j) /∈ R: if rchild(j) ∈ C, then it is not
in R, otherwise we would have req(rchild(j)) = ∅,
and therefore j could process all the requests (coming
only from req(lchild(j))), and therefore we would not
need an extra server in the subtree, hence having at most
(|serv(k)| − 1)W , which leads to a contradiction.

Finally, we proceed to a recursive bottom up analysis:
consider the lowest node k ∈ K in the tree T . In
the subtree rooted at k, an amount of requests strictly
greater than (|serv(k)|−1)W cannot be handled upper
in the tree. Thus, even an optimal solution requires the
use of at least |serv(k)| servers to be put in this subtree.
Since no requests are sent from k to a node upper in
the tree (req(k) = ∅), we can now consider for our
analysis the tree T without the subtree rooted at k, and
apply the same argument recursively to prove that an
optimal solution requires at least as many servers as
Algorithm 2.

Note that the algorithm performs exactly |C ∪ N |
calls to multiple-bin. The complexity of the merge and
add-dist procedures is in O(|C|) (at most one triple
per client node), and similarly the while loop takes no
more than O(|C|) iterations. Finally, the call to extra-
server cannot be made several times on a same node, so
there are no more than |C ∪ N | calls to this procedure.
Overall, the complexity of this algorithm is in O(|T |2),
and therefore it is polynomial in the problem size, which
concludes the proof.

V. CONCLUSION

In this paper, we have investigated the problem of
replica placement in tree network. While several in-
stances of this problem have already been studied, there
were still some complexity gaps. We have focused on
two policies: either all requests of a client must be

11

served by a single server in the tree, on the path between
the client and the root of the tree (Single policy), or the
requests of a given client can be processed by multiple
servers (Multiple policy), still on this path. Moreover,
we have considered problem instances with distance
constraints, hence expressing guarantees on the quality
of service.

For the Single policy, we have established the NP-
completeness in the strong sense of the simplest prob-
lem instance, namely SINGLE-NOD-BIN. Moreover, we
have shown that unless P=NP, for all ε > 0, there is
no (3

2 − ε)-approximation algorithm for this problem.
Therefore, we have designed two approximation algo-
rithms for SINGLE. The first one solves the most general
problem instance, and it is a (∆ + 1)-approximation
algorithm, where ∆ is the arity of the tree. Then we
have refined the previous algorithm in the case without
distance constraints, hence proposing a 2-approximation
algorithm for SINGLE-NOD. While the algorithms are
greedy and easy to implement, the proofs of the approx-
imation ratios are quite involved. Then, focusing on the
Multiple policy, we proposed a sophisticated polynomial
time algorithm that optimally solves the MULTIPLE-BIN
problem, while MULTIPLE is known to be NP-hard. In
fact, this algorithm works only when each request can
be processed entirely by a single server, i.e., it does not
exceed the server capacity. Otherwise, we prove that the
problem remains NP-hard.

As future work, there remain some complexity gaps
to fill. In particular, we believe that we can design a 3/2-
approximation algorithm for SINGLE-NOD-BIN, hence
closing the gap, but we have not yet been able to prove
the approximation ratio. A greedy algorithm is unlikely
to be good enough, and we rather envision to push
servers towards the root of the tree, whenever possible.
As for MULTIPLE, we plan to design approximation
algorithms for the general NP-hard problem.
Acknowledgment: A. Benoit is with the Institut Univer-
sitaire de France. This work was supported in part by
the ANR RESCUE project.

REFERENCES

[1] I. Cidon, S. Kutten, and R. Soffer, “Optimal allocation
of electronic content,” Computer Networks, vol. 40, pp.
205–218, 2002.

[2] J.-J. Wu, Y.-F. Lin, and P. Liu, “Optimal replica place-
ment in hierarchical Data Grids with locality assurance,”
J. Parallel and Distributed Computing, vol. 68, no. 12,
pp. 1517–1538, 2008.

[3] A. Benoit, V. Rehn-Sonigo, and Y. Robert, “Replica
placement and access policies in tree networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 19, no. 12,
pp. 1614–1627, 2008.

[4] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal
placement of replicas in trees with read, write, and
storage costs,” IEEE Trans. Parallel and Distributed
Systems, vol. 12, no. 6, pp. 628–637, 2001.

[5] P. Liu, Y.-F. Lin, and J.-J. Wu, “Optimal placement of
replicas in data grid environments with locality assur-
ance,” in Int. Conf. on Parallel and Distributed Systems
(ICPADS). IEEE CS Press, 2006.

[6] X. Tang and J. Xu, “QoS-Aware Replica Placement for
Content Distribution,” IEEE Trans. Parallel Distributed
Systems, vol. 16, no. 10, pp. 921–932, 2005.

[7] G. Rodolakis, S. Siachalou, and L. Georgiadis, “Repli-
cated server placement with QoS constraints,” IEEE
Trans. Parallel and Distributed Systems, vol. 17, no. 10,
pp. 1151–1162, 2006.

[8] M. Pál, E. Tardos, and T. Wexler, “Facility location
with nonuniform hard capacities,” in Proceedings of
FOCS’01, the 42nd IEEE symp. on Foundations of
Computer Science, 2001, p. 329.

[9] D. Shmoys, E. Tardos, and K. Aardal, “Approximation
algorithms for facility location problems,” in Proceed-
ings of the 29th Symp. on Theory of Computing, 1997.

[10] F. A. Chudak and D. P. Williamson, “Improved ap-
proximation algorithms for capacitated facility location
problems,” in Proceedings of IPCO, 1999, pp. 99–113.

[11] M. Kao, C. Liao, and D. Lee, “Capacitated domination
problem,” Algorithmica, pp. 1–27, 2009.

[12] J. E. G. Coffman, M. R. Garey, and D. S. Johnson,
“Approximation algorithms for bin packing: a survey,” in
Approximation algorithms for NP-hard problems. PWS
Publishing Co., 1997, pp. 46–93.

[13] W. F. de la Vega and G. Lueker, “Bin packing can be
solved within 1 + ε in linear time,” Combinatorica, pp.
1:349–355, 1981.

[14] O. Beaumont, N. Bonichon, and H. Larchevêque, “Mod-
eling and Practical Evaluation of a Service Location
Problem in Large Scale Networks,” in Proceedings of
ICPP’11, 2011, pp. 482–491.

[15] M. R. Garey and D. S. Johnson, Computers and In-
tractability, a Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, 1979.

[16] T. Loukopoulos, I. Ahmad, and D. Papadias, “An
overview of data replication on the Internet,” in Pro-
ceedings of ISPAN’02, the Int. Symp. on Parallel Archi-
tectures, Algorithms and Networks, 2002.

[17] J. Bar-Ilan, G. Kortzars, and D. Peleg, “How to allocate
network centers,” J. Algorithms, pp. 15:385–415, 1993.

[18] S. Khuller and Y. Sussmann, “The Capacitated K-
Center Problem,” SIAM Journal on Discrete Mathemat-
ics, vol. 13, p. 403, 2000.

[19] B. Codenotti, G. D. Marco, M. Leoncini, M. Mon-
tangero, and M. Santini, “Approximation algorithms for
a hierarchically structured bin packing problem,” Inf.
Process. Lett., vol. 89, no. 5, pp. 215–221, 2004.

[20] A. Benoit, H. Larchevêque, and P. Renaud-Goud,
“Optimal algorithms and approximation algorithms for
replica placement with distance constraints in tree
networks,” INRIA, France, Research Report, Sep. 2011.
[Online]. Available: http://graal.ens-lyon.fr/∼abenoit/

12

