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Abstract—We aim at finding optimal mappings for concurrent
streaming applications. Each application consists of a linear chain
with several stages, and processes successive data sets in pipeline
mode. The objective is to minimize the energy consumption of
the whole platform, while satisfying given performance-related
bounds on the period and latency of each application. The
problem is to decide which processors to enroll, at which speed
(or mode) to use them, and which stages they should execute. We
distinguish two mapping categories, interval mappings without
reuse, and fully arbitrary general mappings. On the theoretical
side, we establish complexity results for this tri-criteria mapping
problem (energy, period, latency). Furthermore, we derive an
integer linear program that provides the optimal solution in
the most general case. On the experimental side, we design
polynomial-time heuristics, and assess their absolute performance
thanks to the linear program. One main goal is to evaluate the
impact of processor sharing on the quality of the solution.
Index Terms—mapping; concurrent streaming applications; het-
erogeneous platforms; resource sharing; energy; latency; period.

I. INTRODUCTION

In this paper, we aim at optimizing the parallel execution
of several pipelined applications on a given platform. Such
streaming applications are ubiquitous in streaming environ-
ments, as for instance video and audio encoding and decoding,
DSP applications, image processing, and so on ([1], [2], [3],
[4], [5]). For each application, a sequence of data sets enters
the input stage and progresses from stage to stage at a fixed
rate until the final result is computed. Each stage has its
own communication and computation requirements: it reads an
input from the previous stage, processes the data and outputs a
result to the next stage. A new data set enters the system each
application period, and results are output at the same periodic
interval.

The objective is to minimize the energy consumption of
the whole platform, while satisfying given performance-related
bounds on the period and latency of each application. This
multi-criteria approach targets a trade-off between the users
and the platform manager. The formers have specific re-
quirements for their applications, while the latter has crucial
economical and environmental constraints. Indeed, the energy
saving problem is becoming increasingly important, not only
because of the sole cost of energy, but also because of the cost
of cooling systems and related infrastructures. To help reduce
energy costs, modern computing centers provide multi-modal
processors: each processor has a discrete number of predefined

speeds (or modes), which correspond to different voltages that
the processor can be subjected to. The power consumption is
the sum of a static part (the cost for a processor to be turned
on) and a dynamic part. This dynamic part is a strictly convex
function of the processor speed, so that the execution of a
given amount of work costs more energy if a processor runs
in a higher mode [6]. On the one side, faster modes allow for
fulfilling the performance criteria, and on the other side, they
lead to a higher energy consumption.

The main performance-oriented criteria for pipelined appli-
cations are period and latency. The period of an application is
the inverse of the throughput, i.e., it corresponds to the time
interval between the arrival of two consecutive data sets. The
period is fixed by the applicative setting, and we must ensure
that data sets are processed fast enough so that there is no
accumulation of data sets in the pipeline. The latency of an
application is the time elapsed between the beginning and the
end of the execution of a given data set, hence it measures the
response time of the system to process the data set entirely.
These two criteria alone already are antagonistic. The smallest
latency is obtained when no communication occurs, i.e., when
the same processor executes all the stages of an application.
However, such a mapping may well exceed the bound on
the period, since the same processor must process an entire
application. Adding energy consumption as a third criterion
renders everything even more complex. Obviously, energy is
minimized by enrolling a single processor for all applications,
namely the one with the smallest mode available; but such
a mapping would most certainly exceed period and latency
bounds.

This work is a follow-on of [7], where we have provided
a comprehensive analysis of various instances of this tri-
criteria optimization problem. However, the mapping rules
and performance models used in this paper are different. In
a nutshell, a comprehensive assessment of one-to-one and
interval mappings is given in [7]. Such mappings restrict the
assignment of stages to processors: each enrolled resource
can execute only a single stage (one-to-one mapping) or
a set of consecutive stages (interval mapping) of a given
application. Therefore no inter-application reuse of resources
is authorized. While prohibiting such a reuse does make sense
in some situations (e.g., for security reasons), it is also very
likely to waste resources and to increase energy consumption.
Indeed, without reuse, more processors are enrolled, hence



the static energy gets higher, and these processors cannot
benefit from a good load balancing of computation costs across
applications, hence a worse resource utilization. From the
platform manager’s point of view, resource sharing among
(non critical) applications is a key ingredient to efficiently
servicing several users.

In this paper, we investigate the impact of resource sharing
on the quality of the solution with respect to the three
optimization criteria (energy, period and latency). We thus
deal with general mappings where application stages can
arbitrarily be assigned to processors. Unfortunately, general
mappings come with a price, that of intricate scheduling
problems for period and latency: even when the mapping is
given, scheduling the execution is a problem of combinatorial
nature [8].With general mappings, a processor typically has
several incoming and/or outgoing communications, and it is
difficult to orchestrate these operations so as to minimize
conflicting objectives such as period and latency. Therefore,
we focus in this paper on the problem in which bounds on
period and latency are fixed by the application designer, and
we relax the definition of the latency using the approach of
Hary and Ozguner [3]. Instead of computing the longest path,
we approximate the latency L as L = (2m − 1)P , where
P is the period, i.e., the rate at which data sets enter the
system, and m is the number of intervals of consecutive stages
mapped onto a same processor in the mapping. A processor
change occurs each time when a stage and its successor are
not mapped onto the same processor, i.e., m−1 times. The in-
tuition is that the whole application is executed synchronously,
and each data set progresses concurrently within a period. With
m successive computations and m−1 processor changes (i.e.,
communications), each data set traverses the platform within
2m − 1 periods. We adopt the model of [3] throughout the
paper, and refer to Section III for further details on mapping
rules and objectives. The problem can then be defined as
follows: given a period Pa and a bound on the latency La
for each application a, find a mapping which consumes the
minimum amount of energy, while satisfying the performance
constraints: application a is processed at a period Pa, and its
latency is not greater than La; in other words, for application a,
the number ma does not exceed b(La/Pa + 1)/2c.

A first contribution of this paper is to provide complexity
results for the tri-criteria optimization problem under the
resource-sharing model. We restrict to homogeneous platforms
whose processors have identical modes; otherwise

even the simplest mono-criterion problem, namely period
minimization for a single application mapped onto homo-
geneous and uni-modal processors, paying no communica-
tion cost, is NP-complete (straightforward reduction from 2-
PARTITION [9]. We show that the problem is polynomial for
interval mappings on homogeneous platforms with Hary and
Ozguner’s model, while it was NP-complete with the longest
path model [7], thereby demonstrating the impact of the model
for the latency. We also show that the tri-criteria problem
becomes NP-complete for general mappings on homogeneous
platforms. Another contribution is to evaluate the impact

of resource sharing, by comparing the quality of interval
mappings and of general mappings. To this end, we design
a set of polynomial-time heuristics, with and without reuse,
and we experimentally compare their performance on a large
set of experiments. We also evaluate the absolute performance
of the heuristics on small problem instances, by comparing
the solutions of the heuristics to the optimal solution obtained
with an integer linear program.

The paper is organized as follows. We first review related
work in Section II. The framework is described in Section III,
then we provide complexity results in Section IV. In Sec-
tion V, we design several polynomial-time heuristics to pro-
vide polynomial-time solutions to the tri-criteria problem; and
finally we study their relative performance, and their absolute
performance with respect to the integer linear program, in
Section VI. We conclude in Section VII.

II. RELATED WORK

In this paper, we use the Dynamic Voltage Scaling (DVS)
technique in order to adjust energy consumption. DVS has
been extensively studied in several papers, for mapping onto
a single-core processor, a multi-core processor, or a set of
processors.

Slack reclamation techniques are used for frame-based hard
real-time embedded system in [10]: a set of independent tasks,
provided with their WCEC (Worst Case Execution Cycle)
and sharing a common deadline, has to be mapped onto a
processor. If a task needs less cycles than its WCEC, the
dynamically obtained slack allows the processor to run at a
lower frequency and therefore to spare energy. This work is
extended in [11], where the energy model includes time and
energy penalties when the processor frequency is changing.
Those transition overheads are also taken into account in [12],
but tasks are interdependent.

Then [13] maps applications which consists of a program
modeled with a sequential part and another part which can be
parallel, onto a multi-core processor. Bunde [14] focuses on
the problem of offline scheduling unit time tasks with release
dates, while minimizing the makespan or the total flow time
on one processor. He extends this work from one processor to
multi-processors.

Authors in [15] study the problem of scheduling real-
time tasks on two heterogeneous processors. They provide a
FPTAS to derive a solution very close to the optimal energy
consumption with a reasonable complexity, while in [16], the
authors design heuristics to map a set of dependent tasks with
deadlines onto a set of homogeneous processors, with the
possibility of changing a processor speed during the execution
of a task. [17] proposes a greedy algorithm based on affinity
to assign frame-based real-time tasks, and then they re-assign
them in pseudo-polynomial time when any processing speed
can be assigned for a processor. In [18] leakage energy is the
focus for mapping applications represented as DAGs. In [19],
the authors are interested about scheduling task graphs with
data dependencies while minimizing the energy consumption
of both the processors and the inter-processor communication



devices, while assuming the communication times are negli-
gible compared to the computation times.

All these problems are quite different from ours, since
we focus on pipelined applications of infinite duration, thus
considering power instead of total energy consumption. Due
to the streaming nature of the applications, we do not allow
for changing the processor speed during execution.

III. FRAMEWORK

Applicative framework. We consider A application work-
flows (A ≥ 1) to be executed concurrently; each application
operates on a collection of data sets that are executed in a
pipeline fashion. For 1 ≤ a ≤ A, application a consists in
na stages, and for 1 ≤ k ≤ na, we denote by Ska the k-
th stage of application a. Stage Ska receives an input data of
size δk−1

a , performs wka computations, and finally outputs a
data of size δka . A new data set enters the system every Pa
time-units; Pa is the period of application a. The total number
of stages is N =

∑A
a=1 na.

Target platform. The platform is composed of p processors,
which are fully interconnected; there is a bidirectional link
between any processor pair Pu and Pv , of bandwidth bu,v .
For simplification, we assume that 2A additional proces-
sors Pin1 , . . . ,PinA

and Pout1 , . . . ,PoutA are devoted to in-
put/output operations of the applications (in fact these ad-
ditional processors are virtual processes that may well be
shared by the same physical resource). Initially, for each
a ∈ {1, . . . , A}, the input data for each task of application a
resides on Pina

, while all results must be returned to and
stored on Pouta . These special processors are connected to
the p processors of the platform.

We use a linear cost model for communications; hence
it takes X/bu,v time-units for Pu to send (resp. receive) a
message of size X to (resp. from) Pv . In addition to link band-
widths, we have processor network cards that bound the total
communication capacity of each computing resource (bounded
multi-port model with overlap [20]). We denote by Bin

u (resp.
Bout
u ) the capacity of the input (resp. output) network card of

processor Pu. In other words, Pu cannot receive more than
Bin
u data items per time-unit, and it cannot send more than

Bout
u data items per time-unit, but several communications

along different links can take place simultaneously (provided
that the link bandwidths are not exceeded either). In addition,
independent communications and computations can overlap.
It has been pointed out that multi-threaded communication
libraries such as MPICH2 [21] now allow for initiating multi-
ple concurrent send and receive operations, thereby providing
practical realizations of the multi-port model [22].

In this paper, we mainly target communication-
homogeneous platforms, with identical communication
devices for each processor: all link bandwidths are identical
(bu,v = b for 1 ≤ u, v ≤ p), and all network cards are
identical (Bin

u = Bin , Bout
u = Bout for all 1 ≤ u ≤ p).

However, the linear program also applies to heterogeneous
platforms as well.

As stated above, processors are multi-modal. Each pro-
cessor Pu is associated with a set Su of speeds, or modes:
Su = {su,1, . . . , su,mu

}. To ease notations, we add a spe-
cial mode 0 in which the processor is inactive: su,0 = 0.
Speed-homogeneous platforms have processors of identical
speeds, i.e., they share a common speed set (Su = S for
1 ≤ u ≤ p); we further assume that they are communication-
homogeneous, so that they represent typical parallel ma-
chines. Speed-heterogeneous platforms also are communi-
cation-homogeneous, but they have different-speed processors
(Su 6= Sv). They correspond to networks of workstations with
plain TCP/IP interconnects or other LANs.
Mapping strategies. The mapping is an allocation function,
which associates a processor number to each stage number, as
well as a speed at which each processor is running. For general
mappings with processor reuse, there is no constraint on the
allocation function. We must carefully decide how the speed
of each processor is shared among all stages it is assigned
to. Similarly, a communication link or processor network card
may be involved in several communications, which implies
to sharing bandwidths and card capacities, too. Hence the
question is the following: given the mapping, and a threshold
period Pa and latency La for each application a ∈ {1, . . . , A},
is it possible to determine which fraction of computing and
communicating resources to assign to each operation so that
all period and latency thresholds are met?

Recall that we consider the latency model described in [3],
in which one period is accounted for each computation of
an interval of stages and for each inter-processor communi-
cation. We observe that given the mapping, we know ma,
the number of intervals (ma − 1 processor changes), for each
application a. We can thus check immediately whether the
bounds on the latency are respected, i.e., (2ma − 1)Pa ≤ La
for a ∈ {1, . . . , A}.

Now for the periods, the key idea is to distribute platform
resources parsimoniously, and to allocate only the needed
CPU fraction to each computation, and the needed bandwidth
fraction to each communication, so that the period constraint
is fulfilled. The mapping is valid if neither processor speeds,
nor link bandwidths, nor network card capacities are ex-
ceeded. First, we merge consecutive stages [Sia, . . . ,Sja] of
application a mapped onto a same processor as one single
coalesced stage Ŝka , with computing cost ŵka =

∑j
k′=i w

k′

a ,
and output communication cost δ̂ka = δja. The transformed
application now has exactly ma stages. In the following,
stage Ŝka corresponds to the k-th stage of the transformed
application a, for 1 ≤ k ≤ ma. As for computations, consider
a processor Pu and an application a. We define Kua such that
k ∈ Kua if and only if Ŝka is processed by processor Pu; Kua
is the set of stages of (transformed) application a processed
by Pu. Then, for all a and u, and for each k ∈ Kua ,
we allocate the speed fraction ska,u = ŵka/Pa for Pu to
execute Ŝka . Similarly for communications, we define Ku,va
such that k ∈ Ku,va if and only if Ŝka is processed by Pu and

ˆSk+1
a is processed by Pv , i.e., there is a communication to pay



between Pu and Pv . Note that u 6= v, otherwise stages Ŝka and
ˆSk+1
a would have been merged as a single stage. Formally,
k ∈ Ku,va ⇔ k ∈ Kua and k + 1 ∈ Kva. Then we allocate the
bandwidth fraction bka,u,v = δ̂ka/Pa to the communication.

The period of each application can be respected if and only
if all the following inequalities are satisfied. There might be
some spare speed and bandwidth if these are strict inequalities,
and resources are fully utilized in case of equalities:

• ∀1 ≤ u ≤ p,
∑A
a=1

∑
k∈Ku

a
ska,u ≤ su,∑p

v=1

∑A
a=1

∑
k∈Ku,v

a
bka,u,v ≤ Bout

u ,∑p
v=1

∑A
a=1

∑
k∈Kv,u

a
bka,v,u ≤ Bin

u ;

• ∀1 ≤ u, v ≤ p, u 6= v,∑A
a=1

(∑
k∈Ku,v

a
bka,u,v +

∑
k∈Kv,u

a
bka,v,u

)
≤ bu,v.

We also consider interval mappings without reuse, which
partition the stages of each (original) application into inter-
vals, and map each interval onto a different processor. More
precisely, if we transform each application a as explained
above, the allocation function of stages Ŝka (for 1 ≤ a ≤ A
and 1 ≤ k ≤ ma) is a one-to-one function: each coalesced
stage is allocated onto a distinct processor. It becomes then
much easier to check the validity of the mapping, since each
processor is only handling one single stage, receiving input
data from one single other processor, and sending output data
to one single other processor.

Energy model. The energy consumption of the platform is
defined as the sum of the energy E(u, `) consumed by each
processor Pu enrolled in the mapping in mode `. We assume
that E(u, `) consists of a static part and of a dynamic part.
The static part Estat(u) is the static cost for a processor to be
in service, and does not depend on the speed su,` at which the
processor is running. However, the static energy is consumed
only in mode ` 6= 0 (otherwise, the processor is inactive, and
not enrolled in the mapping). On the contrary, the dynamic
part Edyn(u, `) is of the form Edyn(u, `) = sαu,`, where α >
1 is an arbitrary rational number. It is sometimes assumed
that α = 2 [23], but all our results hold for any value of α.
Finally, for ` 6= 0, we have E(u, `) = Estat(u) + Edyn(u, `),
while E(u, 0) = 0. The energy E(u, `) is an energy consumed
per time unit, so we could also speak of dissipated power.
Note that it is mandatory to minimize energy consumption
per time unit, because the execution of streaming applications
with arbitrarily many data sets may last for an unbounded
amount of time.

Problem definition. We consider the problem in which the
applications and their characteristics (stage weights, commu-
nication costs, periods) are provided, as well as a target exe-
cution platform and its characteristics (multi-modal processor
speeds, network card capacities and link bandwidths). Then,
given a bound on the latency for each application, we aim
at minimizing the power consumption while matching the
period and latency constraints. Therefore, we formally define
the problem as follows:

TRICRITERIA(E[Pa, La]): given A applications, p multi-
modal processors, one array of periods [Pa] and one array of
latencies [La], both of length A, what is the minimum power
consumption of the platform, so that for each a ∈ {1, . . . , A},
application a is processed at a period Pa, and its latency does
not exceed La?

IV. COMPLEXITY STUDY

We first provide results for interval mappings without
reuse, which turn out to be polynomial on fully homo-
geneous platforms, even with several concurrent applica-
tions (and the problem was known to be NP-complete on
processor-heterogeneous platforms). Then, we establish the
NP-completeness of the tri-criteria problem for general map-
pings with reuse, even on homogeneous platforms.

Theorem 1: TRICRITERIA(E[Pa, La]) is polynomial on
speed-homogeneous platforms for interval mappings without
reuse.

Due to lack of space, we only provide the proof sketch of
Theorem 1. Please refer to the companion research report [24]
for the detailed proof.

The optimal solution relies on an intricate nesting of two
dynamic programming algorithms. The first one solves the
problem with one single application: it recursively computes
the optimal energy consumption that can be achieved by map-
ping one stage interval to exactly q processors. Then another
dynamic programming algorithm finds the minimum energy
consumption with several applications, recursively trying all
possible distributions of processors to applications, and using
the first algorithm to compute the optimal energy consumption
for each application, given the number of processors allocated
to this application.

Note that on speed-heterogeneous platforms, the problem
of finding an interval mapping which minimizes the power
consumption for a given period and latency by application
is NP-complete. Indeed, the problem of finding an interval
mapping which minimizes the period of one single application
for speed-heterogeneous platforms without communication
cost already is NP-complete [25].

Theorem 2: TRICRITERIA(E[Pa, La]) is NP-complete on
speed-homogeneous platforms for general mappings with
reuse.

Proof: We consider the associated decision problem:
given periods Pa, latencies La (1 ≤ a ≤ A) and an energy
E, does there exist a general mapping such that, for all
a ∈ {1, . . . , A}, application a is processed at period Pa, its
latency is not larger than La, and the total energy does not
exceed E?

The problem is obviously in NP: given periods, latencies,
an energy and a mapping, it is easy to check in polynomial
time that the mapping is valid.

To establish the completeness, we use a reduction from 2-
PARTITION [9]. We consider an instance I1 of 2-PARTITION:
given n strictly positive integers x1, x2, . . . , xn, does it exist
a subset I of {1, . . . , n} such that

∑
i∈I xi =

∑
i/∈I xi? Let

S =
∑n
i=1 xi.



We build an instance I2 of our problem with two identical
processors, each with a single possible speed s = S/2, and
we consider that the cost of static energy is null. We have
then n single-stage applications, whose stage weights are xa,
1 ≤ a ≤ n. We ask whether it is possible to achieve an
energy Eo = 2× (S/2)α, with periods of 1, and latencies not
exceeding 1. Clearly, the size of I2 is polynomial in the size
of I1.

We now prove that I1 has a solution if and only if I2 does.
Assume first that I1 has a solution. For each a ∈ I , the stage
of application a is executed by the first processor. Other stages
are executed by the second processor. The mapping consumes
an energy 2× (S/2)α, and all applications have a period and
latency equal to 1. Now assume that I2 has a solution. Since∑n
i=1 xi = S = S/2 + S/2, all the periods must be 1, and

each processor must run an amount of work of size exactly
S/2; in other words, I1 has a solution.

Since all problems are NP-complete on speed-
heterogeneous platforms, we wrote an integer linear
program, which returns the optimal solution for both interval
and general mappings, and provides us with a basis for
comparisons (see [24]).

V. HEURISTICS

In this section, we present several heuristics for map-
ping streaming applications onto communication homoge-
neous platforms. The code of these heuristics is available at
http://graal.ens-lyon.fr/∼prenaud/Codes/tri-crit.tar. Except for
H2, which does not use the possibility of sharing the proces-
sors (one application onto one processor), each of the heuristic
variants has two versions, with or without processor reuse,
which allows us to observe the impact of resource sharing.

In several heuristics, for each processor Pu, we denote
by sneeded

u the minimum speed at which the processor must
run in order to be able to process all stages that it is
currently assigned to, within the given period. When a stage
of weight w of application a is assigned to processor Pu, we
add w/Pa to sneeded

u . When a stage is de-assigned, we perform
a subtraction instead of the addition.

H1: random. We randomly cut each application into intervals
(not too many, in order to match the latency constraints) and
assign each interval to a random processor. The heuristic fails
if a processor does not have enough speed to run its assigned
stages.

H2: one-to-one. This heuristic assigns each application (as
a single interval) to one single processor. This problem
corresponds to the well-known assignment problem, and we
implement the Hungarian algorithm to solve it.

H2-split: one-to-one with split. We perform a first assignment
thanks to H2 if it succeeds, otherwise we assign all application
stages to the first processor. All stages are then assigned
(and we can consider, if the applications are concatenated,
that each processor is assigned an “interval”), and for each
processor Pu, `u is the lowest mode such that su,`u ≥ sneeded

u ,
or mu otherwise (note that in this case, the mapping is not

valid). The main idea of this heuristic is then to try to split
each “interval” at any place, and to keep the best split. While
we find a better mapping, we try another split. More precisely,
a split consists in (i) de-assigning one part of the concerned
“interval”; (ii) assigning it to another processor Pu′ ; (iii)
updating the two concerned modes `u and `u′ as mentioned
previously, thanks to the new values sneeded

u and sneeded
u′ . Then

we have to define a way to sort the different resulting mappings
in order to choose the best one. We sort the mappings by:
(1) increasing

∑p
u=1 max(sneeded

u − su,`u , 0) (the mapping is
valid if and only if this value is equal to 0); (2) increasing en-
ergy of the platform E =

∑
u∈{1,...,p}E(u, `u); (3) decreasing

max
{
E(u,`u)−E(u,`u−1)
sneeded

u −su,`u−1
|u ∈ {1, . . . , p}, `u 6= 0

}
(for large

values, we expect the next split to be better).

H3: increasing speeds. We start with all processors in their
smallest mode. Then we map applications onto the current
platform, and check whether the mapping is valid or not. If
the algorithm returns true, then we are done. Otherwise, we
repeatedly change the distribution of the modes and call the
mapping procedure until we find a valid mapping. There are
different ways to change the distribution of the modes, thus
leading to different variants of the heuristic (see below for
variants speed, energy and upDown). The mapping procedure
is quite different from that of previous heuristics. Indeed, we
never assign a stage to a processor if it has not enough speed
to run it while not exceeding the bound on the period. In
other words, H3 never allows su,`u < sneeded

u . In the previous
heuristics, we first decided for the mapping, and then we chose
the modes. In H3, we first choose the mode of each processor,
and then we try to find an assignment which is valid with these
modes and may either success or fail.

H3-sort: application sorting. This heuristic proposes a mod-
ification in the H3 mapping procedure, in which we assign the
stages interval by interval instead of application by application.
It can also work with any of the three variants below.

H3-speed/energy/upDown. We outline the three variants:
speed: the processors are sorted by increasing speed of the
current mode (and if there is a tie, by increasing speed gain
between the current mode and the next higher one). We check
whether we find a mapping; if yes, we stop, and if not, we
upgrade the first processor (in the previous order) and repeat.
energy: the processors are sorted by increasing energy spent
(which is different from an ordering based on modes because
of static energy).
upDown: we use the same ordering of processors as in the
“energy” variant, but we improve the upgrade.

Summary of heuristics. Each heuristic is denoted by its
heuristic number, followed by variants. For instance, H3-sort-
speed is the H3-sort heuristic with the speed variant. Also,
we add “-n” at the end of the heuristic name for the “without
reuse” version of the heuristic, and “-r” for the “with reuse”
version. Thus, H2-split-n is the H2-split heuristic with no
reuse. Finally we consider another heuristic, called the “best”
heuristic, which simply takes the minimum energy returned by
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Fig. 1. Comparison with the optimal solution.

all the heuristics. Of course this value is achieved by different
heuristics over all experiments, but it helps quantify what can
be achieved in polynomial time vs. the linear program.

VI. EXPERIMENTS

We have performed a comprehensive set of experiments in
order to (i) assess the absolute performance of the heuris-
tics, by comparing the heuristics with the linear program
that finds the optimal general mapping (denoted as cplex-
r); (ii) analyze the impact of reusing resources (interval vs.
general mappings), using the linear program in its “without
reuse” version (cplex-n); and (iii) study the scalability of the
heuristics, on larger problem instances and without running
the linear program (5000 problem instances, between 8 and
13 applications, and between 30 and 40 processors with 10
modes in the last experiment).

For the first two sets of experiments, since the integer linear
program may run in exponential time, and effectively turns out
very time consuming, we restrict the experiments to a small
set of small problem instances (30 problem instances, with
3 applications and around 7 processors which have between
2 and 8 modes). In these experiments, we generate the set of
random platforms and applications, and we vary one parameter
of this platform: latency, number of processors, maximum
energy static or average gap between two consecutive modes.
For each platform, and each value of the parameter that
we vary, we run all heuristics, and compute the solution
of the linear program using the CPLEX software [26]. The
graphs can be viewed as the average inverse of the consumed
energy, normalized by the optimal solution. Platform sizes are
chosen so that the optimal solution can be found in reasonable
time (each graph has been obtained within a week, and the
execution time of each heuristic was under 1 second per trial).

Also, we do not represent the “sort” variant of H3, because it
leads to negligible variations compared to H3.

(i) Latency and number of processors. In the first experi-
ment (Fig. 1, left), we vary the latency of the applications:
at the beginning, the latency constraint imposes that each
application is mapped as a single interval, while it can go up to
four in the end, hence twelve intervals over all applications. In
the second experiment (Fig. 1, right), we increase the number
of processors for a given application. All the heuristics are
run in their “with reuse” variants. These experiments give
a first idea of the ordering of the heuristics: H3-upDown-r,
the best of the H3 variants, and H2-split-r return the best
results, depending upon the platform. The “speed” variant is
weak when there are fewer intervals by application or many
processors, because it does not evaluate the static energy. H1 is
worse than the others, therefore demonstrating that a random
approach does not provide satisfying results. Finally, the “best”
heuristic is quite good, never below 0.9 of the optimal.

(ii) Impact of reuse. In this second set of experiments, we
compare the heuristics to the optimal solution without reuse,
in order to assess the impact of reuse on the mapping. We vary
the average gap between two modes in the third experiment
(Fig. 2, left), and the maximum static energy in the fourth
one (Fig. 2, right). When the static energy is becoming high,
or when the modes are not close together, a mapping with
one processor per application is the best solution without
resource sharing; thus H2 and H2-split-n tend naturally to the
optimal solution. Then H2-split-r and H3-upDown-r show the
benefit of processor reuse: on the one hand, it allows these
heuristics to use fewer processors than applications, thereby
sparing static energy cost; and on the other hand, they can fill
up the high modes with stages of different applications.
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(iii) Scalability. In this last set of experiments, we study
the heuristics when the instances are larger. For such real-life
instances of the problem, the integer linear program cannot
be used any more, due to its high complexity. In the fifth
experiment (Fig. 3, left), we increase the number of processors
with the number of applications, so that there are four times
more processors than applications. This time, we represent
the energy on the y-axis instead of its inverse, since we
cannot normalize the plots with the optimal solution anymore.
Therefore, the lower the plot the better the heuristic. Finally,
in the sixth experiment (Fig. 3, right), we study all heuristics
for some large problem instances. The main characteristics
of the heuristics are shown in the table of Fig. 3. We report
the number of failures in the first column, and how many
times the concerned heuristic has been the best one in the
second column. For the last three columns, we normalize the
power consumption found by each heuristic by the power
consumption found by the best one and analyze the table of
normalized power. The average is computed over the platforms
for which the heuristic found a solution. These experiments
show the supremacy of H2-split-r, which is better in average,
and gets better when problem instances get larger. Note
however that for 20 applications, all heuristics execute in less
than 1 second, except H2-split-r which takes 3 minutes.

VII. CONCLUSION

We have studied the following scheduling problem: given
several pipelined applications with fixed periods and latency
thresholds, and given a platform with multi-modal processors,
determine the mapping (including processor modes) which
minimizes the total consumed energy. We first established the
complexity of this problem for different mapping strategies
(interval mappings without reuse and general mappings with
reuse), and different platform types (speed-homogeneous and
speed-heterogeneous platforms). Thanks to a combination

of two dynamic programming algorithms, we showed that
finding an optimal interval mapping without reuse on speed-
homogeneous platforms can be done in polynomial time. On
the contrary, finding an optimal general mapping on any
platform type, or finding any optimal mapping on speed-
heterogeneous platforms, are NP-complete problems.

In order to tackle the difficult problem instances on speed-
heterogeneous platforms, we wrote an integer linear program
to compute the optimal solution (either interval-based or
general) in possibly exponential time. Then we designed
several heuristics, which we compared to each other, and to
the optimal solution found by the linear program on small
instances. At least on these small instances, the best heuristic
always achieves at least 90% of the optimal solution. The
comparison of heuristics with and without processor sharing
does confirm that sharing is more useful when (i) the modes
are not close to each other, and (ii) the static energy is high.

As for future directions, we would like to search for approx-
imation algorithms, or to derive inapproximability results. In-
deed, even though the performance of the heuristics was exper-
imentally shown pretty good, we have no theoretical guarantee.
With the tri-criteria approach of this paper, with thresholds on
performance-related criteria, we could formulate the problem
as follows: given three parameters αP , αL and αE , does there
exist a polynomial algorithm A such that the energy found
by A on the problem TRICRITERIA(E[αPPa, αLLa]) is less
than αE times the optimal energy consumption of the problem
TRICRITERIA(E[Pa, La])? Finding approximation algorithms
for some values of αP , αL and αE is a challenging problem.
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