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Abstract. We consider allocation problems that arise in the context of service
allocation in Clouds. More specifically, on the one part we assume that each
Physical Machine (denoted as PM) is offering resources (memory, CPU, disk,
network). On the other part, we assume that each application in the IaaS Cloud
comes as a set of services running as Virtual Machines (VMs) on top of the set
of PMs. In turn, each service requires a given quantity of each resource on each
machine where it runs (memory footprint, CPU, disk, network). Moreover, there
exists a Service Level Agreement (SLA) between the Cloud provider and the
client that can be expressed as follows: the client requires a minimal number of
service instances which must be alive at the end of the day, with a given relia-
bility (that can be converted into penalties paid by the provider). In this context,
the goal for the Cloud provider is to find an allocation of VMs onto PMs so as to
satisfy, at minimal cost, both capacity and reliability constraints for each service.
In this paper, we propose a simple model for reliability constraints and we prove
that it is possible to derive efficient heuristics.

Keywords: Cloud, reliability, resilience, linear programming, VM allocation,
multidimensional bin packing

1 Introduction

1.1 Reliability and Energy Savings in Cloud Computing

In this paper, we consider reliability issues in the context of Cloud Computing
platforms, when allocating a set of independent services running as Virtual Ma-
chines (VMs) onto Physical Machines (PMs) in a Cloud computing platform.
Cloud Computing [19,1] is a well-suited paradigm for service providing over
the Internet. Using virtualization, it is possible to run several Virtual Machines
on top of a given Physical Machine. Since each VM hosts its complete software



stack (Operating System, Middleware, Application), it is moreover possible to
migrate VMs from a PM to another in order to dynamically balance the load.

Even in the static case, mapping VMs with heterogeneous computing de-
mands onto PMs with capacities is amenable to a multi-dimensional bin-packing
problem. Indeed, in this context, each physical machine comes with its comput-
ing capacity (i.e. the number of flops it can process during one time-unit), its
disk capacity (i.e. the number of bytes it can read/write during one time-unit),
its network capacity (i.e. the number of bytes it can send/receive during one
time-unit), its memory capacity (given that each VM comes with its complete
software stack) and its failure rate (i.e. the probability that the machine will fail
during the next time period).

On the other hand, each service comes with its requirement along the same
dimensions (memory, CPU, disk and network footprints) and a reliability de-
mand that has been negociated through the SLA [9]. In order to deal with capac-
ity constraints in resource allocation problems, several sophisticated techniques
have been developed in order to optimally allocate VMs onto PMs, either to
achieve good load balancing [18,3] or to minimize energy consumption [5,4].
Most of the works in this domain have therefore concentrated on designing of-
fline [12] and online [13] Packing variants.

In this paper, we propose to use a new set of variables in order to deal with
this multi-dimensional bin-packing problem. More specifically, we use the spe-
cific structure of the problem, and in particular the fact that the number of VMs
a given PM can host is very small in practice, since each VM comes with its
complete software stack. Therefore, our approach consists in enumerating all
possible configurations (a configuration being defined by the set of services
running on a machine) and using them as variables in the optimization prob-
lems. Indeed, if the number of different services a PM can simultaneously host
is bounded, then the number of possible configurations has polynomial size.

Reliability constraints have received much less attention in the context of
Cloud computing, as underlined by Cirne et al. [9]. Nevertheless, related ques-
tions have been addressed in the context of more distributed and less reliable
systems such as Peer-to-Peer networks. In such systems, efficient data shar-
ing is complicated by erratic node failure, unreliable network connectivity and
limited bandwidth. Thus, data replication can be used to improve both avail-
ability and response time and the question is to determine where to replicate
data in order to meet performance and availability requirements in large-scale
systems [15,17,16]. Reliability issues have also been addressed by High Perfor-
mance Computing community. Indeed, recently, a lot of effort has been done to
build systems capable of reaching the Exaflop performance [10] and such exas-
cale systems are expected to gather billions of processing units, thus increasing



the importance of fault tolerance issues [8]. Solutions for fault tolerance in Ex-
ascale systems are based on replication strategies [11] and rollback recovery
relying on checkpointing protocols [6].

This work is a follow-up of [2], where the question of how to evaluate the
reliability of an allocation has been addressed and a set of deterministic and
randomized heuristics have been proposed in the context of a single type of
constraint related to CPU usage. Moreover, in [2], in order to avoid difficulties
related to the bin packing problem, we assumed that the overall CPU demand
of a service could be split arbitrarily on an arbitrary number of machines. Un-
der this assumption, the packing problem was equivalent to a mono-dimensional
splittable item bin packing problem, that can be solved in polynomial time with-
out cardinality constraints.

In this paper, we therefore consider a more general model and we rely on
the additional assumption on the number of VMs running on a PM in order to
obtain tractable formulations of the optimization problem, that consist, from the
provider point of view, to obtain an allocation of services to physical machines
so as to satisfy both capacity and reliability constraints.

1.2 Model and Notations

In this section, we introduce the notations that will be used throughout the paper.
Our target cloud platform is made of m physical machinesM1,M2, . . . ,Mm.
We consider the behavior of this platform over the course of one given time
period (for example over one day), and we assume that during that time period,
it is not practical to reallocate instances of services to physical machines. The
goal of our allocation procedure is thus to provision extra instances (replicas)
for the services, which will actually be used if some machines fail during the
time period. The success of the allocation is determined at the end of the time
period: a service is successful if enough instances are still running at the end of
the time period.

As already noted, machineMj is characterized by its capacity along several
dimensions, i.e. memory, CPU, disk, network,... Since memory plays a specific
role in our model, we consider it separately, and we note K the number of other
resources. For the sake of simplicity, we assume that machines are homoge-
neous (extending this work to a constant number of machine classes is possible)
and we will denote by MEMCAPA the memory capacity of the machines, and
by CAPAk, 1 ≤ k ≤ K the capacities of the machines along other dimen-
sions. Moreover, we consider a given failure probability FAIL, that represents
the probability of failure of any given machine during the time period.

On this Cloud platform, we have to run n services S1,S2, . . . ,Sn. DEMi

identical and independent instances of service Si are required, and the instances



of the different services run as Virtual Machines. In turn, service Si is charac-
terized by its capacity along several dimensions, i.e. memory, CPU, disk, net-
work,... We will denote by MEMPRINTi the memory footprint of service Si
and by PRINTk,i, 1 ≤ k ≤ K the footprints of service Si along the other di-
mensions. Several instances of the same service can be run concurrently and
independently on the same physical machine and we will denote by Ai,j the
number of instances of Si running onMj .

Therefore,
∑

iAi,jMEMPRINTi represents the overall memory footprint of
the services running onMj and therefore, it has to be smaller than MEMCAPA, ∀j.
The same applies for the other resources and in general ∀j, k ,

∑
iAi,jPRINTk,i ≤

CAPAk.

On the other hand,
∑

j Ai,j represents the overall number of running in-
stances of Si. In general,

∑
j Ai,j is larger than DEMi since we use replication

(i.e. over-provisioning) of services in order to enforce the reliability require-
ments. We will denote by ALIVE the set of machines which are still running
at the end of the time period. In our model, at the end of the time period, the
machines are either up or completely down, so that the number of instances of
Service Si running onMj is Ai,j ifMj ∈ ALIVE and 0 otherwise. Therefore,
ALIVEINSTi =

∑
j,Mj∈ALIVEAi,j denotes the overall number of running in-

stances of Si at the end of the time period and Si is running properly at the end
of the time period if and only if

∑
j,Mj∈ALIVEAi,j ≥ DEMi.

Of course, our goal is not to guarantee that all services should run properly
at the end of the time period with probability 1. Indeed, such a reliability cannot
be achieved in practice since the probability that all machines fail is clearly
larger than 0 in our model. In general, as noted in a recent paper of the NY
Times [14], Data Centers usually over-provision resources (at the price of high
energy consumption) in order to (quasi-)avoid failures. In our model, we assume
a more sustainable model, where the SLA defines the reliability requirement
RELi for Service Si (together with the penalty paid by the Cloud Provider if Si
does not run with at least DEMi instances at the end of the period). Therefore,
the Cloud provider faces the following optimization problem:

ValidAllocation(m,n,DEM,REL): Find an allocationA of the instances of
services S1,S2, . . . ,Sn to machinesM1,M2, . . .Mm such that

– Packing:

{
∀j,
∑

iAi,jMEMPRINTi ≤ MEMCAPA and
∀j, k ,

∑
iAi,jPRINTk,i ≤ CAPAk.

– Reliability: ∀i, P(ALIVEINSTi ≥ DEMi) ≥ RELi, i.e. the probability that
at least DEMi instances of Si are running on alive machines after the time
period is larger than the reliability requirement RELi.



1.3 Outline of the Paper

As we have noticed it, ValidAllocation is in general a difficult problem. First,
it has been proved in [2] that given an allocation A, determining if Reliability
constraints are enforced is in general #P-Complete. Moreover, in its general
form, the Packing problem is a multi-dimensional bin packing problem that is
NP-Complete and hard to approximate. Therefore, in Section 2, we propose a
different model that takes into account the specific characteristics of the solution
in order to obtain a formulation of the optimization problem that can be given
to an optimization solver and produce a solution in a small amount of time. The
results obtained on a characteristic set of instances are given in Section 3 and
the conclusions and perspectives in Section 4

2 Reformulation of the Optimization problem

In this section, we propose a different formulation of the optimization problem
ValidAllocation. In Section 2.1, we formulate the optimization problem for a
single service as a non-linear optimization problem that can be solved efficiently
under the assumption that we restrict the search to almost homogeneous alloca-
tions. Then, in Section 2.2, we rely on the fact that in practice, the number of
services that can be run simultaneously on a given PM is usually very small,
so that it is possible to enumerate all possible valid allocation schemes for a
machine. Moreover, we will assume that the demand DEMi of the different ser-
vices is large, so that we can accurately approximate a binomial distribution by
a normal distribution when estimating the number of alive instances of a service
at the end of the day.

2.1 Case of a Single Service

ValidAllocation is in general difficult to solve for two different reasons, i.e.
(i) estimating the reliability of a single heterogeneous allocation is in general
#P-Complete and (ii) with several services, it is equivalent to a multi-dimensional
bin packing problem. The question related to bin packing will be addressed in
Section 2.2 and we concentrate in this section on the case of a single service.

Without reliability constraints, the minimal number of resources in order to
run Service Si whose demand is DEMi, whose footprint along dimension k is
PRINTk,i and whose memory footprint is MEMPRINTi can be found with:

Minimize
∑
j

Ai,j such that


∀j, Ai,jMEMPRINTi ≤ MEMCAPA

∀j, k, Ai,jPRINTk,i ≤ CAPAk

∀j , Ai,j ≥ 0



where equivalently, if Amax,i = min(mink(
CAPAk

PRINTk,i
), MEMCAPA

MEMPRINTi
), all capac-

ity constraints can be written as ∀j, 0 ≤ Ai,j ≤ Amax,i. Recall that as a number
of instances of a service, all Ai,j is an integer.

In order to incorporate the set of constraints related to reliability in the above
IP (Integer Program), we rely on the approximation of the binomial distribution
B(N, p) by the normal distribution N (Np,Np(1 − p)) that is valid as soon as
N is large [7] (typically, the approximation is considered as valid as soon as
both Np and N(1− p) are larger than 5, what is easily satisfied in our setting).

For l < Amax,i, let us denote by nil the number of machines where exactly l
instances of service Si are allocated. By the assumption of our model, the num-
ber of alive machines among those nil machines follows a binomial distribution:
B(nil, p) where p = 1 − FAIL. By approximating this with a normal distribu-
tion, we get that the number of alive services on those machines is distributed as
l×N (pnil, p(1−p)nil) = N (plnil, p(1−p)l2nil). Summing over l, we obtain the
distribution of the number of alive instances: ALIVEINSTi ∼ N (p

∑
l ln

i
l, p(1−

p)
∑

l l
2nil). Then, let us denote by zRELi the value (that depends on RELi only,

and can be obtained in a normal distribution table) such that P(ALIVEINSTi ≥
DEMi) ≥ RELi as soon as p

∑
l ln

i
l−zRELi

√
p(1− p)

∑
l l

2nil ≥ DEMi. There-
fore, the following optimization problem provides a valid allocation that mini-
mizes the number of replicas used for Service A:

Minimize
∑
j

Ai,j s. t.


p
∑

j Ai,j − zRELi

√
p(1− p)

√∑
j A2

i,j ≥ DEMi

∀j, 0 ≤ Ai,j ≤ Amax,i

∀j , Ai,j ≥ 0

The constraint p
∑

j Ai,j − zRELi

√
p(1− p)

√∑
j A2

i,j ≥ DEMi states both
that enough resources should be allocated to Si and that the dispersion of these
resources over PMs should be small. This corresponds well to what we observed
in [2] (in the case without memory constraints), where homogeneous allocations
were considered. Therefore, we will restrict the search to quasi-homogeneous
allocations, where the number of instances Ai,j on machine j can be either Ai

or Ai + 1 for some value of Ai < Amax,i.
In order to determine the best (in terms on number of required resources)

quasi-homogeneous allocation, the first step is to determine Ai. Ai should be
such that allocatingAi instances to all m machines should not be enough to en-
force reliability constraint, but that allocatingAi+1 resources to allmmachines

should be enough, i.e. Ai =

⌊
DEMi

pm−zRELi

√
p(1−p)

√
m

⌋
.

Then, it is easy to see that the number mi of machines that receive Ai + 1
instances (the other m−mi machines being allocatedAi instances) needs to be



at least dxe, where x satisfies the equation

pmAi + px− zRELi

√
p(1− p)

√
px(Ai + 1)2 + p(m− x)(Ai)2 = DEMi,

which is equivalent to the following second order equation:

(pmAi − DEMi − px)2 − z2RELi
p(1− p)

(
px(2Ai + 1) + pmAi

2
)
= 0.

2.2 Enumerating the Set of Valid Allocations

As already noted in the introduction, ValidAllocation is in general difficult
since even in absence of failures, it is equivalent to a general multi-dimensional
bin packing problem, that is known to be hard to solve and to approximate.
On the other hand, the dimension that corresponds to the memory constraints
has several characteristics that make it suitable for optimization. Indeed, since
each VM comes with its full software stack (say, a few Gigabytes), the number
of VMs that can be handled simultaneously on a given PM is relatively low.
Therefore, one can assume that no PM will be able to run more than nmax ser-
vices and we will treat nmax as a constant (the reader should have in mind that
a typical value for nmax is 3 or 4).

Let us denote as a configuration Cc a set of nmax services Sc1 ,Sc2 , . . . ,Scnmax
.

We assume that each machine runs exactly nmax services without loss of gen-
erality, by adding a fictitious service whose footprint in any direction is 0. To
be valid, configuration Cc must satisfy

∑nmax
i=1 MEMPRINTci ≤ MEMCAPA and

∀j, k ,
∑nmax

i=1 PRINTk,ci ≤ CAPAk. Let us now denote by S the set of possible
valid configurations. There are at most a polynomial size number nnmax of such
configurations and the validity of each configuration can be verified in constant
time. Using S, it is possible to write a linear program (LP) that finds a valid
allocation that makes use of a minimal number of machines. In the following
LP, λc denotes the number of machines that follow configuration Cc.

Minimize
∑
c

λc such that


∀i,

∑
c, #{Si∈Cc}=Ai+1

λc = mi

∀i,
∑

c, #{Si∈Cc}=Ai

λc = m−mi

∀c, λc ≥ 0

3 Numerical Results

In this section, we describe an experimental analysis of the homogeneous heuris-
tic, obtained from randomly generated scenarios.



3.1 Experimental setting

We consider an experimental setting with two dimensions of resource which
represent memory and CPU usage. The memory footprints of all services are
assumed to be approximately the same, and we consider that the available mem-
ory at each machine is enough to run 4 service instances. On the other hand, the
CPU usage of each service is generated uniformly at random between 1% and
MAXCPU % of the CPU capacity of the machines. For the parameter MAXCPU,
we use three different values: 100%, 50%, and 25%, which implies that the CPU
capacity of each machine is enough to run (on average) 2, 4, and 8 service in-
stances. This allows us to consider a wide range of scenarios: when MAXCPU
is 100%, the most constrained resource is CPU, whereas when MAXCPU is
25%, the most constrained resource is memory. For the intermediate case where
MAXCPU is 50%, both resources have the same importance. The failure prob-
ability of each machine is set to 0.01, and the reliability requirements of each
service is randomly generated in the following way: a random number is picked
uniformly between 4 and 16, and the reliability requirement is set to 1− 10−x/2

(hence reliability requirements lie between 0.99 and 0.99999999).
We generate small scenarios with n = 20 services, and large scenarios with

n = 50 services. For each value of the parameters n and MAXCPU, we gener-
ate 100 scenarios. For each scenario, we compute, as a lower bound, the number
of bins necessary to provide enough capacity to hold all services, without any
packing constraint. We also run the homogeneous heuristic by solving the inte-
ger version of the linear program with CPLEX with a 10 second time limit. In
most cases, CPLEX was able to find an optimal integral solution, and for the
largest scenarios the best solution found in 10 seconds was used.

3.2 Results

Experimental results are shown on Figure 1, where we give boxplots for the ratio
of the number of bins used by the homogeneous heuristic to the lower bound.

We can see that our heuristic gives very efficient solutions, especially in
the cases where memory is the strongest constraint (MAXCPU = 25%). When
MAXCPU = 100%, it is more difficult to use all of the CPU capacity of the
machines, and the performance of the homogeneous heuristic is not as close
to the lower bound. But even in that case, it uses on average 10% more bins
than the lower bound, and most of the time only 20% more. This shows that
it is possible to provide efficient packing solutions that exhibit good reliability
guarantees.
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Fig. 1. Experimental results with n = 20 and n = 50 services

4 Conclusion

We have considered the difficulty introduced by reliability constraints when con-
sidering service allocation in Clouds in presence of failures. In this context,
replication (or equivalently over-subscription) is used in order to enforce relia-
bility demand. We have proposed a new formulation of the optimization based
on a relaxation of an approximation of probability distributions that enables the
design of a sophisticated heuristic, that turns out to be very efficient in a large
number of scenarios.
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