
Power-aware Manhattan routing on chip multiprocessors
(rebuttal phase)

Theorem 1: Given a p × q CMP with q ≥ p, q = O(p),
and a set of communications to be routed from C1,1 to Cp,q ,
the minimum upper bound for the ratio of the power con-
sumed by an XY routing (PXY) over the power consumed
by a max-MP routing (Pmax) is in O(p).

Note that the result holds true for a p× p square CMP as
a particular case. Note also that it holds for the symmetric
case of a CMP with p ≥ q and p = O(q), with a minimum
upper bound in O(q).

Proof: We first prove that an upper bound of PXY/Pmax

is in O(p). Then, we show that this bound can indeed be
achieved.

Let K be the total size of the communications to route
(i.e., K =

∑
i∈{1,...,nc} δi). The XY routing is forwarding

all these communications along the same route, leading to
a power consumption PXY = (p + q) ×Kα, and therefore
PXY is in O(p×Kα) (recall that q = O(p)).

All communications, even if split in multiple paths (as
allowed with a max-MP routing), follow the same diagonals
in direction 1. For each k ∈ {1, . . . , q + p − 2}, we let
K

(1)
k be the sum of the γi for all i ∈ {1, . . . , nc} such that

ksrc(i) ≤ k and ksnk(i) > k. Since all communications
have the same source and destination, K(1)

k = K for each k.
For a given K(1)

k , the ideal way to map those communica-
tions is to distribute them among all the communication links
from D

(1)
k to D(1)

k+1 (see Figure 3). Such a splitting cannot
be achieved but provides a bound on how to load-balance

Figure 3. Ideal sharing of one communication.

the communication across the links. We have:
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and hence Pmax = O(Kα), since α > 2 and q = O(p).
Finally, since PXY = O(p ×Kα), we conclude that the

worst ratio PXY/Pmax is at most in O(p), hence providing
an upper bound on this ratio.

We now exhibit an instance of the problem on a p × q
CMP, such that q = O(p) and q ≥ p, and a max-MP routing
such that the ratio O(p) is realized, when all communications
go from the same source core C1,1 to the same destination
core Cp,q . Let p = 2 × p′, and K be the total size of the
communications to route. The power consumed with an XY
routing is PXY = (p+ q)×Kα.

Now we consider the max-MP routing pattern based on
Figure 4. Until semi-diagonal D(1)

2p′ , communications are
split according to the figure. Then the communications that
arrive (there are p′ of them) at D(1)

2p′ are forwarded horizon-
tally. When they reach D(1)

q , communications are aggregated
according to the symmetrical pattern of the figure.

Figure 4. Routing pattern.



We first compute P (1)
max, the dissipated power at both ends,

where the communications are not forwarded horizontally.
We deal with the cores in diagonal. On semi-diagonal D(1)

2k ,
for j ∈ {1, . . . , k}, the core Cj,2k+1−j on line j is sending
rk,j communications to its right core, and dk,j to its down
core. Between D(1)

2k and D(1)
2(k+1), for j ∈ {1, . . . , k+1}, the

core Cj,2k+2−j on line j is sending hk+1 communications
to its right core.

We set:
• for k ∈ {1, . . . , p′}, hk =

K

k
;

• for k ∈ {1, . . . , p′ − 1} and j ∈ {1, . . . , k},

rk,j =
k + 1− j
k(k + 1)

K and dk,j =
j

k(k + 1)
K .

We show that the splits and merges of communications
are valid:
• for k ∈ {1, . . . , p′ − 1} and j ∈ {2, . . . , k},

1

K
(rk,j + dk,j−1) =

k

k(k + 1)
= hk+1 ;

• for k ∈ {1, . . . , p′− 1}, rk,1 = hk+1 and dk,k = hk+1;
• for k ∈ {1, . . . , p′ − 1} and j ∈ {1, . . . , k},

1

K
(rk,j + dk,j) =

k + 1

k(k + 1)
= hk .

What is the dissipated power with this max-MP routing?
The power consumption P (1)

max is twice the power consumed
until diagonal D(1)

2p′ (we define symmetrical routes for the
other half of the routing). Therefore, we have:
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Also, we know that for k ∈ {1, . . . , p′ − 1} and j ∈
{1, . . . , k}, dk,j + rk,j = hk. Therefore,
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Now, the power dissipated in the horizontal links in the
middle of the CMP is:

P (2)
max = (q − p)p′ × (K/p′)α ≤ Kα × q(p′)1−α.

There are indeed p′ communications of size K/p′, each
of length (q − p). Altogether,

Pmax = P (1)
max + P (2)

max ≤ Kα
(
8− 4/p′ + q(p′)1−α

)
.

Since q = O(p′) and α > 2, we have 8 − 4/p′ +
q(p′)1−α = O(1), and since PXY = (p + q) × Kα and
q = O(p), the ratio PXY/Pmax is in O(p), which concludes
the proof.


