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Computational Biology Distributed Systems to Computational Biology

From Distributed Systems to Computational Biology

Distributed Systems (Avalon) : Security, Heuristics, Simulation

Working with big company : Research is rarely used...

Wanted to be embedded in a team/laboratory from another discipline

Associate Professor position at INSA-Lyon/LIRIS-Inria Beagle team

Working on computational biology

Goal: fully integrated within the team and producing biological
knowledge

Integrating the team through the HPCization of the application

Teaching HPC (OpenMP, CUDA, MPI) : Computer Science and
Computational Biology students (M2)
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Computational Biology Beagle

Beagle : Computational Biology at the cell level

Joint research group : LIRIS, LBBE (Biometry and Evolutionary
Biology), CarMeN (Cardio-Metabolism, Diabetes, Nutrition)

Interdisciplinary team : Computer Science, Biology, Physics,
Modelization

Two main topics :

Computational Cell Biology
In silico Models of Evolution
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Computational Biology Origins of Complexity

Origins of Life Complexity

Observation : The biological complexity has increased during
geological time.

Question : Why the life is so complex ? Why simple organism can be
so complex ?

Two theories :

Complex organisms can outcompete simple ones
Complexity is due to the variation process that is biased toward an
increase of complexity

Two paradoxes :

C-value paradox : Complexity is not linked to the size of DNA (many
plants have larger genome than humans)
G-value paradox : Complexity is not linked to the number of genes
(wheat have 5 times more genes than humans).
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Computational Biology Origins of Complexity

In-silico experimental evolution : Aevol

How can we built an experiment to test it ? Almost impossible with
in-vivo/vitro approaches

We use in-silico experimental evolution to test it (i.e. a
computational model)

We define a target that can be fulfilled by a very simple organism

We run our simulator with different parameters and observed the
outcome
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Computational Biology Origins of Complexity

The Complexity Ratchet

Mutation rate (µ) Number of Simples Number of Complexes

10−4 mut.bp−1.gen−1 32 [24 – 43] 68 [58 – 76]

10−5 mut.bp−1.gen−1 25 [18 – 34] 75 [66 – 82]

10−6 mut.bp−1.gen−1 14 [9 – 22] 86 [78 – 91]

C
om

plex
S

im
ple

0 1000 2000

0

10

20

30

40

0

10

20

30

40

Genomic Complexity

N
um

be
r 

of
 s

im
ul

at
io

ns
C

om
plex

S
im

ple

0 10 20 30

0

10

20

30

0

10

20

30

Functional Complexity

N
um

be
r 

of
 s

im
ul

at
io

ns

Conclusion : Once you start to become complex, it is almost impossible to
go back to simple (accumulation)
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Computational Biology Aevol : Biological model

Aevol : Biological model
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Computational Biology Aevol : Use cases

Aevol : some use cases

How the mutation rate of DNA limit DNA size ?

Does epigenetics accelerate the evolution ?

Impact of the different type of mutations on the evolution ?

How the genetic network are built and wrought ?

Can we predict evolution ? (and how ?)
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Computational Biology Aevol : Workflow

Aevol : Experimental campaign workflow
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Computational Biology Aevol : Computational model

Aevol : Computational model

Searching for motifs (exact and with hamming distance) on circular
strings

Matching found motifs (match a start with the first next end)

Decoding triplet of chars to double value

Summing triangles

Summing vectors

A 2D stencil

Generating random numbers (uniform distribution)
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Multi-cores Before parallelism

Before going parallel : Optimize, Optimize and Optimize

A scientific application is often written by non-computer science
researcher

Performance aspects is not the first focus

Code is structured closely to the model

Profile the code (do not trust yourself or the others)

Find the hotspot (e.g. arithmetics between constants)

Fix them

Loop

Sound simple but mandatory before going further

Help a lot to understand the code (and interact with the researchers
who design the apps)
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Multi-cores OpenMP

Aevol and OpenMP

3 parallel loop pragma, 2 atomics (counter)

We also parallelize statistics and checkpointing using task with
dependencies

We try to use task with dependencies everywhere, performance were
very bad
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Multi-cores Limitations

Limitations of the Aevol OpenMP implementation

The speedup is pretty bad

Aevol is memory bound (looking for motifs)

But there is another issue
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Multi-cores Task runtime distribution

Task runtime distribution at a given timestep
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Multi-cores Aevol : Evolution of DNA/Network size

Task runtime during the evolution

J. Rouzaud-Cornabas (LIRIS-Inria Beagle) Comp. Bio. HPC 16 / 56



Multi-cores Aevol : Impact of simulation parameters

Task runtime with different simulation parameters
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Multi-cores Irregularity

Irregularity and OpenMP
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Multi-cores Irregularity

Irregularity and OpenMP

8x more cores, 4.4x speedup
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Multi-cores List-scheduling

OpenMP scheduling methods
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Multi-cores List-scheduling

A “simple” list-scheduling issue

List scheduling (OpenMP dynamic) : (2-1/m)-approximation, O(n log
m)

LPT (Longest Processing Time first) : (4/3 -1/(3m))-approximation,
O(n log n + n log m)

But can we model task runtime ?

We try but too difficult and some hardware artefacts

We do not need to predict runtime only to predict tasks order
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Multi-cores Predicting tasks order

How to predict task order with Aevol

J. Rouzaud-Cornabas (LIRIS-Inria Beagle) Comp. Bio. HPC 22 / 56



Multi-cores Preliminary results

Preliminary results
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GPU NVidia Hackathon : CSCS 2018

Aevol VS mini-Aevol

Aevol VS mini-Aevol SLOC : 87,000 VS 2,000

Simplify model

Only a strand of DNA (and not too) i.e. the DNA is read one-way and
not both-way
A reduce mutation sets: no translocation
A lot of advances features are missing: no plasmid, 4bp DNA, ...

Implementation

Lot less robust to input errors
Can not change model parameters during an evolution
No phylogenetic tree
No postprocessing tool
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EuroHack 2018 
Lugano – October 2018 

 

GPU-Aevol 
 

Guillaume Beslon – Computational Biology 
David P. Parsons – Software engineering 

Jonathan Rouzaud-Cornabas – High Performance Computing 
Mentors: Vasileios Karakasis (ETH Zurich), Jeffrey Kelling (HZDR, Dresden) 

 



GPU-Aevol	–	Star/ng	point	
(Monday	morning)	

•  Aevol	had	never	been	ported	on	GPU	
•  Mini-Aevol	

–  Aevol	simplified	and	not	op/mized	
–  ~2,000	C++	lines	(vs.	~67,000	C++	lines	for	aevol)	
–  One	evident	parallel	scheme:	the	individual	level	
(but	very	high	heterogeneity)	

–  No	clear	idea	on	how	to	efficiently	run	Aevol	on	GPU	

•  Prepara/on	step	
–  Op/mize	Mini-Aevol	to	enable	fair	comparisons	
–  Replace	random-generator	by	a	GPU	compa/ble	one	



GPU	integra/on	in	4	steps	

For	all	organisms:	
Sequence	decoding	

Popula/on	level	selec/on	

For	“some”	organisms:	
Replica/on	and	muta/on	

Ti
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Step	1:	por/ng	
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on	GPU	
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Step	4:	Debugging	Op/mizing	Debugging	Op/mizing	Debugging	
Op/mizing	Debugging	Op/mizing	Debugging	Op/mizing	Debugging	Op/mizing	Debugging	Op/mizing	Debugging		Debugging		Debug		Debug		Debug		Debug	



Where	we	are	today	
•  Full-GPU	implem		

– we	didn’t	expect	that!	
•  Speed-up	~X25	on	classical	pop	sizes	

– Not	much	beaer	than	CPU	openmp	speed-up	L	

But	
•  Large	popula/ons	run	~as	fast	as	classical	ones	

– Far	beaer	than	CPU	openmp	speed-up	J	
à	Paralleliza/on	scheme	seems	“reasonable”	



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●
●●
●●
●
●●
●

●
●
●●
●●●
●
●

●
●

●

●
●

●●

●

●●

●

●●

●●●
●
●
●
●
●●

●●●

●
●
●
●●
●

●●●
●●●
●

●
●
●
●

●●
●

●

●

●
●
●

●●
●
●●●

●●●
●
●
●

●●
●
●
●

●
●●
●●●●●
●

●●●●

●

●
●
●
●
●
●
●
●●

●

●

●
●
●
●

●

●●●●

●●

●

●
●●
●

●●●
●

●
●
●●
●

●

●

●●

●●
●●●

●

●●

●

●●●
●

●

●

●

●

●

●
●
●●●

●
●
●

●
●

●
●

●
●
●
●

●

●
●
●●●
●
●●
●

●●

●●●
●●

●

●
●

●
●

●

●

●●

●
●

●

●

●●

●●
●
●
●
●

●

●
●
●
●

●

●●

●

●

●

●

●
●●

●●

●
●

●

●
●
●

●
●

●

●
●
●●●

●

●●

●

●
●●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●
●●

●

●
●

●

●●

●

●

●●●

●

●●●
●

●

●
●

●

●
●

●●

●●
●

●

●●

●●

●

●

●
●
●●
●●
●

●
●
●
●

●

●
●
●●

●

●
●

●
●
●
●
●

●

●
●
●●
●
●

●●●

●

●●
●

●

●

●
●

●
●
●

●

●

●
●
●

●

●

●

●

●
●
●●
●●
●●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●
●●
●

●

●

●

●

●
●

●
●

●

●
●●
●

●

●●

●
●
●

●●

●
●

●●
●
●●
●

●
●
●●

●

●●

●

●

●

●
●●
●

●
●

●

●

●
●

●

●●

●●
●●
●●
●

●
●●

●
●●

●

●

●

●●
●

●
●

●
●
●

●

●

●

●●●

●

●●
●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●●●
●

●
●●
●
●●

●

●

●

●●

●

●

●●

●●
●
●
●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●●

●
●
●●
●

●●

●
●
●

●
●
●

●

●
●
●
●●

●

●

●
●

●

●●
●●

●

●●

●
●

●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●

●
●
●
●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●●●

●●●●
●
●
●

●●

●●

●
●

●

●
●
●

●

●●

●●●●

●
●

●

●

●●

●

●
●
●
●●

●●
●
●
●●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●
●

●
●●●
●

●

●
●
●

●●

●

●

●

●
●

●

●
●

●
●

●●●●
●●●●
●

●

●
●●●

●
●

●

●

●
●●
●

●●
●

●
●
●
●
●●

●

●●●●
●●

●
●

●●

●
●

●

●

●

●
●●●

●●
●

●

●

●

●

●
●●
●

●

●
●

●●
●●
●

●

●
●

●
●

●●

●
●
●●

●

●

●

●●
●

●
●●●

●
●●
●●●
●
●

●
●

●

●

●
●

●
●●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0e+00

1e+06

2e+06

0 250 500 750
ID

cp
u

Speedup	compared	to	GPU-op/mized	
Mini-Aevol	

Computa*on	*me	per	genera*on	
(Op*mized	sequen*al	CPU	version)	

Computa*on	*me	per	genera*on	
(GPU-Aevol)	

Genera/ons	



Ongoing:	profiling	of	GPU-Aevol	
(Thursday)	



Ongoing:	profiling	of	GPU-Aevol	
(Friday)	



S/ll	many	op/miza/on	possibili/es	
•  Op/miza/on	ideas:	

–  Assemble	all	genomes	into	a	metagenome	(suppress	
heterogeneity)	
à Done	on	DNA	(es/mated	gain:	>50%	in	the	decoding	kernels)	
à To	be	done	on	RNAs	

– Merge	decoding	and	muta/on	kernels	à	Easy;	To	be	done	
–  Compress	genome	and	metadata	
–  Track	metadata	to	avoid	“recomputa/on”	
(i.e.	+/-	same	op/miza/on	idea	as	on	CPU)	
à Thought	to	be	incompa/ble	with	GPU	muta/on	algo.	
à GPU-compa/ble	algorithm	proposed;	to	be	implemented	and	tested	

–  …	



Candid	feedback	on	GPU	

•  Among	the	three	of	us…	
–  Guillaume	had	no	(recent)	experience	in	programming	

•  And	was	actually		wondering	what	he	was	doing	here!	
–  David	had	no	experience	in	GPU		

•  But	was	eager	to	learn	
–  Jonathan	had	limited	experience	on	GPU	

•  But	had	a	theore/cal	understanding	of	the	concepts	

•  Conclusion	
–  CUDA	is	surprisingly	easy	to	dive	into	but…	
–  As	GPU	noobs,	we	had	to	change	our	vision	of	prog	&	algorithmics	
–  Debugging	is	a	nightmare… Only	for	dummies	?	
–  Also,	in	depth	knowledge	on	biology	and	evolu/on	has	revealed	
essen/al	all	along	the	week	to	find	efficient	parallel	algorithms	



Rethinking for massively parallel From GPU to CPU

Lessons learn on GPU transfer back to CPU

Modern multi-core processor are more and more closer to GPU

Vectorization is actually harder to use than going to GPU

A lot of GPU optimizations have been re-used successfully on CPU
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Rethinking for massively parallel Data : structure, allocation, locality

Data and memory bound: THE critical aspect (so far)

On GPU, no STL

Dynamic array oversized on GPU

Working well on CPU too (avoid a lot of memory allocation/copy)

We need to index position of motifs
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On-going works Computational biology on DGX-1

How Aevol can use the NVidia DGX-1

How can we support irregular applications on multi-GPU ? How can
we do list-scheduling like optimization ? Mixed precision ?

Aevol model is evolving, How multi-GPU can help to limit the
increase of computing time link to these changes

BQR INSA BF2i/LIRIS : To simulate the transmission of bacteries
from an organism to another one, we need to simulate dynamic
population size (reducing from few thousands to just few ones then
growing back to full population size)

ANR Evoluthon (Inria Beagle/LBBE) : To simulate multiple population
living in different environment and exchanging DNA pieces (horizontal
transfer) : Large population (at least x1000) and adding a 1/3-D
stencil (DNA exchange)

J. Rouzaud-Cornabas (LIRIS-Inria Beagle) Comp. Bio. HPC 39 / 56



On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Scaling ODE : Why ?

ODE Solver used by a large scope of models in Computational Biology

On top of it, Deep Learning could also benefit from HPC ODE Solver

But ODE Solver are limited to small-medium size of ODE system
(few thousands)

ODE Solver does not scale : performance issues

ExODE : new numerical methods and high performance computing
(HPC) approaches to scale ODE solver (at least millions of
equations).
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Why scalability is hard ?

N differential equations

In biology, strongly connected equations : computing time O(N2)

For the moment, systems of few thousands equations but need to
scale the system to a factor of 100-1,000

Scalability issue : Multipling the size of the systems by 100-1,000,
increase the number of equations to solve by 104 − 106

ExODE : Using advances in arithmetic computing unit to scale ODE
solver ?

New numerical methods
New parallel algorithms
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Use case #1 : Neuroscience (1/2)

Synaptic plasticity model : 27 equations for one synapse

Adding astrocytes : add 15 equations

A microscopic neural network : 1,000 synapses (in order of 1,000,000
equations)

1 differential equations : 103 FLOPS

Microscopic neural network : 1012 FLOPS ⇒ 1TFLOPS

Solving it for 1,000 time steps : 1PFLOPS
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Use case #1 : Neuroscience (2/2)

Computing microscopic neural network on NVidia Tesla V100 (10ke)

120 seconds double precision (double)
65 seconds single precision (float)
8 seconds half precision (half)

Targeted platform : DGX-1 with 8-NVidia Tesla V100 (⇒ 1sec)

Real scale neural network (Summit 1.88 exaflops, could go up to 3.3)

Bee : 1ExaFlops
Mouse : 1 ZetaFlops
Human : 1 YottaFlops

Computing time can be multiply by 2-6x as we need to solve 2 (RK2)
to more time the same system (6 for RK4 with adaptative time step)
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Use case #4 : NeuralODE/Deep Learning (1/2)

Using ODE to replace Recurrent Neural Network (RNN)
RNNs are one of the key component of Convolution Neural Network
that are one of the reason of the hype around Deep Learning
RNN can be modeled as an Euler solver with discrete time

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud. ”Neural Ordinary
Differential Equations.” Advances in Neural Processing Information Systems. 2018
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Use case #4 : NeuralODE/Deep Learning (2/2)

NeuralODE can work on continious (and discrete) data

More precise and/or stable than RNN

Decades of works around ExODE

Need to scale to extreme scale (hundreds of millions of parameters)

Need to resolve multiple system (learning batches)
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Reduced precisions and ODE Solver

3 types of floating point number:
double (64bit), float (32bit), half (16bit)

Each type is twice as small as the previous one

Require less time to transfer

Can computed twice more for each CPU cycle (remember
vectorization)

But rounding errors can be (very) large !

Can lead to dramatically different results (could be an issue or not)
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Multi-precision ODE Solver: Predictor-Corrector

Idea : Use smaller precision floating point number for most of the
compute and larger one to correct the error

Prediction with reduce precision, correction in full precision

Classically used with float/double

Never used with half float

As we are interested only by statistical properties, reduce precision
could be enough
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Mixed Precision Arithmetic

Issue with low precision floating point number : large rounding errors

Mixed precision within the computation (different floating point type)

Popular approaches for CNN/Deep Learning

Input are coded in half precision, accumulation in single precision
(limit rounding errors)

J. Rouzaud-Cornabas (LIRIS-Inria Beagle) Comp. Bio. HPC 48 / 56



On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Hardware mixed precision

Convolution of matrix are the base
of Deep Learning

Thanks to it, hardware
implementation of

half precision floating point
numbers
mixed precision arithmetic

Core ideas behind ExODE : Taking
advantages of

mixed precision within the ODE
system
half precision and mixed precision
arithmetic within PC methods
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Parallel methods (1/2)

Mixed precision ODE solving approaches on GPU / CPU

Parallel solving of the system and/or the method (Euler, RK2, RK45,
adaptative time step)

Not only compute, also transfer time (CPU-GPU, CPU-CPU,
GPU-GPU)

Depending of the ODE system and the wanted
precision/performance/accuracy, we should change the resolution
methods, floating point number type and prediction-correction
methods
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Parallel architecture (1/4)

J. Rouzaud-Cornabas (LIRIS-Inria Beagle) Comp. Bio. HPC 51 / 56



On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Parallel architecture (2/4)
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Parallel architecture (3/4)
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Parallel architecture (4/4)
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On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

Parallel methods (2/2)

Mixed precision ODE solving approaches on GPU / CPU

Parallel solving of the system and/or the method (Euler, RK2, RK45,
adaptative time step)

Taking into account platform heterogeneity (N CPUs, M GPUs, see
DGX-1): locality, computing modes, etc.

Automatically adapting ODE Solver : selecting the “best”
(performance VS precision VS accuracy) solving methods based on
the properties of the system and user requirements

J. Rouzaud-Cornabas (LIRIS-Inria Beagle) Comp. Bio. HPC 55 / 56



On-going works AEx ExODE: Mixed-precision and DGX1 for ODE Solver

AEx ExODE

3-years

3 Inria teams : Beagle, Dracula, Avalon

Focus on solving ODE, not on producing biology results

1 PhD Student

2-year engineer
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