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Overview

@ Computational Biology

© Muilti-cores

© GpPU

@ Rethinking for massively parallel

© On-going works
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From Distributed Systems to Computational Biology

@ Distributed Systems (Avalon) : Security, Heuristics, Simulation
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Distributed Systems (Avalon) : Security, Heuristics, Simulation

Working with big company : Research is rarely used...

Wanted to be embedded in a team/laboratory from another discipline

Associate Professor position at INSA-Lyon/LIRIS-Inria Beagle team

Working on computational biology

Goal: fully integrated within the team and producing biological
knowledge

Integrating the team through the HPCization of the application
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From Distributed Systems to Computational Biology

Distributed Systems (Avalon) : Security, Heuristics, Simulation

Working with big company : Research is rarely used...

Wanted to be embedded in a team/laboratory from another discipline

Associate Professor position at INSA-Lyon/LIRIS-Inria Beagle team

Working on computational biology

Goal: fully integrated within the team and producing biological
knowledge

Integrating the team through the HPCization of the application

Teaching HPC (OpenMP, CUDA, MPI) : Computer Science and
Computational Biology students (M2)
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e
Beagle : Computational Biology at the cell level

@ Joint research group : LIRIS, LBBE (Biometry and Evolutionary
Biology), CarMeN (Cardio-Metabolism, Diabetes, Nutrition)

@ Interdisciplinary team : Computer Science, Biology, Physics,
Modelization

@ Two main topics :

e Computational Cell Biology
e In silico Models of Evolution
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C G
Origins of Life Complexity

@ Observation : The biological complexity has increased during
geological time.

@ Question : Why the life is so complex ? Why simple organism can be

so complex 7
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@ Observation : The biological complexity has increased during
geological time.
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B A7
Origins of Life Complexity

@ Observation : The biological complexity has increased during
geological time.

@ Question : Why the life is so complex ? Why simple organism can be
so complex ?

@ Two theories :
o Complex organisms can outcompete simple ones
o Complexity is due to the variation process that is biased toward an
increase of complexity

@ Two paradoxes :
o C-value paradox : Complexity is not linked to the size of DNA (many
plants have larger genome than humans)
o G-value paradox : Complexity is not linked to the number of genes
(wheat have 5 times more genes than humans).
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(@M ENEIN T2 Origins of Complexity

In-silico experimental evolution : Aevol

@ How can we built an experiment to test it ? Almost impossible with
in-vivo/vitro approaches

e We use in-silico experimental evolution to test it (i.e. a
computational model)

@ We define a target that can be fulfilled by a very simple organism

@ We run our simulator with different parameters and observed the
outcome
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C G
The Complexity Ratchet

| Mutation rate (1) | Number of Simples | Number of Complexes |

10~* mut.bp t.gen! 32 [24 - 43 68 [58 — 76]

10~° mut.bp *.gen~! 25 [18 - 34] 75 [66 - 82]

107° mut.bp t.gen! 14 [9-22] 86 [78 —-091]
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Conclusion : Once you start to become complex, it is almost impossible to

go back to simple (accumulation)
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(@ MEHNEI NI AN Aevol : Biological model

Aevol : Biological model
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Computational Biology Aevol : Use cases

Aevol : some use cases

How the mutation rate of DNA limit DNA size ?

Does epigenetics accelerate the evolution ?

Impact of the different type of mutations on the evolution ?

How the genetic network are built and wrought 7

Can we predict evolution ? (and how 7)
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Computational Biology Aevol : Workflow

Aevol : Experimental campaign workflow

y | Experience 1 - N
wild Type 1 T o uno ype 1 3! Post 1 3] Post A
Wild Type 2 Experience 2 Post 2 3] Post B
VP on Wild Type 1 >
base parameters
(mutation rate, pop size...)
1 1 1 1
1 1 1 1
wild Type N Experience M on Post N »| Post z
Y Wild Type 1 »
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Computational Biology Aevol : Computational model

Aevol : Computational model
@ Searching for motifs (exact and with hamming distance) on circular
strings
e Matching found motifs (match a start with the first next end)
@ Decoding triplet of chars to double value
@ Summing triangles
@ Summing vectors
e A 2D stencil

e Generating random numbers (uniform distribution)
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Rl
Before going parallel : Optimize, Optimize and Optimize

A scientific application is often written by non-computer science
researcher

@ Performance aspects is not the first focus

Code is structured closely to the model

Profile the code (do not trust yourself or the others)
Find the hotspot (e.g. arithmetics between constants)
Fix them

Loop

@ Sound simple but mandatory before going further

@ Help a lot to understand the code (and interact with the researchers
who design the apps)
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OpenMP

Multi-cores

Aevol and OpenMP

@ 3 parallel loop pragma, 2 atomics (counter)

@ We also parallelize statistics and checkpointing using task with

dependencies

@ We try to use task with dependencies everywhere, performance were

very bad

13/56
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Multi-cores

Limitations of the Aevol OpenMP implementation

@ The speedup is pretty bad

@ Aevol is memory bound (looking for motifs)
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@ But there is another issue
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Multi-cores

Task runtime distribution at a given timestep
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Multi-cores

Task runtime during the evolution
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Multi-cores

Task runtime with different simulation parameters
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Multi-cores

Irregularity and OpenMP
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Iregulariy
Irregularity and OpenMP
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8x more cores, 4.4x speedup
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Multi-cores

OpenMP scheduling methods
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A “simple” list-scheduling issue

o List scheduling (OpenMP dynamic) : (2-1/m)-approximation, O(n log
m)

o LPT (Longest Processing Time first) : (4/3 -1/(3m))-approximation,
O(n log n + n log m)
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A “simple” list-scheduling issue

o List scheduling (OpenMP dynamic) : (2-1/m)-approximation, O(n log
m)

LPT (Longest Processing Time first) : (4/3 -1/(3m))-approximation,
O(n log n + n log m)

But can we model task runtime ?

We try but too difficult and some hardware artefacts

We do not need to predict runtime only to predict tasks order
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Multi-cores

How to predict task order with Aevol
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Multi-cores

Preliminary results
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(e[l NVidia Hackathon : CSCS 2018

Aevol VS mini-Aevol

@ Aevol VS mini-Aevol SLOC : 87,000 VS 2,000

@ Simplify model
o Only a strand of DNA (and not too) i.e. the DNA is read one-way and
not both-way
o A reduce mutation sets: no translocation
@ A lot of advances features are missing: no plasmid, 4bp DNA, ...

@ Implementation

Lot less robust to input errors

Can not change model parameters during an evolution
No phylogenetic tree

No postprocessing tool
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GPU-Aevol - Starting point
(Monday morning)

* Aevol had never been ported on GPU
* Mini-Aevol
— Aevol simplified and not optimized
— ~2,000 C++ lines (vs. ~67,000 C++ lines for aevol)

— One evident parallel scheme: the individual level
(but very high heterogeneity)

— No clear idea on how to efficiently run Aevol on GPU
* Preparation step

— Optimize Mini-Aevol to enable fair comparisons

— Replace random-generator by a GPU compatible one



Time++

GPU integration in 4 steps
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For all organisms:
Sequence decoding

Population level selection

For “some” organisms:
Replication and mutation

Step 1: porting
sequence decoding
on GPU
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GPU integration in 4 steps

¢ ~N
For all organisms: Step 1: po;tlngd_
Sequence decoding sequence decoding
on GPU

Time++

Population level selection  Step 3: GPU-Aevol

Step 2: Develop a
For ” A GPU-compatible
or “some’” organisms:

Replication and mutation algorithm for
| mutation (mutation
backtrace)

-

Step 4: Debugging Optimizing Debugging Optimizing Debugging

Opt‘lmlzmg Debugging Optimizing Debugging Optimizing Debugging Optimizing Debugging Optimizing Debugging Debuggin Debug bebug Debue Debug



Where we are today

* Full-GPU implem
— we didn’t expect that!
* Speed-up ~X25 on classical pop sizes
— Not much better than CPU openmp speed-up @

But

* Large populations run ~as fast as classical ones
— Far better than CPU openmp speed-up ©
—> Parallelization scheme seems “reasonable”



Speedup compared to GPU-optimized
Mini-Aevol
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Ongoing: profiling of GPU-Aevol
Thursday

* Default Domain
* Profiling Overhead
=1 [0] Tesla P100-PCIE-16GB
[=] Context 1 (CUDA)
L 7 MemCpy (HtoD)
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\ \
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57 0.0% generate_mu... ] ‘
| \
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@ Analysis %2 GPUD

B)= & @ Export PDF Report Result

1. CUDA Application Analysis

The guided analysis system walks you through
the various analysis stages to help you

the ties in your
application. Once you become familiar with the
optimization process, you can explore the
individual analysis stages in an unguided mode
When optimizing your application it is important
to fully utilize the compute and data movement
capabilities of the GPU. To do this you should look
at your application’s overall GPU usage as well as
the performance of individual kemels.




Ongoing: profiling of GPU-Aevol
(Friday)
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Still many optimization possibilities

* Optimization ideas:
— Assemble all genomes into a metagenome (suppress
heterogeneity)
->Done on DNA (estimated gain: >50% in the decoding kernels)
—>To be done on RNAs
— Merge decoding and mutation kernels = Easy; To be done
— Compress genome and metadata
— Track metadata to avoid “recomputation”
(i.e. +/- same optimization idea as on CPU)

->Thought to be incompatible with GPU mutation algo.
—>GPU-compatible algorithm proposed; to be implemented and tested



Candid feedback on GPU

* Among the three of us...
— Guillaume had no (recent) experience in programming
* And was actually wondering what he was doing here!

— David had no experience in GPU
* But was eager to learn

— Jonathan had limited experience on GPU
* But had a theoretical understanding of the concepts

* Conclusion
CUDA is surprisingly easy to dive into but...
As GPU noobs, we had to change our vision of prog & algorithmics

Debugging is a nightmare... Only for dummies ?

Also, in depth knowledge on biology and evolution has revealed
essential all along the week to find efficient parallel algorithms



From GPU to CPU
Lessons learn on GPU transfer back to CPU

@ Modern multi-core processor are more and more closer to GPU

@ Vectorization is actually harder to use than going to GPU

@ A lot of GPU optimizations have been re-used successfully on CPU
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Rethinking for massively parallel Data : structure, allocation, locality

Data and memory bound: THE critical aspect (so far)

@ On GPU, no STL

@ Dynamic array oversized on GPU

e Working well on CPU too (avoid a lot of memory allocation/copy)
@ We need to index position of motifs
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— std::list

] | m — std:map
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Yl"" Py 'll‘w"

Runtime
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Computational biology on DGX-1
How Aevol can use the NVidia DGX-1

@ How can we support irregular applications on multi-GPU ? How can
we do list-scheduling like optimization ? Mixed precision ?

@ Aevol model is evolving, How multi-GPU can help to limit the
increase of computing time link to these changes
e BQR INSA BF2i/LIRIS : To simulate the transmission of bacteries
from an organism to another one, we need to simulate dynamic
population size (reducing from few thousands to just few ones then
growing back to full population size)

o ANR Evoluthon (Inria Beagle/LBBE) : To simulate multiple population
living in different environment and exchanging DNA pieces (horizontal
transfer) : Large population (at least x1000) and adding a 1/3-D
stencil (DNA exchange)
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AEx ExODE: Mixed-precision and DGX1 for ODE Solver
Scaling ODE : Why 7

ODE Solver used by a large scope of models in Computational Biology
On top of it, Deep Learning could also benefit from HPC ODE Solver

But ODE Solver are limited to small-medium size of ODE system
(few thousands)

ODE Solver does not scale : performance issues

ExODE : new numerical methods and high performance computing
(HPC) approaches to scale ODE solver (at least millions of
equations).
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AEx ExODE: Mixed-precision and DGX1 for ODE Solver
Why scalability is hard 7

N differential equations

e In biology, strongly connected equations : computing time O(N?)

@ For the moment, systems of few thousands equations but need to
scale the system to a factor of 100-1,000

@ Scalability issue : Multipling the size of the systems by 100-1,000,
increase the number of equations to solve by 10* — 10°

@ ExODE : Using advances in arithmetic computing unit to scale ODE
solver ?

e New numerical methods
o New parallel algorithms
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AEx ExODE: Mixed-precision and DGX1 for ODE Solver
Use case #1 : Neuroscience (1/2)

Synaptic plasticity model : 27 equations for one synapse

Adding astrocytes : add 15 equations

@ A microscopic neural network : 1,000 synapses (in order of 1,000,000
equations)

1 differential equations : 103 FLOPS
Microscopic neural network : 102 FLOPS = 1TFLOPS

Solving it for 1,000 time steps : 1IPFLOPS
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AEx ExODE: Mixed-precision and DGX1 for ODE Solver
Use case #1 : Neuroscience (2/2)

Computing microscopic neural network on NVidia Tesla V100 (10k€)
e 120 seconds double precision (double)
e 65 seconds single precision (float)
o 8 seconds half precision (half)

Targeted platform : DGX-1 with 8-NVidia Tesla V100 (= 1sec)

@ Real scale neural network (Summit 1.88 exaflops, could go up to 3.3)

o Bee : 1ExaFlops
e Mouse : 1 ZetaFlops
e Human : 1 YottaFlops

Computing time can be multiply by 2-6x as we need to solve 2 (RK2)
to more time the same system (6 for RK4 with adaptative time step)
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Use case #4 : NeuralODE/Deep Learning (1/2)

e Using ODE to replace Recurrent Neural Network (RNN)

@ RNNs are one of the key component of Convolution Neural Network

that are one of the reason of the hype around Deep Learning
@ RNN can be modeled as an Euler solver with discrete time

Residual Network ODE Network
5 5
4
=3
o
1]
O3
1 /
0—5 i 5 07§ ] 5
Input/Hidden/Output Input/Hidden/Output

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud. "Neural Ordinary

Differential Equations.” Advances in Neural Processing Information Systems. 2018
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AEx ExODE: Mixed-precision and DGX1 for ODE Solver
Use case #4 : NeuralODE/Deep Learning (2/2)

NeuralODE can work on continious (and discrete) data
More precise and/or stable than RNN

@ Decades of works around ExODE

Need to scale to extreme scale (hundreds of millions of parameters)

Need to resolve multiple system (learning batches)
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AEx ExODE: Mixed-precision and DGX1 for ODE Solver
Reduced precisions and ODE Solver

3 types of floating point number:
double (64bit), float (32bit), half (16bit)

Each type is twice as small as the previous one

Require less time to transfer

Can computed twice more for each CPU cycle (remember
vectorization)

But rounding errors can be (very) large !

Can lead to dramatically different results (could be an issue or not)
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Multi-precision ODE Solver: Predictor-Corrector

@ Idea : Use smaller precision floating point number for most of the
compute and larger one to correct the error

@ Prediction with reduce precision, correction in full precision

Classically used with float/double

@ Never used with half float

@ As we are interested only by statistical properties, reduce precision
could be enough
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Mixed Precision Arithmetic

@ Issue with low precision floating point number :

large rounding errors

@ Mixed precision within the computation (different floating point type)

@ Popular approaches for CNN/Deep Learning

@ Input are coded in half precision, accumulation in single precision

(limit rounding errors)

Sum with
FP16 Full precision FP32
storage/input product accumulator

more praducts

Convert to
FP32 result

o "
-

J. Rouzaud-Cornabas (LIRIS-Inria Beagle) Comp. Bio. HPC
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Hardware mixed precision

@ Convolution of matrix are the base
of Deep Learning

@ Thanks to it, hardware [FE-FP16 GEM Tensor Cores
: ! % ERs2 GEMm
implementation of 8 Fraaceu

o half precision floating point ég ._,.+.x.
numbers g3
e mixed precision arithmetic Fae

Bl o eee O 0t-0-0-0—0-0—0—0
o Core ideas behind ExODE : Taking i FIITTITITITTT
advantages of e sk i oA bR
e mixed precision within the ODE e tee
system
e half precision and mixed precision
arithmetic within PC methods
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AEx ExODE: Mixed-precision and DGX1 for ODE Solver
Parallel methods (1/2)

@ Mixed precision ODE solving approaches on GPU / CPU

e Parallel solving of the system and/or the method (Euler, RK2, RK45,
adaptative time step)

@ Not only compute, also transfer time (CPU-GPU, CPU-CPU,
GPU-GPU)

@ Depending of the ODE system and the wanted
precision /performance/accuracy, we should change the resolution
methods, floating point number type and prediction-correction
methods
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AEx ExODE: Mixed-precision and DGX1 for ODE Solver
architecture (1/4)
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CHA - Caching and Home Agent ; SF— Snoop Filter; LLC — Last Level Cache;
SKX Core — Skylake Server Core; UPI — Intel® UltraPath Interconnect
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AEx ExODE: Mixed-precision and DGX1 for ODE Solver
Parallel architecture (2/4)

2nd Generation
Intel® Xeon®

2nd Generation
Intel® Xeon®
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Integrated Intel Ethernet
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i~ "7 Ontional Persistent Memory DIMMs
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AEx ExODE: Mixed-precision and DGX1 for ODE Solver
Parallel architecture (3/4)

TESLA V100

21B transistors
815 mm?

80 SM
5120 CUDA Cores
640 Tensor Cores

16 GB HBM2
900 GB/s HBM2
300 GB/s NVLink

*full GV100 chip contains 84 SMs
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Parallel architecture (4/4)

! l
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AEx ExODE: Mixed-precision and DGX1 for ODE Solver
Parallel methods (2/2)

Mixed precision ODE solving approaches on GPU / CPU

Parallel solving of the system and/or the method (Euler, RK2, RK45,
adaptative time step)

Taking into account platform heterogeneity (N CPUs, M GPUs, see
DGX-1): locality, computing modes, etc.

@ Automatically adapting ODE Solver : selecting the “best”
(performance VS precision VS accuracy) solving methods based on
the properties of the system and user requirements

J. Rouzaud-Cornabas (LIRIS-Inria Beagle) Comp. Bio. HPC 55 /56



AEx ExODE: Mixed-precision and DGX1 for ODE Solver
AEx ExODE

3-years

3 Inria teams : Beagle, Dracula, Avalon
@ Focus on solving ODE, not on producing biology results

1 PhD Student

2-year engineer
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