Cosmological Simulations using Grid Middleware

Y. Caniou, E. Caron, B. Depardoh, H. Courtoig, and R. Teyssiér

ILIP/ENS de Lyon 2CRAL
46 Allée d'Italie Observatoire de Lyon
69364 Lyon Cedex 07, FRANCE 69561 Saint Genis Laval CedeANKEE
{Yves.Caniou,Eddy.Caron}@ens-lyon.fr courtois@IfA\Mai.edu

Benjamin.Depardon@ens-lyon.fr

3Service d’Astrophysique
CEA - Saclay, Batiment 709
F-91191 Gif-sur-Yvette Cedex, FRANCE
romain.teyssier@cea.fr

Abstract basic implementation schemes one must follow in order
to write the corresponding IBT client and server for any
Large problems ranging from numerical simulation can service. The remainder of the paper is organized as fol-
now be solved through the Internet using grid middleware. lows: Section 3 presents thel&r middleware. Section 4
This paper describes the different steps involved to makedescribes the RMSEs cosmological software and simula-
available a service in th®IET grid middleware. The cos- tions, and how to interface it with BT. We show how to
mological RAMSES application is taken as an example to write a client and a server in Section 5. Finally, Section 6
detail the implementation. Furthermore, several resuls a presents the experiments realized on Grid’5000, the French
given in order to show the benefits of usiDgeT, among Research Grid, and we conclude in Section 7.
which the transparent usage of numerous clusters and a
low overhead (finding the right resource and submitting the
computing task). 2 Related Work
This work was developed with financial support from Several approaches exist for porting applications to grid
the ANR (Agence Nationale de la Recherche) through the platforms; examples include classic message-passing) bat
LEGO project referenced ANR-05-CIGC-11. processing, web portals, and GridRPC systems [9]. This
last approach implements a grid version of the classic Re-
mote Procedure Call (RPC) model. Clients submit com-
putation requests to a scheduler that locates one or more

. servers available on the grid. Scheduling is frequently ap-
One way to access the aggregated power of a collectionyjieq to balance the work among the servers and a list of

of heterogeneous machinesis to use a grid middleware, suchyaijaple servers is sent back to the client; the clientésith

as DET [3], GridSolve [15] or Ninf [6]. It addresses the gpe 1o send the data and the request to one of the suggested
problem of monitoring the resources, of handling the sub- garyers to solve their problem. To make effective use of to-
missions of jobs and as an example the inherent transfer Ofday’s scalable resource platforms, it is important to easur
input and output data, in place of the user. ___ scalability in the middleware layers.

_In this paper we present h_OW to run cosm_olog|cal SIMU-" pitferent kind of middleware are compliant to GridRPC
Ia'Flons using the RMSEsappllcatlon along WI'Fh the ET paradigm. Among them, NetSolve [2], Ninf [6], Om-
middleware. Based on this example, we will present the niRPC [8] and DET (see Section 3) have particularly pur-
sued research involving the GridRPC paradigm. NetSolve,
1-4244-0910-1/07/$20.0@)2007 |[EEE developed at the University of Tennessee, Knoxville allows

1 Introduction

the connection of clients to a centralized agent and request Gy :

are sent to servers. This centralized agent maintains a list High Level Interface s
of available servers along with their capabilities. Sesver Client: Application view {57,
report information about their status at given intervatg] a DIET Client L

scheduling is done based on simple models provided by the I
application developers. Some fault tolerance is also pro-
vided at the agent level. Ninf is ang'$ (Network Enabled T
Servers) system developed at the Grid Technology Research
Center, AIST in Tsukuba. Close to NetSolve in its initial

Distributed scheduler

design choices, it has evolved towards several interesting SERVER

approaches using either Globus [14] or Web Services [11]. DIET Server A
Fault tolerance is also provided using Condor and a check- Server: Application view 35;3;/]“_"
pointing library [7]. As compared to the B systems ple- Application e
scribed above, [T, developed by GRAAL project at ENS —

Lyon, France is interesting because of the use of distribute
scheduling to provide better scalability, the ability toéu
behavior using several APIs, and the use afRBA as a
core middleware. MoreoverIBT provides plug-in sched-
uler capability, fault tolerance mechanism, a workflow man-
agement support and a batch submission manager [1]. We

plan to use these new features for the cosmological applica+or performance reasons, the hierachy of agents should be

Figure 1. Different interaction layers between
DIET core and application view

tion described in Section 4. deployed depending on the underlying network topology.
Finally, on the opposite of GridSolve and Ninf which
3 DIET overview rely on a classic socket communication layer (nevertheless

several problems to this approach have been pointed out
such as the lack of portability or the limitation of opened
sockets), DET uses @RBA. Indeed, distributed object en-
vironments, such a3ava DCOM or CORBA have proven
DIET [3] is built upon the client/agent/server paradigm. to be a good base for building applications that manage ac-
A Client is an application that usesiEx to solve problems. cess to distributed services. They provide transparent com
Different kinds of clients should be able to connect te D munications in heterogeneous networks, but they also offer
from a web page, a PSE such as Scilal from a program 3 framework for the large scale deployment of distributed
written in C, C++, Java or Fortran. Computations are done app”cations_ Moreover, GRBA systems provide a remote

by servers running &erver Daemons (8D). A SED en- method invocation facility with a high level of transpargnc
capsulates a computational server. For instance it can bgyhich does not affect performance [5].

located on the entry point of a parallel computer. The in-
formation stored by a €D is a list of the data available on
its server, all information concerning its load (for exampl
available memory and processor) and the list of problems
that it can solve. The latter are declared to its parent agent
The hierarchy of scheduling agents is made d¥laster
Agent (MA) andLocal Agents (LA) (see Figure 1).

When a Master Agent receives a computation request
from a client, agents collect computation abilities from

servers (through the hierarchy) and chooses the best on : :)
: ; L 0 easily provide a connection between theDserver and
according to some scheduling heuristics. The MA sends A X
the application. The main goals of th®ET server are

back a reference to the chosen server. A client can be con- o . :)
o to answer to monitoring queries from its responsible Local

nected to a MA by a specific name server or by a web page : . .

) . . . Agent and launch the resolution of a service, upon an appli-
which stores the various MA locations (and the available * = .

. . . . cation client request.
problems). The information stored on an agent is the list of S S : . .
: Theapplication client is the link between high-level in-

requests, the number of servers that can solve a given prob-

lem and information about the data distributed in its sutre ‘e”"?‘ce a_nd the B chent,_ and a simple AP 'S provided to
easily write one. The main goals of tlReeT client are to

thtt p: // www. sci | ab. or g/ submit requests to a scheduler (called Master Agent) and to

3.1 DIET architecture

3.2 How to add a new grid application
within DIET?

The main idea is to provide some integrated level for a
grid application. Figure 1 shows these different kinds of
level.

Theapplication server must be written to give to ET
the ability to use the application. A simple API is available

receive the identity of the chosen server, and final step, to
send the data to the server for the computing phase.

4 RAMSES overview

RAMSES 2 is a typical computational intensive appli-
cation used by astrophysicists to study the formation of
galaxies. RMSESis used, among other things, to simulate
the evolution of a collisionless, self-gravitating fluidled
“dark matter” through cosmic time (see Figure 2). Indi-
vidual trajectories of macro-particles are integratechgsi
a state-of-the-art “N body solver”, coupled to a finite vol-
ume Euler solver, based on the Adaptive Mesh Refinement
technics. The computational space is decomposed among
the available processors usingash partitionningtrategy
based on the Peano—Hilbert cell ordering [12, 13].

. . . . e
Figure 3. Re-simulation on a supercluster of

galaxies to increase the resolution

Figure 2. Time sequence (from left to right) of
the projected density field in a cosmological

simulation (large scale periodic box). For that, we add in the Lagrangian volume of the chosen

halo a lot more particles, in order to obtain more accurate

Cosmoloaical simulations are usuallv divided into two results. Similar “zoom simulations” are performed in paral
main cate c?ries Large scale periodic b)gxes (see Figure 2iel for each entry of the halo catalog and represent the main
| categ . 9 P 9 esource consuming part of the project.
requiring massively parallel computers are performed on) ; e
. RAMSES simulations are started from specific initial
very long elapsed time (usually several months). The sec- o L - . L
; conditions, containing the initial particle masses, posi
ond category stands for much faster small scale “zoom

simulations”. One of the particularity of the HORIZON and velocities. These initial conditions are read from For-
S) . : tran binary files, generated using a modified version of the
project is that it allows the re-simulation of some areas of

; GRAFIC® code. This application generates Gaussian ran-
interest for astronomers.

dom fields at different resolution levels, consistent with

bele:r(l)rcﬁgfsi;nnptlg llane Tég:irrij;\i:jﬁ?ﬂiuﬁg rzfsgﬁizgfsh?aﬁ current observational data obtained by the WM/Aftel-
. . higher : (hig lite observing the cosmic microwave background radia-
est number of particules) taking the initial informatiordan

e tion. Two types of initial conditions can be generated with
the boundary conditions from the larger box (of lower res- yp 9

. T . .~ GRAFIC:
olution). This is the latter category we are interested in.
Performing a zoom simulation requires two steps: the first
step consists of using AMSES on a low resolution set of
initial conditionsi.e., with a small number of particles) to
obtain at the end of the simulation a catalog of “dark matter
halos”, seen in Figure 2 as high-density peaks, containing

each halo position, mass and velocity. A small regionis se- o multiple levels: this initial conditions are used for the
lected around each halo of the catalog, for which we can “zoom simulation”. The resulting files consist of mul-

start the second step of the “zoom” method. This ideais tiple, nested boxes of smaller and smaller dimensions,
to resimulate this specific halo at a much better resolution.

e single level: this is the “standard” way of generating
initial conditions. The resulting files are used to per-
form the first, low-resolution simulation, from which
the halo catalog is extracted.

Shttp://web. mt.edu/ edbert
2htt p: // www. proj et - hori zon. fr/ 4htt p: // map. gsf c. nasa. gov

as for Russian dolls. The smallest box is centered
around the halo region, for which we have locally a
very high accuracy thanks to a much larger number of

Retreiving simulation
parameters

Setting the MPI
environment

particles. GRAFICL: first run
If nb levels == 0 No zoom, no offset
The result of the simulation is a set of “snaphots”. Given rollWhiteNoise : centering
. . . according to the offsets
a list of time steps (or expansion factor)_,ARS ES outputs cx, cy and cz
the current state of the universes(, the different parame- GRAFIC1: second run
ters of each particules) in Fortran binary files. with offsets
These files need post-processing withal&s soft- G &) G GRAFIC1
wares: HaloMaker, TreeMaker and GalaxyMaker. These GRAFIC?
three softwares are meant to be used sequentially, each of ® ® ©
them producing different kinds of information: @ @ GRAFIC2
. @ GRAFIC2
e HaloMaker: detects dark matter halos presentAmR
sesoutput files, and creates a catalog of halos GRAFIC2
e TreeMaker: given the catalog of halos, TreeMaker RAMSES3d (MPI code)
builds a merger tree: it follows the position, the mass, HaloMaker
the velocity of the different particules present in the @J@ @J? @ onl hot
. . n
halos through cosmic time TreeMaker : Ze?‘ﬁ,foé’ess
Post-processing @
o GalaxyMaker: applies a semi-analytical model to the HaloMaker's outputs <o, Sg'si‘fg%i'éigi:ng
results of TreeMaker to form galaxies, and creates a giopping the environment Treemaker’s outputs
catalog of galaxies Sending the ©9)

post—processing to
the client O

Figure 4. Workflow of a simulation

Figure 4 shows the sequence of softwares used to realise
a whole simulation.

5 Interfacing RAMSES within D IET

manage the MPI environment required bygNSES. It is
recorded during the profile registration.

The ED is launched with a call tdi et _SeD() inthe
mai n() function, which will never return (except if some

~ The current version of RuSEeS requires a NFS work- errors occur). The €D forks the solving function when
ing directory in order to write the output files, hence re- requested.

stricting the possible types of solving architectures. tEac Here is the main structure of aibr server:
DIeT server will be in charge of a set of machines (typi-
cally 32 machines to run 2562 particules simulation) be- - , ,
. . . /* Defining the service function */
longing to the same cluster. For each simulation the NIt solveservice(diet profile.t *pb)
ation of the initial conditions files, the processing and the =~ , ,
. ./* Defining the main function */
post-processing are done on the same cluster: the server it min(int arge, char* argv])
Charge Of a Slmulatlon manages the Whole proceSS /* Initialize service table with the number of services */

/* Define the services’' profiles */

5.1 Architecture of underlying deploy-
ment

#include "Dl ET_server.h"

5.2 Server design /* Add the services */

/* Free the profile descriptors */

/* Launch the SeD */

The DIET server is a library. So the /MSES server re- }
quires to define themi n() function, which contains the
problem profile definition and registration, and the solving
function, whose parameter only consists of the profile and
named after the service nans®l ve_ser vi ceNane. To match client requests with server services, clients

The RaMSES solving function contains the calls to the and servers must use the same problem description.
different programs used for the simulation, and which will A unified way to describe problems is to use a

5.2.1 Defining services

name and define its arguments. TheaxM®ES ser- The last two are integers for error controls, and a file
vice is described by a profile description structure called containing the results obtained from the simulation post-

diet profile_desc_t. Among its fields, it con-
tains the name of the service, an array which does not
contain data, but their characteristics, and three ingeger
last _in, last_inout andl ast_out. The struc-
ture is defined ilDl ET_server. h.

The array is of sizéast_out + 1. Arguments can be:

IN: Data are sent to the server. The memory is allocated
by the user.

INOUT: Data, allocated by the user, are sent to the server
and brought back into the same memory zone after the
computation has completedjthout any copy. Thus
freeing this memory while the computation is per-
formed on the server would result in a segmentation
fault when data are brought back onto the client.

processed with @Lics. This conducts to the following in-
clusion in the server code (note: the same allocation must be
performed on the client side, with tldé et _profile_t
structure):

/* arg.profile is a diet_profile_desc_t * */
arg.profile = diet_profile_desc_alloc("ranmsesZoon2",

Every argument of the profile must then be set
with di et _generic_desc_set() defined in
DI ET_server. h, like:

di et _generic_desc_set (di et _paranmeter(pb,0), DI ET_FILE, D ET_CHAR);
di et _generic_desc_set (di et _parameter(pb, 1), DI ET_SCALAR, DI ET_INT);

6, 6, 8);

5.2.2 Registering services

Every defined service has to be added in the service table
before the &D is launched. The complete service table
APl is defined inDl ET_ser ver. h:

typedef int (* diet_solve_t)(diet_profile_t *);

int diet_service_table_init(int max_size);

int diet_service_table_add(diet_profile_desc_t *profile, NULL,
diet_solve_t solve_func);

OUT: Data are created on the server and brought back intgoi @ diet _print_service table():

a newly allocated zone on the client. This allocation
is performed by DeT. After the call has returned, the
user can find its result in the zone pointed byvhkie
field. Of course, DET cannot guess how long the user

The first parameterprofile, is a pointer on the pro-
file previously described (section 5.2.1). The second pa-
rameter concerns the convertor functionality, but this is
out of scope of this paper and never used for this ap-
plication. The parametesolve_funcis the type of the

needs these data for, so it lets him/her free the memorysol ve_ser vi ceNane() function: a function pointer

withdi et _free_data().

The fielddast_in last_inoutandlast_outof the structure
respectively point at the indexes in the array of the last IN
last INOUT and last OUT arguments.

used by DET to launch the computation. Then the pro-
totype is:
int solve_ranmsesZoon2(di et_profile_t* pb)

/* Set data access */
/* Conputation */
}

Functions to create and destroy such profiles are defined

with the prototypes below. Note that if a server can solve
multiple services, each profile should be allocated.

diet_profile_desc_t *diet_profile_desc_alloc(const char* path, int last_in,
int last_inout, int last_out);

diet_profile_desc_t *diet_profile_desc_alloc(int last_in, int |ast_inout,
int last_out);

int diet_profile_desc_free(diet_profile_desc_t *desc);

The cosmological simulation is divided in two services:
ransesZoonil andranmsesZoon®, they represent the
two parts of the simulation. The first one is used to de-
termine interesting parts of the universe, while the second
is used to study these parts in details. TlagrsesZoon?

5.2.3 Data management

The first part of the solve function (called
sol ve_ranmsesZoon2()) is to set data access.
The API provides useful functions to help coding the
solve functione.g.,get IN arguments, set OUT ones, with
di et _* get () functions defined inDlI ET_dat a. h.

Do not forget that the necessary memory space for
OUT arguments is allocated by 1Br. So the user
should call thedi et _*_get () functions to retrieve
the pointer to the zone his/her program should write to.
To set INOUT and OUT arguments, one should use the
di et _* desc_set() defined inDI ET_server. h.
Thesé should be called within “solve” functions only.

service uses nine data. The seven firsts are IN data, and et _riie_get (diet_paraneter(pb, 0), NULL, arg_size, anniPath);

contain the simulation parameters:
¢ afile containing parameters forARISES
[]

resolution of the simulation (number of particules)

size of the initial conditions (id/pc.h~1)

center’s coordinates of the initial conditions (3 coordi-
nates:c,, ¢, ande;)

number of zoom levels (number of nested boxes)

di et _scal ar _get (di et _parameter(pb, 1),
di et _scal ar _get (di et _paraneter(pb, 2),
di et _scal ar _get (di et _paraneter(pb, 3),

&resol, NULL);
&size, NULL);
&x, NULL);
&y, NULL);
&z, NULL);
&nbBox, NULL);

di et _scal ar _get (di et _paraneter(pb, 4),
di et _scal ar _get (di et _paraneter(pb,5),
di et _scal ar _get (di et _paraneter(pb, 6),

The results of the simulation are packed into a tarball

file if it succeeded, Thus we need to return this file and
an error code to inform the client whether the file re-
ally contains results or not. In the following code, the
diet_file_set() function associates thelBr param-
eter with the current file. Indeed, the data should be avail-
able for DET, when it sends the resulting file to the client.
char* tgzfile = NULL;

tgzfile = (char*)nalloc(tarfile.length()+1);

strcpy(tgzfile, tarfile.c_str());
diet_file_set(diet_paraneter(pb,7), D ET_VOLATILE, tgzfile);

5.3 Client

In the DIET architecture, a client is an application which
uses DET to request a service. The goal of the client is
to connect to a Master Agent in order to dispose ofe®S
which will be able to solve the problem. Then the client
sends input data to the choser5and, at the end of com-
putation, retrieve output data from thel3. DIET provides
API functions to easily and transparently access thetD
platform.

5.3.1 Structure of a client program

Since the client side of BT is a library, a client program
has to define themi n() function: it uses DeT through
function calls. Here is the main structure of &D client:
#include "D ET_client.h"

int main(int argc, char *argv[])

/* Initialize a D ET session */
diet_initialize(configuration_file, argc, argv);

/* Create the profile */

/* Set profile argunments */

/* Successive DIET calls ... */
/* Retreive data */

/* Free profile */
diet_finalize();

}

The client program must open itsiExr session with a
calltodi et _initialize().Itparsesthe configuration

structures twice (which would lead to1Br errors while

reading profile arguments).

Moreover, the user should know that arguments of the
_set functions that are passed by pointers iaoé copied,
in order to save memory. Thus, the user keeps ownership
of the memory zones pointed by these pointers, and he/she
must be very careful not to alter it during a call toel. An
example of prototypes:

int diet_scalar_set(diet_arg_t* arg, void* value, diet_persistence_npde_t node,
di et _base_type_t base_type);
int diet_file_set(diet_arg_t* arg, diet_persistence_npde_t node, char* path);

Hence arguments used in thams es Zoon® simulation
are declared as follows:

/1 I'N paraneters

if (diet_file_set(diet_paraneter(arg.profile, 0), DI ET_VOLATILE, nanelist))
cerr << "diet_file_set error on the <panelist.nm > file" << endl;

return 1;

di et _scal ar_set (diet_paraneter(arg.profile, 1),
&resol, DI ET_VOLATILE, DIET_INT);

di et _scal ar _set (di et _paraneter(arg. profile,2),
&size, DIET_VOLATILE, DIET_INT);

di et _scal ar _set (di et _paraneter(arg. profile,3),
&arg. cx, DI ET_VOLATILE, DIET_INT);

di et _scal ar _set (di et _paraneter(arg. profile,4),
&arg.cy, DI ET_VOLATILE, DIET_INT);

di et _scal ar_set (diet_paraneter(arg.profile,5),
&arg.cz, DIET_VOLATILE, DIET_INT);

di et _scal ar_set (diet_paraneter(arg.profile,6),
&arg. nbBox, DI ET_VOLATILE, DIET_INT);

/1 OUT paraneters

di et _scal ar _set (di et _paraneter(arg. profile,8),
DI ET_VOLATI LE, DIET_INT);

if (diet_file_set(diet_paraneter(arg.profile,7),

{

NULL,
DI ET_VOLATI LE, NULL))
cerr << "diet_file_set error on the QUT file" << endl;

return 1;

}

It is to be noticed that the OUT arguments should be de-
clared even if their values is set to NULL. Their values will

be set by the server that will execute the request.
Once the call to ET is done, we need to access the

file given as the first argument, to set all options and get aOUT data. The 8§ parameter is a file and thé"3ds an in-

reference to the [ET Master Agent. The session is closed
with a call todi et _fi nal i ze(). It frees all resources,

teger containing the error code of the simulationif(the
simulation succeeded):

if any, associated with this session on the client, servers,in returnedval ue;

and agents, but not the memory allocated for all INOUT
and OUT arguments brought back onto the client during the

size_t tgzSize = 0;

char* tgzPath = NULL;

di et _scal ar _get (di et _paraneter(sinuszZ2[reql D].profile,8),
& eturnedVal ue, NULL);

if (!*returnedval ue) {

session. Hence, the user can still access them (and still has«iet-i1e_get(diet_parameter(simsz2l reqi 0] profile.),

to free them !).

The client API follows the GridRPC definition [10]: all
di et _ functions are “duplicated” witlgr pc__ functions.
Both diet_initialize()/grpc_initialize()
and di et _finalize()/grpc_finalize() belong
to the GridRPC API.

A problem is managed throughfanction_handlethat
associates a server to a service name. The retuured

NULL, &t gzSize, & gzPath);
}

6 Experiments
6.1 Experiments description

Grid’5000 is the French Research Grid. It is composed
of 9 sites spread all over France, each with 100 to 1000 PCs,

tion_handleis associated to the problem description, its connected by the RENATER Education and Research Net-

profile, during the call tali et _cal I ().

5.3.2 Data management

The API to the DeT data structures consists of modifier and
accessor functions only: no allocation function is reqiire
sincedi et _profile_all oc() allocates all necessary
memory for all argumentlescriptions This avoids the

temptation for the user to allocate the memory for these data

work (1Gb/s or 10Gb/s). For our experiments, we deployed
a DIET platform on 5 sites (6 clusters).

e 1 MA deployed on a single node, along with om-
niORB, the monitoring tools, and the client

e 6 LA: one per cluster (2in Lyon, and 1 in Lille, Nancy,
Toulouse and Sophia)

Shttp://www. gri d5000.fr

e 11 S=Ds: two per cluster (one cluster of Lyon had only wma_
one D due to reservation restrictions), each control- _
ling 16 machines (AMD Opterons 246, 248, 250, 252
o 279 T T SR TR

We studied the possibility of computing a lot of low-
resolution simulations. The client requests28? particles node-12. 4 g | 20
100M pc.h~! simulation (first part). When it receives the ”"“‘“’“it " ‘
results, it requests simultaneously 100 sub-simulatiees-(-
ond part). As each server cannot compute more than one o

simulation at the same time, we won't be able to have more "™***|_¢
than 11 parallel computations at the same time. { o | | m| 2| s | ou| x| =| =
6.2 Results e
16 T T T T T T T T
The experiment (including both the first and the second n mgggﬁ B E
part of the simulation) lasted 16h 18min 43s (1h 15min 11s o A
for the first part and an average of 1h 24min 1s for the sec- _ 12 Liel o
ond part). After the first part of the simulation, eachls s 10| Joulousel --e - A 1
. . £ oulouse .
received 9 requests (one of them received 10 requests) to= Lyonl-cap — & - i
compute the second part (see Figure 5, left). As shownin € 8 Donreag - 1
Figure 5 (right) the total execution time for eack[Sis g 6 -]
not the same: about 15h for Toulouse and 10h30 for Nancy. §
Consequently, the schedule is not optimal. The equal dis- 4 o 1
tribution of the requests does not take into account the ma- o LF 4
chines processing power. In fact, at the time wheetDe- [
ceives the requests (all at the same time) the second partof ~ °; 2 3 L 5 6 7 8 9 10
the simulation has never been executed, henee Doesn’t Requests

know anything on its processing time, the best it can do is
to share the total amount of requests on the availabl@sS

A better makespan could be attained by writing a plug-in Figure 5. Simulation’s distribution over the
scheduler[4]. SEDs: at the top, the Gantt chart; at the

bottom, the execution time of the 100 sub-

The benefit of running the simulation in parallel on dif-) '
simulations for each SED

ferent clusters is clearly visible: it would take more than
141h to run the 101 simulation sequentially. Furthermore,
the overhead induced by the use aED is extremely low.
Figure 6 shows the time needed to find a suitat®® $or 7 Conclusion
each request, as well as in log scale, the lateney, the
time needed to send the data from the client to the chosen |n this paper, we presented the design of i@ Dclient
SED, plus the time needed to initiate the service). and server based on the example of cosmological simula-
The finding time is low and nearly constant (49.8ms on tions. As shown by the experiments)EY is capable of
average). The latency grows rapidly. Indeed, the client re- handling long cosmological parallel simulations: mapping
quests 100 sub-simulations simultaneously, and eath S them on parallel resources of a grid, executing and process-
cannot compute more than one of them at the same timeing communication transfers. The overhead induced by the
Requests cannot be proceeded until the completion of theuse of DET is neglectible compared to the execution time
precedent one. This waiting time is taken into account in of the services. ThusIBT permits to explore new research
the latency. Note that the average time for initiating the axes in cosmological simulations (on various low resolu-
service is 20.8ms (taken on the 12 firsts executions). Thetions initial conditions), with transparent access to tee s
average overhead for one simulation is about 70.6ms, in-vices and the data.
ducing a total overhead for the 101 simulations of 7s, which Currently, two points restrict the ease of use of these sim-
is neglectible compared to the total processing time of the ulations, and their performance: the whole simulation pro-
simulations. cess is hard-coded within the server, and the schedule could

Finding time (ms)

130 le+08

120

le+07

110 1 1e+06

100 Find —+— A
Latency E
90 E

4 10000

100000

80

Latency (ms)

1000
70

60 100

50 310

40 L L L L 1
40

Request number

Figure 6. Finding time and latency

be greatly improved. A first next step will be to use one of
the latest DET feature: the workflow management system, [10]

which uses an XML document to represent the nodes and

[5] A. Denis, C. Perez, and T. Priol. Towards high performeanc

(6]

(7]

(8]

(9]

the data dependancies. The simulation execution sequence

could be represented as a directed acyclic graph, hence be

ing seen as a workflow. A second step will be to write a

plug-in scheduler, to best map the simulations on the avail-
able resources according to their processing power, torlowe

the unbalance observed between tteDS. Finally, trans-
parence could be added to the deployment of the platform, [12]
by using the DeT batch system. It allows to make trans-

parent reservations of the resources on batch systems Iike[3
1

OAR, and to run the jobs by submitting a script.

References

(1]

(2]

(3]

(4]

A. Amar, R. Bolze, A. Bouteiller, P. Chouhan, A. Chis,
Y. Caniou, E. Caron, H. Dail, B. Depardon, F. Desprez, J.-S.
Gay, G. Le Mahec, and A. Su. Diet: New developments and
recent results. I€oreGRID Workshop on Grid Middleware
(in conjunction with EuroPar2006Presden, Germany, Au-
gust 28-29 2006.

D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Mil

K. Sagi, Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve
V1.4. Computer Science Dept. Technical Report CS-01-467,
University of Tennessee, Knoxville, TN, July 2001.

E. Caron and F. Desprez. Diet: A scalable toolbox to build
network enabled servers on the grititernational Journal

of High Performance Computing Applicatign20(3):335—
352, 2006.

A. Chis, E. Caron, F. Desprez, and A. Su. Plug-in sched-
uler design for a distributed grid environment. In ACM/I-
FIP/USENIX, editor,4th International Workshop on Mid-
dleware for Grid Computing - MGC 2008elbourne, Aus-
tralia, November 27th 2006. To appear. In conjunction with
ACM/IFIP/USENIX 7th International Middleware Confer-
ence 2006.

[11]

[14]

[15]

CORBA and MPI middlewares for grid computing. In C. A.
Lee, editorProc. of the 2nd International Workshop on Grid
Computing number 2242 in LNCS, pages 14-25, Denver,
Colorado, USA, Nov. 2001. Springer-Verlag.

H. Nakada, M. Sato, and S. Sekiguchi. Design and imple-
mentations of ninf: towards a global computing infrastruc-
ture. Future Generation Computing Systems, Metacomput-
ing Issue 15:649-658, 1999.

H. Nakada, Y. Tanaka, S. Matsuoka, and S. Sekiguchi. The
Design and Implementation of a Fault-Tolerant RPC Sys-
tem: Ninf-C. InProceeding of HPC Asia 200#ages 9-18,
2004.

M. Sato, T. Boku, and D. Takahasi. OmniRPC: a Grid RPC
System for Parallel Programming in Cluster and Grid Envi-
ronment. InProceedings of CCGrid2003®ages 206-213,
Tokyo, May 2003.

K. Seymour, C. Lee, F. Desprez, H. Nakada, and Y. Tanaka.
The End-User and Middleware APIs for GridRPC Work-
shop on Grid Application Programming Interfaces, In con-
junction with GGF12Brussels, Belgium, Sept. 2004.

K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,
and H. Casanova. Overview of GridRPC: A Remote Pro-
cedure Call API for Grid Computing. I®rid Computing -
Grid 2002, LNCS 2536pages 274-278, November 2002.

S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi.
Evaluating Web Services Based Implementations of
GridRPC. InProceedings of the 11th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-11 2002) pages 237-245, July 2002.

R. Teyssier. Cosmological hydrodynamics with adaptiv
mesh refinement. A new high resolution code called RAM-
SES.Astronomy and Astrophysic385:337-364, 2002.

] R. Teyssier, S. Fromang, and E. Dormy. Kinematic dy-

namos using constrained transport with high order Godunov
schemes and adaptive mesh refineméatirnal of Compu-
tational Physics218:44—67, Oct. 2006.

Y. Tanaka and H. Takemiya and H. Nakada and S. Sekiguchi.
Design, Implementation and Performance Evaluation of
GridRPC Programming Middleware for a Large-Scale Com-
putational Grid. InProceedings of 5th IEEE/ACM Interna-
tional Workshop on Grid Computingages 298-305, 2005.
A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra.
Recent developments in gridsolve. In Y. Robert, editor,
ternational Journal of High Performance Computing Appli-
cations (Special Issue: Scheduling for Large-Scale Hetero
geneous Platformsyolume 20. Sage Science Press, spring
2006.

