
Anne Benoit, Yves Robert, Frédéric Vivien

A guide to algorithm design
Paradigms, methods and complexity analysis

CRC PRESS

Boca Raton London New York Washington, D.C.

Chapter 1

Introduction to complexity

This chapter revisits basic notions on the cost of an algorithm and on the
complexity of a problem. To illustrate these notions, in Section 1.1, we study
the problem of computing xn, given x and n (where n is a positive integer).
Then, in Section 1.2, we recall the classical asymptotic notations O, o, ⇥
and ⌦. Finally, exercises are proposed in Section 1.3, with their solutions in
Section 1.4.

1.1 On the complexity to compute xn

We study the problem of computing xn, given x and n (where n is a positive
integer). Note that x is not necessarily a number, it can be a matrix, a
polynomial with several unknowns, or any mathematical object for which the
multiplication is defined.

We let y
0

= x, and we use the following“rule of the game”: If I have already
computed y

1

, y
2

, . . . , yi�1

, then I can compute yi as a product of any of two
previous temporary results: yi = yj ⇥ yk, with 0 6 j, k 6 i � 1. The goal is
to reach xn as soon as possible, i.e., to minimize the cost of the algorithm,
expressed in the number of multiplications. The cost is the first index m such
that ym = xn.

We define Opt(n) as the minimum index m such that ym = xn, where the
minimum is taken over all algorithms, i.e., all possible sequences of yi. The
cost of an algorithm, therefore, is always greater than or equal to Opt(n).
Formally,

Opt(n) = min

⇢

m

�

�

�

�

9y
0

= x, y
1

, y
2

, . . . , ym�1

, ym = xn,
8i 2 [1,m], 9j, k 2 [0, i� 1], yi = yj ⇥ yk

�

.

In the following, we present four methods to compute xn, and we compare
their costs. Then we end the section with some complexity results that aim
at providing bounds on Opt(n).

3

4 Chapter 1. Introduction to complexity

1.1.1 Naive method

Let us consider the following naive algorithm: yi = y
0

⇥ yi�1

. We have
yn�1

= xn, and thus a cost of n� 1.

1.1.2 Binary method

We can easily find a method more e�cient than the naive algorithm:

xn =

⇢

xn/2 ⇥ xn/2 if n is even,
xbn/2c ⇥ xbn/2c ⇥ x if n is odd.

This algorithm can be formulated as follows: We write n in binary, and
then we replace each “1” by SX and each “0” by S, and we remove the first
SX. The word that we obtain gives a method to compute xn. The i-th letter
indicates how to compute yi; letter S corresponds to a squaring operation
(yi = yi�1

⇥ yi�1

), while letter X corresponds to a multiplying by x operation
(yi = yi�1

⇥ y
0

).
For instance, for n = 23 (n=10111), we obtain SX S SX SX SX, and after

removing the first SX, we obtain the word SSXSXSX. Therefore, we compute,
in order, y

1

= y
0

⇥y
0

= x2, y
2

= y
1

⇥y
1

= x4, y
3

= y
2

⇥y
0

= x5, y
4

= y
3

⇥y
3

=
x10, y

5

= y
4

⇥ y
0

= x11, y
6

= y
5

⇥ y
5

= x22, and finally y
7

= y
6

⇥ y
0

= x23.
The correction of the algorithm is easy to justify from the properties of

binary decomposition. The cost is blog(n)c + ⌫(n) � 1, where ⌫(n) is the
number of 1s in the binary writing of n. ⌫(n) � 1 is thus the number of Xs,
and blog(n)c is the number of Ss in the word. Logarithms are taken in base 2
here, and this will be the case throughout the book unless specified otherwise.
In the example n = 23, there are four Ss and three Xs, and the cost is,
therefore, 7. This value is also obtained with the formula.

Note that this binary method is not optimal; for instance, with n = 15,
we get the word SXSXSX, leading to six multiplications, while one could
notice that 15 = 3 ⇥ 5, that we need two multiplications to compute z = x3

(z = (x⇥ x)⇥ x), and then three additional ones to compute x15 = z5 (with
the binary method: z2, z4, z5).

1.1.3 Factorization method

This method is based on the factorization of n, that is applied recursively
when n > 2:

xn =

⇢

(xp)q if p is the smallest prime factor of n (n = p⇥ q),
xn�1 ⇥ x if n is a prime number.

For instance, with this method, for n = 15, we obtain the computation
described above, i.e., x15 = (x3)5 = x3⇥ (x3)4, leading to five multiplications:
y
1

= y
0

⇥y
0

= x2, y
2

= y
1

⇥y
0

= x3, y
3

= y
2

⇥y
2

= (x3)2, y
4

= y
3

⇥y
3

= (x3)4,
y
5

= y
4

⇥ y
2

= (x3)5 = x15.

1.1. On the complexity to compute xn 5

Note that if n is a power of 2, this method is identical to the binary method.
Also, this factorization method is not optimal. For instance, with n = 33, we
have seven multiplications (x33 = (x3)11 = x3 ⇥ (x3)10 = x3 ⇥ ((x3)2)5 =
x3 ⇥ z ⇥ z4, with z = (x3)2), while the binary method requires only six

multiplications (x33 = x⇥x2

5

). Note also that there is an infinity of numbers
for which the factorization method is better than the binary method (n =
15⇥ 2k), and reciprocally (n = 33⇥ 2k).

However, we need to emphasize the fact that the cost of decomposing n
into prime numbers is not accounted in this formulation, while this would
be necessary to correctly quantify the cost of the factorization method. The
problem is that we do not know, as of today, how to decompose n in polynomial
time. This problem is indeed still open.

1.1.4 Knuth’s tree method

The last method that we detail consists in using Knuth’s tree [64], illustrated
on Figure 1.1. The path from the root of the tree to n indicates a sequence
of exponents from which we can compute e�ciently xn.

19 21 28 22 23 26 25 30 40 27 36 48 33 34 64

14 11 13 15 20 18 24 17 32

161297 10

5 6 8

3 4

2

1

FIGURE 1.1: The first seven levels of Knuth’s tree.

Building the tree. The root of the tree is 1. The tree is then built by
induction. The (k + 1)-th level of the tree is defined from the first k levels as
follows. Consider each node j of the k-th level from the left to the right, and
create nodes j+1, j+a

1

, j+a
2

, . . . , j+ak�1

= 2j at level k+1, as children of
node j, in this order from left to right, where 1, a

1

, . . . , ak�1

= j is the path
from the root to j. We do not add a node in the tree if there is already a node
with the same value.

6 Chapter 1. Introduction to complexity

The algorithm. The algorithm simply consists in finding n in the tree (it
appears only once by construction), and extracting nodes on the path from the
root to n: 1, a

1

, . . . , n. At each step of the algorithm, we compute yi = xa
i as

a product of two previous temporary results, which is possible by construction
of the tree. The number of products to be done, i.e., the cost of the algorithm,
is equal to the length of the path.

Statistics. Some interesting statistics are extracted from Knuth’s book [64].
The smallest numbers for which the tree method is not optimal are n = 77,
n = 154, and n = 233. The smallest number for which the tree method
is better both to the binary and the factorization methods is n = 23. The
smallest number for which the tree method is worse than the factorization
method is n = 19, 879 = 103⇥ 193, and such cases are rare; for n 6 100, 000,
the tree method is better than the factorization method 88, 803 times, it is
equivalent 11, 191 times, and it is worse than the factorization method only
6 times.

At this point, we have several algorithms, but we do not know anything on
the value of Opt(n) yet. To assess the complexity of the problem, we have to
provide bounds or asymptotic estimates for Opt(n).

1.1.5 Complexity results

THEOREM 1.1. For all integer n > 1, Opt(n) > dlog(n)e.

Proof. Let us consider an algorithm that computes xn in m steps. Recall that
yi is the intermediate result at step i of the algorithm and thus ym = xn. Let
↵(i) be the integer such that yi = x↵(i), for 1 6 i 6 m. Then we prove by
induction that ↵(i) 6 2i.

Initially, we have y
0

= x, and thus ↵(0) = 1 6 1 = 20.
For 1 6 i 6 m, there exist j and k (0 6 j, k < i) such that yi = yj ⇥ yk, by

definition of the algorithm. Therefore, we have ↵(i) = ↵(j)+↵(k), and we can
apply the induction hypothesis on j and k, leading to ↵(j) 6 2j 6 2i�1, and
↵(k) 6 2k 6 2i�1. Finally, we have ↵(i) 6 2i�1 + 2i�1 = 2i, which concludes
the proof.

Intuitively, the proof expresses the fact that we cannot do better at each
step than doubling the exponent. Thanks to this theorem and to the study
of the binary method, whose number of steps is bounded by 2blog(n)c (recall
that log(n) denotes log

2

(n)), we have the following result for all n > 2:

1 6 Opt(n)

dlog(n)e 6 2.

THEOREM 1.2. lim
n!1

Opt(n)

log(n)
= 1.

1.1. On the complexity to compute xn 7

Proof. The idea is to improve the binary method by applying it in base b. We
let b = 2k, where the value of k will be fixed later, and we write n in base b:
n = ↵

0

bt + ↵
1

bt�1 + · · · + ↵t, where t = blogb(n)c, and 0 6 ↵i 6 b � 1 (for
0 6 i 6 t). Then, we compute all xd, for 1 6 d 6 b�1, with the naive method,
in b� 2 multiplications. Note that we do not necessarily need all these values
(only the ones corresponding to the ↵is), but they are computed on the fly
and we can compute them without significant additional cost.

Then we successfully compute:

y
0

= x↵
0 ,

y
1

= (y
0

)b ⇥ x↵
1 = x↵

0

b+↵
1 ,

y
2

= (y
1

)b ⇥ x↵
2 = x(↵

0

b+↵
1

)b+↵
2 ,

...
yt = (yt�1

)b ⇥ x↵
t = xn.

At each step i (for 1 6 i 6 t), we need k + 1 computations (k squaring to
compute (yi�1

)b, and one multiplication by x↵
i), and, therefore, we have a

total cost of

t⇥ (k + 1) + (b� 2) = blogb(n)c(k + 1) + 2k � 2

6 (logb(n)) (k + 1) + 2k = (log(n))
k + 1

k
+ 2k

(recall that logb(a) = logx(a)/ logx(b)).
We want k to be a function of n tending to infinity when n tends to in-

finity, so that we have (k + 1)/k tending to 1, and such that 2k = o(log(n))
(see Section 1.2 for a definition of the o-notation). For instance, with k =
b 1

2

log(log(n))c, we have 2k 6
p

log(n). (As we are only interested in the
asymptotic behavior, we assume that n > 16; then k > 1 and b > 2.)

Therefore, we have Opt(n) 6 (log(n))k+1

k +
p

log(n) and k+1

k + 1p
log(n)

tends to 1 when n tends to infinity.

Note that this method is somewhat complicated, only to gain a factor 2 by
comparison to the binary method.

Finally, we point out that the complexity of the problem of computing xn

is still open, i.e., we do not know whether there exists a polynomial-time
method that performs the exact minimum number of operations. Formally,
the underlying problem is that of addition chains. Starting with a

0

= 1,
and given a

0

, a
1

, . . . , ai for i > 0, we build ai+1

as ai+1

= aj + ak where
0 6 j 6 k 6 i. The length of the chain is the smallest integer `(n), if it exists,
such that a`(n) = n. Clearly, the ais represent the exponents of the values xa

is
that we compute to derive xn. Given n, what is the complexity to derive an
addition chain of minimal length?

An optimal method is easily derived from Knuth’s tree. If we keep all possi-
bilities in Knuth’s tree, i.e., we add a node in the tree even if it already exists

8 Chapter 1. Introduction to complexity

somewhere else, then we have an exhaustive method that always performs
the minimum number of operations. However, this method clearly takes an
exponential amount of time, and thus is not satisfying. In fact, to the best
of our knowledge, the complexity of the problem is still open. There is a
common misbelief that the problem of determining whether there exists an
addition chain whose length does not exceed some bound is NP-complete. In
fact, the result is known to be NP-complete only for a sequence of integers
n
1

, n
2

, . . . , nm, but not for a single value n [33].

1.2 Asymptotic notations: O, o, ⇥ and ⌦

Let f(n) be a function, where n is an integer. The asymptotic notations
describe the complexity of the function for large values of n.

We say that f(n) = O(g(n)) if there exist positive constants c and n
0

such
that for all n > n

0

, 0 6 f(n) 6 c g(n). The O-notation allows us to give an
upper bound on the function, up to within a constant factor.

The o-notation expresses the fact that the upper bound is not asymptoti-
cally tight: f(n) = o(g(n)) if for any positive constant c, there exists a positive
constant n

0

such that for all n > n
0

, 0 6 f(n) < c g(n).
The ⌦-notation provides an asymptotic lower bound on the function: f(n) =

⌦(g(n)) if there exist positive constants c and n
0

such that for all n > n
0

,
0 6 c g(n) 6 f(n).

The ⇥-notation is more accurate, since it bounds the function both from
below and above: f(n) = ⇥(g(n)) if there exist positive constants c

1

, c
2

and
n
0

such that for all n > n
0

, 0 6 c
1

g(n) 6 f(n) 6 c
2

g(n). In other words,
f(n) = ⇥(g(n)) if f(n) = O(g(n)) and f(n) = ⌦(g(n)).

1.3 Exercises

Exercise 1.1: Longest balanced section (solution p. 14)

Let F be an array of size n > 1 whose elements are 0 or 1. A section [i..j] of
consecutive elements of F , with 1 6 i < j 6 n, is balanced if it contains as
many 0 as 1 elements:

card{k | F [k] = 0, i 6 k 6 j} = card{k | F [k] = 1, i 6 k 6 j}.

The length of a balanced section [i..j] is its number of elements j� i+1. The
goal of this exercise is to find the longest balanced section of F .

1.3. Exercises 9

1. Provide a solution whose complexity is O(n2).

2. Provide a solution whose complexity is O(n).

The reader may want to think for a while before reading the following hint
for linear-time complexity. Introduce an array Q[�n..n] of size 2n+1 and let
Q[b] be the first index j such that the imbalance of section [1..j] in F is equal
to b. Here the imbalance imbal(i, j) of section [i..j] is defined as

imbal(i, j) = card{k | F [k] = 1, i 6 k 6 j}� card{k | F [k] = 0, i 6 k 6 j}.

Exercise 1.2: Find the star (solution p. 15)

In a group of n persons (numbered from 1 to n), a star is someone who does
not know anybody else, but who is known by all other persons. Our goal is to
identify a star, if one exists, in the group. The only action that can be taken
is to ask a question to any person i: “Do you know person j?” We assume
that everybody tells the truth.

1. How many stars can exist in the group?

2. Design an algorithm to find the star (if any) that requires O(n) ques-
tions.

3. Provide a lower bound on the complexity (in terms of number of ques-
tions) of any algorithm solving the problem. Prove that the best lower
bound for this problem is 3n� blog(n)c � 3.

Exercise 1.3: Breaking boxes (solution p. 16)

The problem consists in finding the lowest floor of a building from which a
box would break when dropping it. The building has n floors, numbered from
1 to n, and we have k boxes. There is only one way to know whether dropping
a box from a given floor will break it or not. Go to that floor and throw a
box from the window of the building. If the box does not break, it can be
collected at the bottom of the building and reused.

The goal is to design an algorithm that returns the index of the lowest floor
from which dropping a box will break it. The algorithm returns n+1 if a box
does not break when thrown from the n-th floor. The cost of the algorithm,
to be kept minimal, is expressed as the number of boxes that are thrown (note
that re-use is allowed).

1. For k > dlog(n)e, design an algorithm with O(log(n)) boxes thrown.

2. For k < dlog(n)e, design an algorithm with O
�

k + n
2

k�1

�

boxes thrown.

3. For k = 2, design an algorithm with O(
p
n) boxes thrown.

10 Chapter 1. Introduction to complexity

Exercise 1.4: Maximum of n integers (solution p. 17)

The goal is to compute the maximum of n integers, and we study the com-
plexity of the algorithms in terms of number of comparisons and number of
assignments.

1. Write a naive algorithm to solve the problem. What is its complexity in
the worst and best cases?

2. Is this algorithm optimal for the number of comparisons in the worst
case?

3. What is its complexity in the average number of comparisons or as-
signments? To compute the average number of assignments, you may
use the following reasoning. Let Pn,k be the number of permutations
� of {1, . . . , n} such that on T [1] = �(1), . . . , T [n] = �(n), the algo-
rithm performs k assignments. Give a recurrence relation for Pn,k. Let
Gn(z) =

P

Pn,kzk. Prove that Gn(z) = z(z+1) · · · (z+n�1), and give
a conclusion.

Exercise 1.5: Maximum and minimum of n integers (solution
p. 20)

The goal is to compute simultaneously the maximum and the minimum of
n integers, and we study the complexity of the algorithms in terms of number
of comparisons in the worst case.

1. Design a naive algorithm and give its complexity.

2. One idea to improve the algorithm is to group elements by pairs, in
order to decrease the number of comparisons that must be done. Design
an algorithm based on this idea, and analyze its complexity.

3. Prove the optimality of such an algorithm, by providing a lower bound
on the number of comparisons. The idea is to use the adversary method.
Let A be an algorithm that finds the maximum and minimum. For a
given input, when the algorithm is executed, a novice is an element
that has never been compared, a winner has been compared at least
once and has always been superior in comparisons, a loser has been
compared at least once and has always been inferior in comparisons,
and the remaining elements are called average elements. The number
of such elements is represented by a quadruplet of integers (i, j, k, l),
with, of course, i + j + k + l = n. Give the value of this quadruplet at
the beginning and at the end of the algorithm. Provide a strategy for
the adversary, so as to maximize the duration of the execution of the
algorithm. Conclude with a lower bound on the number of comparisons.

1.3. Exercises 11

Exercise 1.6: Maximum and second maximum of n integers
(solution p. 23)

The goal is to compute simultaneously the maximum and the second maxi-
mum of n integers, and we study the complexity of the algorithms in terms
of the number of comparisons in the worst case.

1. Design a naive algorithm and give its complexity.

2. One idea to improve the algorithm is to compute the maximum following
a tournament (as, for instance, a tennis tournament). If there are n = 2k

numbers taking part into the tournament, how do we find the maximum
and the second maximum, once the tournament is over? What is the
complexity of this algorithm? In the general case, how can we adapt the
algorithm for any value of n?

3. Prove the optimality of this algorithm, by providing a lower bound on
the number of comparisons. The idea is to use decision trees. The
decision tree of an algorithm is a tree that represents all the possible
executions of the algorithm, on every possible input of size n. The
internal nodes correspond to tests. In our case, the test is a comparison,
if the answer is “yes” we move to the left child, otherwise to the right
child, hence having a binary tree. The leaves correspond to the results
of the di↵erent executions (several leaves may correspond to the same
result). Each branch of the tree corresponds to an execution of the
algorithm, and the number of comparisons is the height of the branch.
The number of comparisons in the worst case is then obtained as the
height of the tree.

(a) Prove that any decision tree that computes the maximum of n in-
tegers has at least 2n�1 leaves.

(b) Prove that any binary tree of height h and with f leaves is such
that 2h > f .

(c) Let A be a decision tree solving the problem. Give a lower bound on
its number of leaves. Conclude with a lower bound on the number
of comparisons in the worst case.

Exercise 1.7: Merging two sorted sets (solution p. 25)

The goal is to merge two sorted sets, a set A of size m, and a set B of size n.
The m+n numbers to merge are all di↵erent and such that A

1

< A
2

< · · · <
Am and B

1

< B
2

< · · · < Bn.

1. Prove that we need at least

⇠

log

✓

m+ n
n

◆⇡

comparisons for the merge

(recall that logarithms are taken in base 2).

12 Chapter 1. Introduction to complexity

2. Deduce that for n = m, there is a constant k such that, when n is
su�ciently large, we need at least 2n� 1

2

log(n)� k comparisons for the
merge.

3. Recall briefly the usual merging algorithm and give its complexity.

4. Prove that for n = m, we cannot do better than the usual algorithm.
Therefore, the lower bound of Question 2 cannot be matched.

Exercise 1.8: The toolbox (solution p. 26)

In a toolbox, there are n nuts, all of di↵erent sizes, and n corresponding bolts.
However, everything is mixed up, and you wish to associate each nut with the
corresponding bolt. The size di↵erences are so small that it is not possible to
decide if a nut (or a bolt) is larger than another one just by looking at them.
The only way to proceed consists in trying one nut with one bolt, and each
operation can lead to three possible answers: (i) the nut is strictly larger than
the bolt; (ii) the bolt is strictly larger than the nut; and (iii) they correspond
to each other.

1. Design a simple algorithm with O(n2) operations that associates each
nut with the corresponding bolt.

2. Prove that the problem of finding the smallest nut and the corresponding
bolt can be solved with no more than 2n� 2 operations.

3. Prove that any algorithm solving the initial problem (i.e., associate each
nut with the corresponding bolt) requires at least ⌦(n log(n)) operations
in the worst case.

Exercise 1.9: Sorting a small number of objects (solution p. 29)

This exercise investigates the complexity of sorting a small number of ob-
jects, when the only possible operation is the comparison of two objects. For
n elements, we know that the number of comparisons is at least dlog(n!)e
(see, for instance, Section 10.2 page 243). We ask whether this bound can
be reached. Asymptotically, this is true because, for instance, the merge sort
has a complexity in O(n log(n)) in the worst case. We check if the bound
can be exactly reached in terms of number of comparisons. In the following
table, for 2 6 n 6 12 objects, we indicate the lower bound on the number
of comparisons (dlog(n!)e), the number of comparisons done by a merge sort
algorithm (merge-sort(n)), and the optimal number of comparisons (opt(n)).

n 2 3 4 5 6 7 8 9 10 11 12
dlog(n!)e 1 3 5 7 10 13 16 19 22 26 29
merge-sort(n) 1 3 5 8 11 14 17 21 25 29 33
opt(n) 1 3 5 7 10 13 16 19 22 26 30

1.3. Exercises 13

Therefore, merge-sort is not reaching the bound as soon as n > 5. The
goal of this exercise is to design ad hoc sorting algorithms for each value of n
(2 6 n 6 12) that perform the optimal number of comparisons opt(n).

Several techniques can be used:

• Binary-search insertion: If we want to insert an element in a sorted
set of k elements, the cost is of r comparisons in the worst case if
2r�1 6 k 6 2r � 1. Therefore, it is less costly to insert an element
in a set of 3 elements than in a set of 2 elements (2 comparisons in both
cases), and in a set of 7 elements rather than between 4 and 6 elements
(3 comparisons), because the cost in the worst case is the same. In other
words, insertion is the most cost-e↵ective when k = 2r � 1.

• Incremental sort of n elements: We first sort n � 1 elements, and then
we insert the last one with a binary-search insertion.

• Divide-and-conquer: To sort four elements, we create two pairs of two
elements (a ! b) and (c ! d), where (a ! b) means that a 6 b,
and then we compare the two largest elements to obtain, for instance,
(a ! b ! d). Finally, we insert c with a binary search. The following
figure illustrates this technique:

a b

c d

For instance, for n = 3, we compare two elements, hence obtaining (a ! b)
with one comparison, and then we compare the third element to a and b with
two more comparisons, obtaining 3 = opt(3) comparisons. For n = 4, we can
use the incremental sort to obtain (a ! b ! c) with three comparisons, and
then we insert the last element with a binary search, with two comparisons,
hence a total of 3 + 2 = 5 = opt(4) comparisons.

1. Provide another technique for n = 4, based on divide-and-conquer.

2. Following the previous ideas, provide algorithms for any value 5 6 n 6
11 that perform opt(n) comparisons.

3. For n = 12, provide a method with 30 comparisons. Indeed, it is im-
possible to succeed with dlog(12!)e = 29 comparisons; researchers have
tested all possible algorithms with the brute force method, it took two
hours of computation in 1990 (and it was a real challenge at that time!).

Chapter 2

Divide-and-conquer

This chapter revisits the divide-and-conquer paradigms and explains how to
solve recurrences, in particular, with the use of the “master theorem.” We
first illustrate the concept with Strassen’s matrix multiplication algorithm
(Section 2.1) before explaining the master theorem (Section 2.2), and finally
providing techniques to solve recurrences (Section 2.3). These techniques
are further illustrated in the exercises of Section 2.4, with solutions found in
Section 2.5.

2.1 Strassen’s algorithm

The classical matrix multiplication algorithm computes the product of two
matrices of size n ⇥ n with Add(n) = n2(n � 1) additions and Mult(n) = n3

multiplications. Indeed, there are n2 coe�cients to compute, each of them
corresponding to a scalar product of size n, thus with n multiplications, n� 1
additions, and one a↵ectation. Can we do better than this?

Note that the question was raised at a time when it was mainly interest-
ing to decrease the number of multiplications, even though this would imply
computing more additions. The pipelined architecture of today’s processors
allows us to perform, in steady-state mode, one addition or one multiplication
per cycle time.

Strassen introduced a new method in his seminal paper [102]. Let us com-
pute the product of two 2⇥ 2 matrices:

✓

r s
t u

◆

=

✓

a b
c d

◆

⇥
✓

e f
g h

◆

33

34 Chapter 2. Divide-and-conquer

We first compute seven intermediate products

p
1

= a(f � h)
p
2

= (a+ b)h
p
3

= (c+ d)e
p
4

= d(g � e)
p
5

= (a+ d)(e+ h)
p
6

= (b� d)(g + h)
p
7

= (a� c)(e+ f)

and then we can write

r = p
5

+ p
4

� p
2

+ p
6

s = p
1

+ p
2

t = p
3

+ p
4

u = p
5

+ p
1

� p
3

� p
7

If we count operations for each method, we obtain the following:

Classic Strassen
Mult(2) = 8 Mult(2) = 7
Add(2) = 4 Add(2) = 18

Strassen’s method gains one multiplication, but at the price of 14 extra
additions, thus being worse on modern processors than the classical method
for 2 ⇥ 2 matrices. However, it is remarkable that the new method does not
require the commutativity of multiplication, and, therefore, it can be used,
for instance, with matrices instead of numbers. We can readily use it with
matrices of even size n, say n = 2m. We consider that a, b, c, d, e, f, g, h, r, s, t,
and u are matrices of size m ⇥ m. So, let n = 2m, and use the previous
approach with submatrices of size m ⇥ m. To compute each pi (1 6 i 6 7)
with the classic matrix multiplication algorithm, we need m3 multiplications,
thus a total Mult(n) = 7m3 = 7n3/8. For the additions, we need to add the
additions performed in the seven matrix multiplications to form the interme-
diate products pi, namely 7m2(m� 1), with the number of additions required
to form the auxiliary matrices, namely 18m2. Indeed, there are 10 matrix ad-
ditions to compute the pis, and then 8 other matrix additions to obtain r, s, t,
and u. Therefore, we have a total of Add(n) = 7m3+11m2 = 7n3/8+11n2/4.

Asymptotically, the dominant term is in 7

8

n3 for Mult(n) as for Add(n),
and the new method is interesting for n large enough. The intuition is the
following: Multiplying two matrices of size n ⇥ n requires O(n3) operations
(both for pointwise multiplications and additions), while adding two matrices
of size n ⇥ n requires only O(n2) operations. For n large enough, matrix
additions have a negligible cost in comparison to matrix multiplications (and
the main source of pointwise additions is within these matrix multiplications).
That was not the case for real numbers, hence, the ine�ciency of the method
for 2⇥ 2 matrices.

2.1. Strassen’s algorithm 35

Strassen’s algorithm is the recursive use of the decomposition explained
above. We consider the case in which n is a power of 2, i.e., n = 2s. Otherwise,
we can extend all matrices with zeroes so that they have a size that is the first
power of 2 greater than n, and replace in the following log(n) by dlog(n)e:

(X) �!
✓

X 0
0 0

◆

.

Let us consider matrices of size n ⇥ n, where n = 2s. We proceed by
induction. We use the method recursively to compute each of the matrix
products pi, for 1 6 i 6 7. We stop when matrices are of size 1 or, better, when
Strassen’s method is more costly than the classical method, for matrix sizes
below a “crossover point.” In practice, this crossover point is highly system
dependent. By ignoring cache e↵ects, we can obtain crossover points as low
as n = 8 [50], while [30] determines the crossover points by benchmarking on
various systems, and it ranges from n = 400 to n = 2150.

In the following, we stop the recursion when n = 1, and:
• M(n) is the number of multiplications done by Strassen’s algorithm to
multiply two matrices of size n⇥ n;

• A(n) is the number of additions done by Strassen’s algorithm to multiply
two matrices of size n⇥ n.

For the multiplications, we have:
⇢

M(1) = 1
M(n) = 7⇥M(n/2)

=) M(n) = 7s = 7log(n) = nlog(7).

As before, additions come from two di↵erent sources: the additions that
are done in the 7 matrix multiplications (recursive call), and the 18 matrix
additions (construction of the pi’s and of r, s, t, and u). We finally have:

⇢

A(1) = 0
A(n) = 7⇥A(n/2) + 18⇥ (n/2)2

=) A(n) = 6⇥ (nlog(7) � n2) (2.1)

We explain in Section 2.3 how this recurrence can be solved. Note that the
recursive approach has improved the order of magnitude of the total compu-
tation cost, not just only the constant (previously, we only had 7

8

n3 instead

of n3). The new order of magnitude is O(nlog(7)) and log(7) ⇡ 2.81.
Finally, we conclude by saying that Strassen’s algorithm is not widely used,

because it introduces some numerical instability. Also, there are some al-
gorithms with a better complexity. At the time of this writing, the best
algorithm is the Coppersmith–Winograd algorithm, in O(n2.376) [27]. The
problem of establishing the complexity of matrix product is still open. The
only known lower bound is a disappointing O(n2); we need to touch each
coe�cient at least once.

Strassen’s algorithm provides, however, an excellent illustration of the divide-
and-conquer paradigm, that we formalize in the next section through the mas-
ter theorem.

36 Chapter 2. Divide-and-conquer

2.2 Master theorem

Before formulating the master theorem, we need to formalize the divide-and-
conquer paradigm that was illustrated in the previous section through the
Strassen’s algorithm.

DEFINITION 2.1 (Divide-and-conquer). Consider a problem of size n. In
order to solve the problem, divide it into a subproblems of size n/b that will
allow us to find the solution. The cost of this divide-and-conquer algorithm
is then

S(n) = a⇥ S
⇣n

b

⌘

+R(n) (2.2)

where R(n) is the cost to reconstruct the solution of the problem of size n
from the solutions of the subproblems; it is often equal to R(n) = c⇥ n↵, for
some constants c and ↵. Initially, we often have S(1) = 1 (or equal to another
constant value).

For instance, with Strassen’s algorithm, if we consider the number of addi-
tions to be executed in a matrix product, we have a = 7, b = 2, ↵ = 2, and
c = 18

4

. Indeed, the product of two matrices of size n ⇥ n is performed by
first computing 7 products of matrices of size n/2 ⇥ n/2, and reconstructing
the solution through 18 additions of matrices of size n/2 ⇥ n/2, therefore,
R(n) = 18(n/2)2 = 18

4

n2. In this case, the initial cost is S(1) = 0.
Let us assume that there exists k 2 N such that n = bk, thus k = logb(n)

and ak = nlog

b

(a). If we develop the formula in equation (2.2), we obtain the
following:

S(n) = a⇥ S(nb) + R(n)
= a2 ⇥ S(n

b2) + a⇥R(nb) +R(n)
= · · ·
= ak ⇥ S(1) +

Pk�1

i=0

ai ⇥R(n
bi).

We consider the most usual case in which R(n) = c ⇥ n↵, and, therefore,

we have � =
Pk�1

i=0

ai ⇥R(n
bi) = c⇥ n↵

Pk�1

i=0

(a/b↵)i.
We then distinguish several cases:

1. (a > b↵): � = ⇥(n↵ ⇥ (a
b↵)

k) = ⇥(ak) =) S(n) = ⇥(nlog

b

(a));

2. (a = b↵): � = ⇥ (k ⇥ n↵) =) S(n) = ⇥ (n↵ ⇥ log(n));

3. (a < b↵): � = ⇥
⇣

n↵ ⇥ 1

1� a

b

↵

⌘

=) S(n) = ⇥(n↵).

We have proved the following theorem:

THEOREM 2.1 (Master theorem). The cost of a divide-and-conquer algo-
rithm such that S(n) = a⇥ S(nb) + c⇥ n↵ is the following:

2.3. Solving recurrences 37

(i) if a > b↵, then S(n) = ⇥(nlog

b

(a));

(ii) if a = b↵, then S(n) = ⇥(n↵ ⇥ log(n));

(iii) if a < b↵, then S(n) = ⇥(n↵).

A fully detailed proof of Theorem 2.1 is given in [28]. Let us come back
to Strassen’s algorithm. We divided the matrices into four blocs of size n/2,
and we would like to investigate a solution in which we would rather divide
matrices into nine blocs of size n/3:

0

@

1

A⇥

0

@

1

A

We would then have b = 3 and ↵ = 2 (the reconstruction cost is still in n2).
Let us assume that we are in case (i) of the master theorem. Then, this new
algorithm would become better than Strassen’s if and only if:

log
3

(a) < log(7)
() log(a) < log(7)⇥ log(3)
() a < 7log(3) ⇡ 21.8.

This is an open problem; one knows a method with a = 23 subproblems [71],
but not with a = 21!

2.3 Solving recurrences

In this section, we detail how to solve recurrences that occur in the cost analy-
sis of divide-and-conquer algorithms, but that are slightly more complex than
in the application case of the master theorem. We start with homogeneous
recurrences, and then consider the most general case of recurrences with a
second member.

2.3.1 Solving homogeneous recurrences

A homogeneous linear recurrence with constant coe�cients has the form p
0

⇥
sn+p

1

⇥sn�1

+· · ·+pk⇥sn�k = 0, where each pi is a constant and (si)i>0

is an
unknown sequence. It is said to be homogeneous because the second member is
null, i.e., the linear combination is set equal to zero. Solving such recurrences
requires finding all the roots of the polynomial P =

Pk
i=0

pi⇥Xk�i, together
with their multiplicity order. However, we see that P is a polynomial of
degree k, and no algebraic method can find the roots of arbitrary polynomials

38 Chapter 2. Divide-and-conquer

of degree 5 or higher. Therefore, we need additional information, such as
trivial roots, for high-degree recurrences.

Let us assume that we can find the k roots of P , r
1

, . . . , rk. If these roots
are distinct, then the general form of the solution is sn =

Pk
i=1

ci⇥rin, where
the cis are some constants that depend upon the first values of the sequence.
Otherwise, let qi be the order of multiplicity of root ri, for 1 6 i 6 ` (with

` < k distinct roots). Then we have sn =
P`

i=1

Pi(n) ⇥ rin, where Pi(n) is
a polynomial of degree qi � 1. Here again, the coe�cients of the Pi(n)s are
computed using the initial values of the recurrence.

2.3.2 Solving nonhomogeneous recurrences

In the general case, the recurrence may have a nonzero right-hand side, for
instance, sn � 2sn�1

= 2n+1. Such recurrences are called nonhomogeneous.
To explain how to solve them, we start by introducing a few notations. A
sequence is represented by writing down its n-th element formula in brackets,
for instance {3n} represents the sequence 1, 3, 9, 27, . . . (starting at n = 0).

Then we introduce E, an operator that transforms a sequence by shifting it
and leaving out its first element. In our example, E{3n} = 3, 9, 27, 81, . . . =
{3n+1}. More generally, E{sn} = {sn+1

}.
We then define the following operations on sequences:

c{sn} = {csn},
(E

1

+ E
2

){sn} = E
1

{sn}+ E
2

{sn},
(E

1

E
2

){sn} = E
1

(E
2

{sn}).

For instance, (E � 3){sn} = {sn+1

� 3sn}, and (2+E2){sn} = {2sn + sn+2

}.
We are looking for annihilators of the sequences. That is, we are looking for

operators P (E) such that P (E){sn} = {0}. For our example, (E � 3){3n} =
{3n+1 � 3 ⇥ 3n} = {0}. We provide a few more examples, where Qk(n) is a
polynomial in n of degree k:

sequence annihilator
{c} E � 1

{Qk(n)} (E � 1)k+1

{cn} E � c
{cn ⇥Qk(n)} (E � c)k+1

The first three lines are special cases of the fourth line, therefore, we only
need to prove the last relation. We prove it by induction on k. We start with
k = 0, writing Q

0

(n) = q:

(E � c){cn ⇥Q
0

(n)} = qE{cn)}� c{qcn} = {qcn+1}� {qcn+1} = {0}.

2.4. Exercises 39

Now by induction for k > 1, writing Qk(n) = a
0

nk +Qk�1

(n):

(E � c)k+1{cn ⇥Qk(n)} = (E � c)k+1{cn ⇥ (a
0

nk +Qk�1

(n))}
= (E � c)k[(E � c){cn(a

0

nk +Qk�1

(n))}]
= (E � c)k{cn+1(a

0

(n+ 1)k +Qk�1

(n+ 1))

� cn+1(a
0

nk +Qk�1

(n))}
= (E � c)k[cn+1 ⇥Rk�1

(n)],

where Rk�1

(n) is a polynomial in n of degree k�1, because both (n+1)k�nk

and Qk�1

(n+1)�Qk�1

(n) are polynomials of degree k�1. With the induction
hypothesis, we obtain the result: (E � c)k+1{cn ⇥Qk(n)} = {0}.

2.3.3 Solving the recurrence for Strassen’s algorithm

We focus on the recurrence for the number of additions (see equation (2.1)):

A(n) = 7⇥A
⇣n

2

⌘

+
18

4
⇥ n2.

We have n = 2s, and we consider the sequence {As} such that As = A(2s).
Thus, we have As+1

= 7 ⇥ As +
18

4

⇥ (2s+1)2 = 7 ⇥ As + 18 ⇥ 4s, and the
annihilator is (E � 4)(E � 7):

(E � 4)(E � 7){As} = (E � 4){As+1

� 7As} = (E � 4){18⇥ 4s} = {0}.

We have found an annihilator for the sequence, namely (E � 4)(E � 7), and,
even better, it is in decomposed form, so we immediately have its two distinct
roots, 4 and 7. From the previous result, we know the general form of the
solution, namely

As = k
1

⇥ 7s + k
2

⇥ 4s .

From the initial conditions A
0

= 0 and A
1

= 18, we obtain the values k
1

= 6
and k

2

= �6, and, finally,

A(n) = 6⇥ 7s � 6⇥ 4s .

2.4 Exercises

Exercise 2.1: Product of two polynomials (solution p. 42)

The goal of this exercise is to multiply two polynomials e�ciently. An n-
polynomial is a polynomial with a degree strictly less than n, thus with n co-
e�cients.

40 Chapter 2. Divide-and-conquer

Let P =
Pn�1

i=0

aiXi and Q =
Pn�1

i=0

biXi be two n-polynomials. Their
product R = P ⇥ Q is a (2n � 1)-polynomial. We denote by M(n) (resp.
A(n)) the number of multiplications (resp. number of additions) done by an
algorithm to multiply two n-polynomials.

1. Compute M(n) and A(n) for the usual algorithm to multiply two n-
polynomials.

2. We assume that n is even, n = 2 ⇥ m. We can then write P = P
1

+
Xm⇥P

2

and Q = Q
1

+Xm⇥Q
2

. What is the degree of the polynomials
P
1

, P
2

, Q
1

, and Q
2

?

3. Let R
1

= P
1

⇥ Q
1

, R
2

= P
2

⇥ Q
2

, and R
3

= (P
1

+ P
2

) ⇥ (Q
1

+ Q
2

).
Can you express R = P ⇥Q as a function of R

1

, R
2

, and R
3

? What is
the degree of these three new polynomials? Compute M(n) and A(n),
assuming that we use the classical multiplication algorithm to compute
R

1

, R
2

, and R
3

.

4. We assume now that n = 2s and we apply recursively the previous
algorithm. Compute M(n) and A(n) for this algorithm.

Exercise 2.2: Toeplitz matrices (solution p. 44)

A Toeplitz matrix, or diagonal-constant matrix, named after Otto Toeplitz,
is an n ⇥ n matrix with (ai,j) coe�cients (1 6 i, j 6 n), and such that
ai,j = ai�1,j�1

for 2 6 i, j 6 n.

1. Let A and B be two Toeplitz matrices. Is the sum A + B a Toeplitz
matrix? And the product A⇥B?

2. Give an algorithm to add two Toeplitz matrices in O(n).

3. We assume here that n = 2k. How can we compute the product of
an n ⇥ n Toeplitz matrix M by a vector T of length n? What is the
complexity of the algorithm?

Hint: Decompose M as a matrix of blocks of size 2k�1, decompose T
accordingly:

M =

✓

A B
C A

◆

and T =

✓

X
Y

◆

and consider the three matrices U = (C + A)X, V = A(Y � X), and
W = (B +A)Y .

Exercise 2.3: Maximum sum (solution p. 45)

Let T be a table of n relative integers. We want to find the maximum sum
of contiguous elements, namely, two indices i and j (1 6 i 6 j 6 n) that
maximize

Pj
k=i T [k].

2.4. Exercises 41

1. If the values in the table are T [1] = 2, T [2] = 18, T [3] = �22, T [4] = 20,
T [5] = 8, T [6] = �6, T [7] = 10, T [8] = �24, T [9] = 13, and T [10] = 3,
can you return the two indices and the corresponding optimal sum?

2. Design an algorithm that returns the maximum sum of contiguous ele-
ments with a divide-and-conquer algorithm.

3. Design a linear-time algorithm that solves the problem through a single
scan of the array.

Exercise 2.4: Boolean matrices: The Four-Russians algorithm
(solution p. 49)

The goal in this exercise is to multiply two n⇥n Boolean matrices, A and B.
All matrix elements are either 0 or 1, and the sum and product correspond
respectively to the or and and operations on Booleans.

1. Can we easily apply Strassen’s algorithm to compute the product A⇥B?

2. Apart from the classical multiplication algorithm, another way to view
the product consists in multiplying columns of A with rows of B. Give
an expression of A ⇥ B, using Ac[`], the `-th column of A, and Br[`],
the `-th row of B.

3. To optimize the matrix product, the idea is to partition the columns of A
and the rows of B into n/k equal-sized groups of size k (we can assume,
for simplicity, that k divides n; otherwise, the last group is smaller).
Therefore, for 1 6 i 6 n/k, Ai is a n ⇥ k matrix with k columns of A
(Ac[(i� 1)⇥ k+1], . . . , Ac[(i� 1)⇥ k+ k]), and, similarly, Bi is a k⇥n
matrix with k rows of B (Br[(i � 1) ⇥ k + 1], . . . , Br[(i � 1) ⇥ k + k]).
Give an expression of A⇥B, using the matrices Ai and Bi.

4. Provide a method to compute Ci = Ai ⇥ Bi in time O(n2), for all
1 6 i 6 n/k. (Hint: Show that each row of Ci can take only 2k di↵erent
values, precompute all possible values and store them in a table. What
is the size of the table, i.e., the additional space required to run the
algorithm? What is the time required to build the table?)

5. Building upon the previous method, provide an algorithm to compute
A⇥B, and give its complexity, in terms of k and n.

6. Which value of k would be most suited for this algorithm? What is the
complexity of this matrix product algorithm? Compare with Strassen’s
algorithm.

Note that this algorithm is known as the Four-Russians algorithm, and it
is due to Arlazarov et al. [3, 77].

42 Chapter 2. Divide-and-conquer

Exercise 2.5: Matrix multiplication and inversion (solution p. 50)

Let M(n) be the complexity of multiplying two square matrices of size n
and I(n) be the complexity of inverting a (square) matrix of size n. The
functions M(n) and I(n) are not known, but the goal of this exercise is to
show the following: If we assume that M(n) = ⇥(n↵) and I(n) = ⇥(n�), then
↵ = �. In other words, both operations have same order complexity under
our hypothesis.

1. Prove that 2 6 ↵,� 6 3.

2. Prove that ↵ 6 �; matrix multiplication is not more complex than
matrix inversion (which is intuitive).

3. Prove that � 6 ↵; reciprocally, matrix inversion is not more complex
than matrix multiplication (which is less intuitive).
(Hint : Show that we can reduce the problem to inverting symmetric
and positive definite matrices A whose size is an exact power of 2, and
use the Schur complement S = D � CB�1CT to recursively compute

the inverse of A =

✓

B CT

C D

◆

. Note that B and D are symmetric and

positive definite, too.)

2.5 Solutions to exercises

Solution to Exercise 2.1: Product of two polynomials

1. With the usual algorithm to multiply n-polynomials:

M(n) = n2 and A(n) = n2 � (2n� 1)
| {z }

assignments

= (n� 1)2.

Indeed, we multiply each of the n coe�cients of P with each of the n
coe�cients of Q. Then, the number of additions is equal to the number
of multiplication results minus the number of results computed and there
are 2n� 1 coe�cients in the computed polynomial.

2. P
1

, P
2

, Q
1

, and Q
2

are m-polynomials and of degree m� 1.

3. We have R = R
1

+ (R
3

�R
2

�R
1

)⇥Xm +R
2

⇥X2m. R
1

, R
2

, and R
3

are polynomials of degree 2m�2 = n�2, and thus (n�1)-polynomials.

Following this computation scheme, M(n) = 3M(n
2

) = 3n2

4

, as the
computation of R

1

, R
2

, and R
3

each requires M(m) = M(n
2

) multipli-
cations. There are four types of additions: (1) those involved in the

Chapter 3

Greedy algorithms

This chapter explains the reasoning in finding optimal greedy algorithms. The
main feature of a greedy algorithm is that it builds the solution step by step,
and, at each step, it makes a decision that is locally optimal. Throughout
Sections 3.1 to 3.3, we illustrate this principle with several examples, and also
outline situations where greedy algorithms are not optimal; taking a good
local decision may prove a bad choice in the end! In Section 3.4, we also cover
matroids, a (mostly theoretical) framework to prove the optimality of greedy
algorithms. All of these techniques are then illustrated with a set of exercises
in Section 3.5, with solutions found in Section 3.6.

3.1 Motivating example: The sports hall

Problem. Let us consider a sports hall in which several events should be
scheduled. The goal is to have as many events as possible, given that two
events cannot occur simultaneously (only one hall). Each event i is character-
ized by its starting time si and its ending time ei. Two events are compatible
if their time intervals do not overlap. We would like to solve the problem,
i.e., find the maximum number of events that can fit in the sports hall, with
a greedy algorithm.

A first greedy algorithm. The first idea consists in sorting events by
increasing durations ei � di. At each step, we schedule an event into the
sports hall if it fits, i.e., if it is compatible with events that have already been
scheduled. The idea is that we will be able to accommodate more shorter
events than longer ones. However, we make local decisions at each step of
the algorithm (this is a greedy algorithm!), and it turns out that we can make
decisions that do not lead to the optimal solution. For instance, in the example
of Figure 3.1, the greedy algorithm schedules only the shortest event i, while
the two compatible events j and k would lead to a better solution.

A second greedy algorithm. In order to avoid the problem encountered in
the previous example, we design a new algorithm that sorts events by starting

53

54 Chapter 3. Greedy algorithms

FIGURE 3.1: The first greedy algorithm is not optimal.

times si, and then proceeds similarly to the first greedy algorithm. In the
example of Figure 3.1, this greedy algorithm returns the optimal solution.
However, the local decisions that are made may not be the optimal ones, as
shown in the example of Figure 3.2. Indeed, the algorithm schedules event i
at the first step, and then no other event can be scheduled, while it would be
possible to have eight compatible events. Note that the first greedy algorithm
would return the optimal solution for this example.

FIGURE 3.2: The second greedy algorithm is not optimal.

A third greedy algorithm. Building upon the first two algorithms, we
observe that it is always a good idea to first select events that do not intersect
with many other events. In the first example, events j and k intersect with
only one other event, while event i intersects with two events and is chosen
later; therefore, the new algorithm finds the optimal solution. Similarly in the
second example, event i intersects eight other events and it is the only event
not to be scheduled. However, this greedy algorithm is still not optimal. We
can build an example in which we force the algorithm to make a bad local
decision. In the example of Figure 3.3, event i is the first to be chosen because
it has the smallest number of intersecting events. However, if we schedule i,
we can have only three compatible events, while we could have a solution with
four compatible events, j, k, l, and m.

FIGURE 3.3: The third greedy algorithm is not optimal.

3.2. Designing greedy algorithms 55

An optimal greedy algorithm. Even though many greedy choices do not
lead to an optimal solution, as observed with the preceding algorithms, there
is a greedy algorithm that solves the sports hall problem in polynomial time.
The idea is to sort the events by increasing ending times ei, and then to
greedily schedule the events. This way, at each step we fit the maximum
number of events up to a given time, and we never make a bad decision. We
now prove the optimality of this algorithm.

Let f
1

be the event with the smallest ending time. We prove first that
there exists an optimal solution that schedules this event. Let us consider an
optimal solution O = {fi

1

, fi
2

, . . . , fi
k

}, where k is the maximum number of
events that can be scheduled in the sports hall, and where events are sorted
by nondecreasing ending times. There are two possible cases: either (i) fi

1

=
f
1

, the optimal solution schedules f
1

, and nothing needs to be done, or (ii)
fi

1

6= f
1

. In this second case, we replace fi
1

with f
1

in solution O. We have
e
1

6 ei
1

by definition of event f
1

, and ei
1

6 si
2

because O is a solution to the
problem (fi

1

and fi
2

are compatible). Therefore, e
1

6 si
2

and, thus, fi
2

is
compatible with f

1

. The new solution is still optimal (the number of events
remain unchanged), and event f

1

is scheduled.
The proof works by induction, following the previous reasoning. Once f

1

is scheduled, we consider only events that do not intersect with f
1

, and we
iterate the reasoning on the remaining events to conclude the proof.

Finally, we emphasize that there can be many optimal solutions, and not all
of them will include the first event f

1

selected by the greedy algorithm, namely
the event with the smallest end time. However, schedules that select f

1

are
dominant, meaning that there exists an optimal solution that includes f

1

.

3.2 Designing greedy algorithms

The example of the sports hall gives a good introduction to the design prin-
ciples of greedy algorithms. Actually, the binary method to compute xn in
Section 1.1.2 also is a greedy algorithm, in which we decide at each step which
computation to perform. We can formalize the reasoning to find greedy algo-
rithms as follows:

1. Decide on a greedy choice that allows us to locally optimize the problem;

2. Search for a counterexample that shows that the algorithm is not opti-
mal (and go back to step 1 if a counterexample is found), or prove its
optimality through steps 3 and 4;

3. Show that there is always an optimal solution that performs the greedy
choice of step 1;

56 Chapter 3. Greedy algorithms

4. Show that if we combine the greedy choice with an optimal solution of
the subproblem that we still need to solve, then we obtain an optimal
solution.

We say that a greedy algorithm is a top-down algorithm, because at each
step we make a local choice, and we then have a single subproblem to solve,
given this choice. On the contrary, we will see in Section 4 that dynamic
programming algorithms are bottom-up; we will need results of multiple sub-
problems to make a choice.

3.3 Graph coloring

In this section, we further illustrate the principle of greedy algorithms through
the example of graph coloring. The problem consists in coloring all vertices of
a graph using the minimum number of colors, while enforcing that two vertices,
which are connected with an edge, are not of the same color. Formally, let
G = (V,E) be a graph and c : V ! {1..K} be a K-coloring such that
(x, y) 2 E) c(x) 6= c(y). The objective is to minimize K, the number of
colors.

3.3.1 On coloring bipartite graphs

We start with a small theorem that allows us to define a bipartite graph,
defined as a graph that can be colored with only two colors.

THEOREM 3.1. A graph can be colored with two colors if and only if all
its cycles are of even length.

Proof. Let us first consider a graph G that can be colored with two colors. Let
c(v) 2 {1, 2} be the color of vertex v. We prove by contradiction that all cycles
are of even length. Indeed, if G has a cycle of length 2k+1, v

1

, v
2

, . . . , v
2k+1

,
then we have c(v

1

) = 1, say, which implies that c(v
2

) = 2, c(v
3

) = 1, until
c(v

2k+1

) = 1. However, since it is a cycle, there is an edge between v
1

and
v
2k+1

, so they cannot be of the same color, which leads to the contradiction.
Now, if all the cycles of the graph G are of even length, we search for a

2-coloring of this graph. We assume that G is connected (the problem is
independent from one connected component to another). The idea consists in
performing a breadth-first traversal of G.

Le x
0

2 G, X
0

= {x
0

} and Xn+1

=
S

y2X
n

N(y), where N(y) is the set
of nodes connected to y, but not yet included in a set Xk, for k 6 n. Each
vertex appears in one single set, and we color with color 1 the elements from
sets X

2k, and with color 2 the elements from sets X
2k+1

.

3.3. Graph coloring 57

This 2-coloring is valid if and only if two vertices connected by an edge are
of di↵erent colors. If there is an edge between y 2 Xi and z 2 Xj , where i
and j are both either even or odd, then we have a cycle x

0

, . . . , y, z, . . . , x
0

of length i + j + 1, and this value is even, leading to a contradiction. The
coloring, therefore, is valid, which concludes the proof.

In a bipartite graph, if we partition vertices into two sets according to the
colors, all edges go from one set to the other. We retrieve here the usual
definition of bipartite graphs, namely graphs whose vertices are partitioned
into two sets and with no edge inside these sets. We now consider colorings of
general graphs, and we propose a few greedy algorithms to solve the problem.

3.3.2 Greedy algorithms to color general graphs

The first greedy algorithm takes the vertices in a random order, and, for each
vertex v, it colors it with the smallest color number that has not been yet
given to a neighbor of v, i.e., a node connected to v.

Let Kgreedy1 be the total number of colors needed by this greedy algorithm.
Then we have Kgreedy1 6 �(G) + 1, where �(G) is the maximal degree of
a vertex (number of edges of the vertex). Indeed, at any step of the algo-
rithm, when we color vertex v, it has at most �(G) neighboring vertices and,
therefore, the greedy algorithm never needs to use more than �(G)+1 colors.

Note that this algorithm is optimal for a fully connected graph (a clique),
since we need �(G)+1 colors to connect such a graph (one color per vertex).
However, this algorithm is not optimal in general; on the following bipartite
graph, if the order of coloring is 1 and then 4, we need three colors, while the
optimal coloring uses only two colors.

1 2

3 4

In order to improve the previous algorithm, one idea consists in ordering
vertices in a smart way, and then in proceeding as before, i.e., color each
vertex in turn with the smallest possible color.

Let n = |V | be the number of vertices, and di be the degree of vertex vi.
We have Kgreedy2 6 max

16i6n min(di+1, i). Indeed, when we color vertex vi,
it has at most min(di, i � 1) neighbors that have already been colored, and
thus its own color is at most 1+min(di, i� 1) = min(di +1, i). To obtain the
result, we take the maximum of these values on all vertices.

This result suggests that it would be smart to first color vertices with a
high degree, so that we have min(di + 1, i) = i. Therefore, the second greedy
algorithm sorts the vertices by nonincreasing degrees.

Once again, the algorithm is not optimal. On the following bipartite graph,
we choose to color vertex 1, then vertex 4, which imposes the use of three
colors instead of the two required ones.

58 Chapter 3. Greedy algorithms

1 3 7 8

5 6 2 4

Based on these ideas, several greedy algorithms can be designed. In par-
ticular, a rather intuitive idea consists in giving priority to coloring vertices
that have already many colored neighbors. We define the color-degree of a
vertex as the number of its neighbors that are already colored. Initially, the
color-degree of each vertex is set to 0, and then it is updated at each step of
the greedy algorithm.

The following greedy algorithm is called the Dsatur algorithm in [20]. The
ordering is done by (color-degree, degree); we choose a vertex v with maxi-
mum color-degree, and such that its degree is the largest among the vertices
with maximum color-degree. This vertex v is then colored with the smallest
possible color, and the color-degrees of the neighbors of v are updated before
proceeding to the next step of the algorithm. We illustrate this algorithm on
the following example:

v

7

v

1

v

2

v

6

v

3

v

4

v

5

We first choose a vertex with maximum degree, for instance v
1

, and it is
colored with color 1. The color-degree of v

2

, v
5

, v
6

, and v
7

becomes 1, and we
choose v

2

, which has the maximum degree (between these four vertices); it is
assigned color 2. Now, v

7

is the only vertex with color-degree 2; it is given
the color 3. All remaining noncolored vertices have the same color-degree 1
and the same degree 3, we arbitrarily choose v

3

and color it with 1. Then, v
4

,
with color-degree 2, receives color 3. Finally, v

5

is colored in 2 and v
6

in 3;
the graph is 3-colored, and it is an optimal coloring.

The name Dsatur comes from the fact that maximum color-degree vertices
are saturated first. We prove below that Dsatur always returns an optimal
coloring on bipartite graphs; however, it may use more colors than needed on
arbitrary graphs.

THEOREM 3.2. The Dsatur algorithm is optimal on bipartite graphs, i.e.,
it always succeeds to color them with two colors.

Proof. Consider a connected bipartite graph G = (V,E), where V = B [
R and each edge in E is connecting a vertex in B (color 1 is blue) and a
vertex in R (color 2 is red). Note first that the first two greedy algorithms
may fail. Let G be such that B = {b

1

, b
2

, b
3

}, R = {r
1

, r
2

, r
3

}, and E =
{(b

1

, r
2

), (b
2

, r
3

), (b
3

, r
1

), (bi, ri)|1 6 i 6 3}, as illustrated below.

3.3. Graph coloring 59

r

3

b

1

r

1

b

2

b

3

r

2

All vertices have a degree 2. If we start by coloring a vertex of B, for
instance b

1

, and then a nonconnected vertex of R, r
3

, with the same color 1,
it is not possible to complete the coloring with only two colors. The use of the
color-degree prevents us from such a mistake, since once b

1

has been colored,
we need to color either r

1

or r
2

with the color 2, and finish the coloring
optimally.

In the general case, with Dsatur, we first color a vertex, for instance from B,
with color 1 (blue). Then we have to color a vertex of color-degree 1, that
is, a neighboring vertex. This neighboring vertex belongs necessarily to R. It
is colored with color 2 (red). We prove by induction that at any step of the
algorithm, all colored vertices of B are colored in blue, and all vertices of R
are colored in red. Indeed, if the coloring satisfies this property at a given
step of the algorithm, we choose next a vertex v with nonnul color-degree.
Because the graph is bipartite, all its neighbors are in the same set and have
the same color: red if v 2 B, or blue if v 2 R. Vertex v, therefore, is colored
in red if it is in R, or in blue if it is in B.

We exhibit a counterexample to show that Dsatur is not optimal on arbi-
trary graphs.

v

1

v

4

v

5

v

6

v

7

v

8

v

2

v

3

Dsatur can choose v
4

first, because it has the maximum degree 3; it is
colored with 1. Between the vertices with color-degree 1, the algorithm can
(arbitrarily) choose v

5

, which is colored with 2. Then the algorithm can choose
to color v

6

, using color 1. Then, v
1

is chosen between vertices of color-degree 1
and degree 3, and it is colored with 2. We finally need to use colors 3 and 4
for v

2

and v
3

, while this graph could have been colored with only three colors
(v

1

, v
5

, v
7

with color 1, v
2

, v
6

, v
8

with color 2, and v
3

, v
4

with color 3).
To build this counterexample, we force Dsatur to make a wrong decision,

by coloring both v
4

and v
6

with color 1, and v
1

with color 2, which forces four
colors because of v

2

and v
3

. Note that it would be easy to built an example
without any tie (thereby avoiding random choices) by increasing the degree
of some vertices (for instance, in the example, v

7

and v
8

are just there to
increase the degrees of v

5

and v
6

).
The problem of coloring general graphs is NP-complete, as will be shown in

Chapter 7. However, for a particular class of graphs, a smart greedy algorithm
can return the optimal solution, as we detail below.

60 Chapter 3. Greedy algorithms

3.3.3 Coloring interval graphs

We focus now on interval graphs. Given a set of intervals, we define a graph
whose vertices are intervals, and whose edges connect intersecting intervals.
The following example shows such a graph, obtained with a set of seven in-
tervals.

a d e

b

c

 f

 g

b

d

a g

fc e

The problem of coloring such a graph is quite similar to the sports hall
problem. Indeed, one can see each interval as representing an event, with its
starting and ending time, and the color as representing a sports hall. Then,
only compatible events will be colored with the same color, and we could use
one sports hall per set of compatible events. If we minimize the number of
colors, we minimize the number of sports halls that are needed to organize all
events.

Graphs that are obtained from a set of intervals are called interval graphs.
We define the following greedy algorithm: intervals (i.e., vertices) are sorted
by nondecreasing starting times (or left extremity). In the example, the order
is a, b, c, d, e, f, g. Then, the greedy coloring is done as before; for each chosen
vertex, we color it with the smallest compatible color. On the example, we
obtain the coloring 1, 2, 3, 1, 1, 2, 3, which is optimal, as the graph contains a
cycle of length 3.

We prove now that this greedy algorithm is optimal for any interval graph.
Let G be such a graph, and let dv be the starting time of interval v corre-
sponding to vertex v. We execute the greedy algorithm; it uses k colors. If
vertex v receives color k, then this means that k�1 intervals that start no later
than dv intersect this interval and had all been colored with colors 1 to k� 1;
otherwise, v would be colored with a color c 6 k�1. All of these intervals are
thus intersecting, because they all contain the point dv; therefore, graph G
contains a clique of size k. Since all vertices of a clique must be colored with
distinct colors, we cannot color the graph with less than k colors. The greedy
algorithm, therefore, is optimal.

Once again, we point out that the order chosen by the greedy algorithm
is vital, since we could force the greedy algorithm to make a wrong decision,
even on a bipartite graph as below, if we would not proceed from left to right.
We could first color a, then d, leading to the use of three colors instead of two.

3.4. Theory of matroids 61

3.4 Theory of matroids

In this section are elementary results on matroids, a framework that allows us
to guarantee the optimality of a generic greedy algorithm in some situations.
Unfortunately, it is not easy to characterize which problems can be captured
as matroid instances. Still, the theory is beautiful, and we outline its main
ideas.

Matroids. The term matroid was introduced in 1935 by H. Whitney [108],
while working on the linear independence of the vector columns of a matrix.
We define it below and illustrate the concept through a canonical example.

DEFINITION 3.1. (S, I) is a matroid if S is a set of n elements, and I is
a collection of subsets of S, with the following properties:

i. X 2 I) (8 Y ⇢ X, Y 2 I) (hereditary property), and
ii. (A,B 2 I, |A| < |B|)) 9x 2 B\A s.t. A[{x} 2 I (exchange property).

If X 2 I, X is said to be an independent set.

Readers familiar with linear algebra will immediately see that linearly inde-
pendent subsets of a given vector set form a matroid. The canonical computer
science example follows.

Example of matroid: Forests of a graph. Let G = (V,E) be a (nondi-
rected) graph. We define a matroid with S = E (the elements are the edges
of the graph), and I = {A ⇢ E | A has no cycle}. Therefore, a set of edges
is an independent set if and only if this set of edges is a forest of the graph,
i.e., a set of trees (a tree is a connected graph with no cycle). We check that
this matroid satisfies both properties.

(i) The hereditary property. It is pretty obvious that a subset of a forest is
a forest; if we remove edges from a forest, we cannot create a cycle, thus we
still have a forest.

(ii) The exchange property. Let A and B be two forests of G (i.e., A,B 2 I)
such that |A| < |B|. |A| is the number of edges in forest A, and every vertex
is part of a tree (an isolated vertex with no edges is a tree made of a single
vertex). Then A (resp. B) contains |V |� |A| (resp. |V |� |B|) trees. Indeed,
each time an edge is added to the independent set, two trees are connected,
therefore decrementing the number of trees by one. Thus, B contains less
trees than A, and there exists a tree T of B that is not included in a tree of A,
i.e., two vertices u and v of tree T are not in the same tree of A. On the path
from u to v in T , there are two vertices, connected by an edge (x, y), that are
not in the same tree of A. Then, if we add this edge to the forest A, we still
have a forest, i.e., A [{(x, y)} 2 I, which concludes the proof.

62 Chapter 3. Greedy algorithms

DEFINITION 3.2. Let F 2 I; x /2 F is an extension of F if F [{x} 2 I,
i.e., F [{x} is an independent set. An independent set is maximal if it has
no extensions.

In our running example, any edge connecting two distinct trees of a forest
is an extension. A forest is maximal if adding any edge to it would create a
cycle. A maximal independent set in the example of the forest is a spanning
tree (or spanning forest if G is not connected).

LEMMA 3.1. All maximal independent sets are of same cardinal.

Proof. If this lemma was not true, we could find an extension to the inde-
pendent set of smaller cardinal thanks to the exchange property, which would
mean that it was not maximal.

We introduce a last definition: We add weights to the elements of the
matroid and, therefore, obtain a weighted matroid.

DEFINITION 3.3. In a weighted matroid, each element of S has a weight:
x 2 S 7! w(x) 2 N. The weight of a subset X ⇢ S is defined as the sum of
the weights of its elements: w(X) =

P

x2X w(x).

Greedy algorithms on a weighted matroid. The problem is to find an
independent set of maximum weight. The idea of the greedy algorithm is to
sort elements of S by nonincreasing weights. We start with the empty set,
which always is an independent set because of the hereditary property. Then
we add elements into this set, as long as we keep an independent set. This
generic algorithm is formalized in Algorithm 3.1.

1 Sort elements of S = {s
1

, . . . , sn} by nonincreasing weight:
w(s

1

) > w(s
2

) > · · · > w(sn)
2 A ;
3 for i = 1 to n do
4 if A [{si} 2 I then
5 A A [{si}

ALGORITHM 3.1: Independent set of maximum weight.

THEOREM 3.3. Algorithm 3.1 returns an optimal solution to the problem
of finding an independent set of maximum weight in the weighted matroid.

Proof. Let sk be the first independent element of S, i.e., the first index i of
the algorithm such that {si} ⇢ I. We first prove that there exists an optimal
solution that contains sk.

3.4. Theory of matroids 63

Let B be an optimal solution, i.e., an independent set of maximum weight.
If sk 2 B, we are done. Otherwise, let A = {sk} 2 I. While |B| > |A|, we
apply the exchange property to add an element of B to the independent set A.
We obtain the independent set with |B| elements, A = {sk} [B\{sj}, where
{sj} is the one element of B that has not been chosen for the extension (there
is already element sk in A, and at the end, |A| = |B|, therefore all elements
of B but one are extensions of A).

We now compare the weights. We have w(A) = w(B) � w(sj) + w(sk).
Moreover, w(sk) > w(sj), because sj is independent (by hereditary property),
and j > k (by definition of sk). Finally, w(A) > w(B), and since B is an
optimal solution, w(A) = w(B). The independent set A is of maximal weight,
and it contains sk, which proves the result.

To prove the theorem, we show by induction that the greedy algorithm
returns the optimal solution; we restrict the search to a solution that con-
tains sk, and we start the reasoning again with S0 = S\{sk}, and
I 0 = {X ⇢ S0 | X [{sk} 2 I}.

Back to the running example. Theorem 3.3 proves the optimality of
Kruskal’s algorithm to build a minimum weight spanning tree [69]. Edges
are sorted by nondecreasing weight, and we choose greedily the next edge
that does not add a cycle when added to the current set of edges. Of course,
we should discuss a suitable data structure so that we can easily check the
condition “no cycle has been created.” With a simple array, we can check
the condition in O(n2), and it is possible to achieve a better complexity with
other data structures [28]. In any case, the complexity of the greedy algorithm
remains polynomial.

Example: A semimatching problem. In this very simple example, we
are given a directed weighted graph. The problem is to find a maximum
weight subset of the edges so that no two starting points are the same. A
natural greedy algorithm would sort all edges according to their weight in
nonincreasing order, then consider all edges in this order, selecting an edge
(i, j) if and only if no edge (i, j0) had been selected earlier. In fact, this
greedy algorithm selects for every node the outgoing edge that has maximum
weight, hence, it can be easily implemented in time O(n+m), where n is the
number of nodes, and m the number of edges, of the directed graph. While
the optimality of this greedy algorithm is not di�cult to prove directly, we
prove it using matroid theory.

The problem can be cast in terms of a matrix W with nonnegative entries,
with the goal to select a set of entries whose sum is maximal, subject to the
constraint that no two entries are from the same row of the matrix. There
are n rows in W , one per node in the graph. Let Wij be the entry in row
i and column j of the matrix W , and let xij 2 {0, 1} be the indicator of

64 Chapter 3. Greedy algorithms

whether Wij is selected. We aim at maximizing
P

i,j Wijxij subject to the set
of constraints

P

j xij 6 1 for each row i. The greedy algorithm chooses entries
one at a time in order of weight, largest first (and breaking ties arbitrarily),
rejecting an entry only if an entry in the same row has already been chosen.
Here is an example, where chosen entries are underlined:

W =

0

B

B

@

12 7 10 11
8 6 4 16
3 5 2 1
14 13 9 15

1

C

C

A

To prove that the greedy algorithm is optimal, we exhibit the matroid;
independent sets are sets of entries such that no two of them are from the
same row of the matrix. We show that both properties hold. The hereditary
property is obvious. Indeed, when removing entries from an independent set,
we cannot create a row with two entries or more. The exchange property is
not di�cult either. Let A and B be two independent sets with |A| < |B|.
There is at most one element per row in A and B, so there must be a row
that contains an element of B and no element of A. Adding this element to
A preserves its independence. This concludes the proof of optimality of the
greedy algorithm.

As mentioned before, it is not easy to exhibit matroid structures for which
interesting and e�cient greedy algorithms can be derived. A more compli-
cated example that involves scheduling tasks with deadlines is studied in Ex-
ercise 3.5. We refer the reader to [72, 95] for much more material on matroids
and greedoids.

3.5 Exercises

Exercise 3.1: Interval cover (solution p. 68)

We are given a set X = {x
1

, . . . , xn} of n points on a line.

1. Design a greedy algorithm that determines the smallest set of closed
intervals of length 1 that contains all the points.

2. Prove the optimality of the algorithm and give its complexity.

3. Could you use the theory of matroids to prove the optimality of the
algorithm?

Exercise 3.2: Memory usage (solution p. 69)

Given a memory of size L, we want to store a set of n files P = (P
1

, . . . , Pn).
File Pi (1 6 i 6 n) is of size ai, where ai is an integer. If

Pn
i=1

ai > L, we

3.5. Exercises 65

cannot store all files. We need to select a subset Q ✓ P of files to store, such
that

P

P
i

2Q ai 6 L. We sort the files Pi by nondecreasing sizes (a
1

6 · · · 6
an).

1. Write a greedy algorithm that maximizes the number of files in Q. The
output must be a Boolean table S such that S[i] = 1 if Pi 2 Q, and
S[i] = 0 otherwise. What is the complexity of this algorithm, in number
of comparisons and number of arithmetic operations?

2. Prove that this strategy always returns a maximal subset Q. We define

the utilization ratio as
P

P

i

2Q

a
i

L . How small can it be with our strategy?

3. We now want to maximize the utilization ratio, i.e., fill the memory
as much as possible. Design a greedy algorithm for this new objective
function.

4. Is the latter greedy algorithm optimal? How small can the utilization
ratio be with this algorithm? Prove the result.

Exercise 3.3: Scheduling dependent tasks on several machines
(solution p. 71)

Let G = (V,E) be a directed acyclic graph (DAG). Here G is a task graph.
In other words, each node v 2 V represents a task, and each edge e 2 E
represents a precedence constraint, i.e., if e = (v

1

, v
2

) 2 E, then the execution
of v

2

cannot start before the end of the execution of v
1

. We need to schedule
the tasks on an unlimited number of processors. Moreover, the execution time
of task v 2 V is w(v). The problem is to find a valid schedule, i.e., a start time
�(v) for each task v such that no precedence constraints are violated, and that
minimizes the total execution time. The reader may refer to Section 6.4.4,
p. 140, for more background on scheduling.

1. Define formally (by induction) the top level tl(v) of a task v 2 V , which
is the earliest possible starting time of task v.

2. Propose a greedy schedule of the tasks, based on the top levels, and
prove its optimality. This schedule is called �free.

3. We define the bottom level bl(v) of a task as the largest weight of a path
from v to an output task, i.e., a task with no successor. The weight
of the path includes the weight of v. Define bottom levels formally,
and propose a schedule of the tasks, based on the bottom levels, that is
called �late.

4. Show that any optimal schedule � satisfies:

8v 2 V, �free(v) 6 �(v) 6 �late(v).

66 Chapter 3. Greedy algorithms

5. Give an example of a DAG that has at least three di↵erent optimal
schedules.

Exercise 3.4: Scheduling independent tasks with priorities
(solution p. 72)

We need to schedule n independent tasks, T
1

, T
2

, . . . , Tn, on a single pro-
cessor. Each task Ti has an execution time wi and a priority pi. Because
we execute the tasks sequentially on a single processor and as we target an
optimal schedule, we can focus on schedules that execute tasks as soon as
possible. A schedule is then fully defined by the order followed to execute the
tasks. In other words, here, a schedule of tasks T

1

, . . . , Tn is a permutation
T�(1), T�(2), . . . , T�(n), specifying the order in which tasks are executed. We
assume that the first task to be executed is processed from time 0 on. The
cost of a schedule is defined as

Pn
i=1

piCi, where Ci is the completion time of
task Ti, i.e., the date at which its processing was completed. We look for a
schedule that minimizes this cost.

1. Consider any schedule and two tasks Ti and Tj that are executed con-
secutively under this schedule. Which task should be executed first in
order to minimize the cost?

2. Design an optimal greedy algorithm. What is its complexity?

Exercise 3.5: Scheduling independent tasks with deadlines
(solution p. 73)

The goal here is to exhibit a matroid to prove the optimality of a greedy
algorithm. We need to schedule n independent tasks, T

1

, T
2

, . . . , Tn, on
a single processor. Each task Ti is executed in one time unit, but it has
a deadline di that should not be exceeded. If a task does not complete its
execution before its deadline, there is a cost wi to pay. The objective here
is to find a schedule that minimizes the sum of the costs of the tasks that
are completed after their deadlines. A schedule, in this exercise, will be a
function, � : T ! N, that associates to each task its execution time, such
that two tasks cannot be scheduled at the same time, i.e., for all 1 6 i, j 6 n,
�(Ti) 6= �(Tj). The first task can be executed at time 0.

We say that a task is on time if it finishes its execution before its deadline,
and that it is late otherwise. Note that minimizing the cost of late tasks is
equivalent to maximizing the cost of on-time tasks. A canonical schedule is
such that (i) on-time tasks are scheduled before late tasks, and (ii) on-time
tasks are ordered by nondecreasing deadlines.

1. Prove that there is always an optimal schedule that is canonical, i.e., we
can restrict the search to canonical schedules.

3.5. Exercises 67

2. Design a greedy scheduling algorithm to solve the problem. What is its
complexity?

3. Illustrate the greedy algorithm on the following example with seven
tasks; the tasks are sorted by nonincreasing wi (wi = 8�i, for 1 6 i 6 7),
and their deadlines are as follows: d

1

= 4, d
2

= 2, d
3

= 4, d
4

= 3, d
5

= 1,
d
6

= 4, and d
7

= 6.

4. Prove the optimality of the algorithm by exhibiting a matroid.

While Exercises 3.4 and 3.5 deal with simple uniprocessor scheduling prob-
lems for which the greedy algorithm is optimal, there are many more complex
scheduling problems [21]. These include, for instance, scheduling problems
with tasks with di↵erent execution times, several machines, precedence con-
straints between tasks, and so on. More scheduling problems are described in
Section 6.4.4, p. 140.

Exercise 3.6: Edge matroids (solution p. 74)

This exercise aims at illustrating the matroid theory. The goal here is to
exhibit a weighted matroid, to design the corresponding greedy algorithm,
and prove its optimality.

This exercise is a generalization of the semimatching algorithm presented
in Section 3.4. We are given a directed graph G = (V,E) whose edges have
integer weights. Let w(e) be the weight of edge e 2 E. We also are given a
constraint f(u) > 0 on the out-degree of each node u 2 V . The goal is to
find a subset of edges of maximal weight, and whose out-degree at any node
satisfy the constraint. We see that if f(u) = 1 for all nodes, we retrieve the
semimatching algorithm.

1. Define independent sets and prove you have a matroid.

2. What is the cardinal of maximal independent sets?

3. What is the complexity of the (optimal) greedy algorithm?

Exercise 3.7: Hu↵man code (solution p. 75)

Let ⌃ be a finite alphabet with at least two elements. A binary code is
an injective application from ⌃ to the set of finite suites of 0 and 1 (i.e., a
binary word, also called code word). The code can be naturally extended
by concatenation to a mapping defined on the set ⌃⇤ of words using the
alphabet ⌃. A code is said to be of fixed length if all the letters in ⌃ are coded
by binary words of same size. A code is said to be prefix if no code word is
a prefix of another code word. Given the code of a word in ⌃⇤, the decoding
operation consists in finding the original word.

68 Chapter 3. Greedy algorithms

1. Prove that the decoding operation has a unique solution, both for a code
of fixed length, and for a prefix code.

2. Represent a prefix code by a binary tree, where leaves are the letters of
the alphabet ⌃.

3. Consider a text in which each letter c 2 ⌃ appears with a frequency
f(c) 6= 0. To each prefix code of this text, represented by a tree T , is
associated a cost, defined by B(T) =

P

c2⌃

f(c)⇥ lT (c), where lT (c) is
the size of the code word of c. If f(c) is exactly the number of occurrences
of c in the text, then B(T) is the number of bits in the encoded text. A
prefix code T is optimal if, for this text, B(T) is minimum. Prove that
for any optimal prefix code there is a corresponding binary tree with |⌃|
leaves and |⌃|� 1 internal nodes.

4. Prove that there is an optimal prefix code such that two letters of small-
est frequencies are siblings in the tree (i.e., their code words have the
same size, and di↵er only by the last bit).

Hint: Prove also that these two letters are leaves of maximal depths.

5. Given x and y, two letters of smallest frequencies, we consider the al-
phabet ⌃0 = (⌃ \ {x, y}) [{z}, where z is a new letter with frequency
f(z) = f(x) + f(y). Let T 0 be the tree of an optimal code for ⌃0. Prove
that the tree T obtained from T 0 by replacing the leave associated to z
by an internal node with two leaves x and y is an optimal code for ⌃.

6. Using both previous questions, design an algorithm that returns an op-
timal code, and give its complexity. Illustrate the algorithm on the
following problem instance: ⌃ = {a, b, c, d, e, g}, f(a) = 45, f(b) = 13,
f(c) = 12, f(d) = 16, f(e) = 9, and f(g) = 5.

3.6 Solutions to exercises

Solution to Exercise 3.1: Interval cover

1. Algorithm 3.2 is a greedy algorithm to solve the interval cover problem.
It builds a maximal length interval starting at the first point on the line,
remove all points included in that interval, and then iterates.

2. Sorting the points cost O(n log(n)) when the execution of the while loop
costs O(n). Therefore, the algorithm runs in O(n log(n)).

We prove the optimality of Algorithm 3.2 by induction on the number
n of points. If n = 1, there is a single point, the algorithm returns a
single interval and thus is optimal. Now, assume we have proved the

Chapter 4

Dynamic programming

In this chapter, we focus on how to find optimal dynamic-programming al-
gorithms. A particular attention is paid to problem size in order to avoid
exponential-cost algorithms. The chapter is illustrated with two classical ex-
amples: the coin changing problem and the knapsack problem. These tech-
niques are then further illustrated with a set of exercises in Section 4.4, with
solutions found in Section 4.5.

4.1 The coin changing problem

The problem is the following: If we want to make change for S cents, and we
have infinite supply of each coin in the set Coins = {v

1

, v
2

, . . . , vn}, where vi
is the value of the i-th coin, what is the minimum number of coins required
to reach the value S?

Greedy algorithm. We propose a greedy algorithm to solve the problem.
First, we sort coins by nonincreasing values, then for each coin value we take
as many coins as possible. The algorithm is formalized as Algorithm 4.1.

1 Sort elements of Coins = {v
1

, . . . , vn} by nonincreasing values:
v
1

> v
2

> · · · > vn
2 R S { R is the remaining sum to reach; it is initially S }
3 for i = 1 to n do
4 ci = bRv

i

c { ci is the number of coins of value vi that are taken }
5 R R� ci ⇥ vi { R is updated }

ALGORITHM 4.1: Greedy algorithm for the coin changing problem.

We first assume that Coins = {10, 5, 2, 1} (a typical European set of coins).
In this case, we can prove that Algorithm 4.1 is optimal:

81

82 Chapter 4. Dynamic programming

• An optimal solution returns, at most, one coin of value 5 (if there are
two, it is better to use one single coin of value 10).

• An optimal solution returns, at most, one coin of value 1 (otherwise, we
can use a coin of value 2).

• An optimal solution returns, at most, two coins of value 2 (otherwise,
to obtain 6 = 2 + 2 + 2, we would rather use 6 = 5 + 1: one coin 5 and
one coin 1).

Therefore, in the optimal solution, there cannot be more than four coins that
are not of value 10, and 5 + 2 + 2 + 1 = 10, so if there are four such coins,
we would rather use a coin of 10. Thus, the optimal solution uses, at most,
three coins that are not of value 10, and their total is at most 9. We can then
conclude that the optimal number of coins of value 10 is b S

10

c, which is the
number selected by the greedy algorithm. It is then easy to conclude that the
greedy algorithm always selects the optimal number of coins of each value.

Note, however, that the greedy algorithm is not optimal for any set of coins.
For instance, if Coins = {6, 4, 1} and S = 8, the greedy algorithm requires
three coins 8 = 6 + 1 + 1, while the optimal solution requires two coins of
value 4. Still, U.S. readers will be pleased to know that the greedy algorithm
is optimal for the set Coins = {25, 10, 5, 1}. The proof follows an ad hoc
case analysis very similar to that conducted for European coins. Because the
greedy algorithm is not always optimal, we explore another idea to solve the
problem.

An optimal algorithm. The problem is to find the minimum number of
coins required to reach sum S, with coins of value {v

1

, . . . , vn}, which we
denote as z(S, n). Because the greedy algorithm may fail, we try to solve
more subproblems so that we do not take a bad greedy choice as we did in the
previous example. We also allow ourselves to come back to a choice already
made and try another set of coins.

We investigate a way to solve the problem that is in appearance more com-
plex than the initial problem. In other words, we artificially ask for more than
requested, and aim at finding z(T, i), the minimum number of coins required
to reach sum T 6 S with the first i coins, i.e., coins selected from the subset
{v

1

, . . . , vi} (where 0 6 i 6 n). Instead of computing only z(S, n), the original
problem, we compute S ⇥ n values z(T, i). But now, we have a recurrence
relation to compute z(T, i):

z(T, i) = min

⇢

z(T, i� 1) i-th coin not used;
z(T � vi, i) + 1 i-th coin used (at least) once.

The recurrence must be properly initialized; values of i and T are decreasing,
so we consider the cases i = 0 and T 6 0:

• z(T, 0) = +1 for T > 0: There are no more coins, therefore, we cannot
reach the sum T > 0 and this solution cannot be correct.

• z(0, i) = 0: We do not need any coin to reach the sum T = 0.

4.1. The coin changing problem 83

• z(T, i) = +1 for T < 0: We have exceeded the sum; this solution
cannot be correct.

Thanks to the recurrence relation and the initialization conditions, we are
now able to compute z(S, n) and to solve the original problem. This kind of
algorithm is called a dynamic-programming algorithm.

If the recurrence is applied without memoizing which values have already
been computed, using a recursive algorithm, there will be an exponential num-
ber of computations. Note that the word memoization comes from ”memo”:
the idea consists of memoizing the values so that we can look them up later.

However, we need to compute only S ⇥ n values of the function z(T, i)
(1 6 T 6 S and 1 6 i 6 n). This can be done either recursively, by memoizing
the values that have already been computed, or iteratively, with, for instance,
a loop with increasing i and then a loop with increasing T , so that we always
have the values required to compute z(T, i), i.e., z(T, i�1) and z(T �vi, i), as
shown in Algorithm 4.2. The precedence constraints are shown in Figure 4.1,
and they are always enforced with this algorithm (for details about precedence
constraints, see Section 6.4.4, p. 140). Note that we ensure that we never call
the function with T < 0, and, therefore, we do not need the third initialization
condition.

FIGURE 4.1: Precedence constraints for the coin-changing dynamic-
programming algorithm.

The complexity of the dynamic-programming algorithm is O(n⇥ S), while
the greedy algorithm has a complexity in O(n log n) (the execution is linear,
but sorting the coins requires a time in O(n log n)).

Finally, note that characterizing the set of coins for which the greedy algo-
rithm is optimal is still an open problem. It is easy to find sets that work.
For instance, coins {1, B,B2, B3, . . .} with B > 2. However, the general case
seems tricky. There are several variants of the coin changing problem, and

84 Chapter 4. Dynamic programming

1 for T = 1 to S do
2 z(T, 0) +1 { Initialization: case i = 0 }

3 for i = 0 to n do
4 z(0, i) 0 { Initialization: case T = 0 }

5 for i = 1 to n do
6 for T = 1 to S do
7 z(T, i) z(T, i� 1)

{ z(T, i� 1) computed at previous iteration, or case i = 0 }
8 if T � vi > 0 then
9 z(T, i) min(z(T, i), z(T � vi, i))

{ z(T � vi, i) computed earlier in this loop, or case T = 0 }

ALGORITHM 4.2: Dynamic-programming algorithm for the coin changing
problem.

many dynamic-programming algorithms to solve them. The interested reader
may refer to the following papers: [85, 98]. We move in the next section to
another classical problem: The knapsack problem.

4.2 The knapsack problem

We have a set of items, each with a weight and a value, and we want to
determine the items to include in the collection so that the total weight does
not exceed a given limit, and the total value is as large as possible. Formally,
there are n items I

1

, . . . , In, and item Ii has a weight wi and a value ci
(1 6 i 6 n). We are also given a maximum total weight W . The goal is to
find a subset K of {1, . . . , n} that maximizes

P

i2K ci, under the constraint
P

i2K wi 6 W . The analogy with the problem of packing the best items for
a well-deserved vacation should be clear.

Greedy algorithm. Here again, we start by designing a greedy algorithm
to solve the problem. The idea consists in selecting first those items that have
a good value per unit of weight, c

i

w
i

. Therefore, we sort items by nonincreasing
c
i

w
i

, and then we greedily add them in the knapsack as long as the total weight
is not exceeded.

However, the algorithm is not optimal because items are not divisible. We
cannot take only a fraction of an item, i.e., either we take it or we discard it.
A counterexample for the greedy algorithm can be designed as follows, with

4.2. The knapsack problem 85

three items. The first item with the greatest ratio c
1

/w
1

is such that it fills
up the knapsack by itself (no other item can fit in the knapsack once I

1

has
been chosen, i.e., w

1

+ wi > W , for i > 2). Then, two more items are such
that w

2

+w
3

6 W (they fit together in the knapsack), and c
2

+ c
3

> c
1

(they
have more value than the first item alone). If we are able to construct such an
example, the greedy algorithm chooses the first item, while a better solution
consists in choosing items 2 and 3. A possible set of items is the following,
with W = 10: (w

1

= 6, w
2

= 5, w
3

= 5) and (c
1

= 7, c
2

= 5, c
3

= 5).
If we consider the problem of the fractional knapsack, in which it is possible

to take only a fraction of an object, then the greedy algorithm is optimal. In
the example, it would take the whole item 1, and then a fraction (4/5) of
item 2 to fill the remaining space in the knapsack. The value would then be
c
1

+ 4

5

c
2

= 7 + 4 = 11, which is optimal. It is easy to prove the optimality
of the greedy algorithm in this case. If an optimal solution is not making
the greedy choice, we can always exchange a fraction of item of the optimal
solution with the fraction of item of better value per weight unit that was not
greedily chosen, and the total value can only increase.

Dynamic-programming algorithm. We come back to the integer knap-
sack problem, and since the greedy algorithm is not optimal, we try to solve
a more complex problem, as in the coin changing problem, in order to be
able to establish a recurrence. The two parameters are the total weight and
the number of items considered. We want to compute C(v, i), which is the
maximum value that can be obtained when filling up a knapsack of maximum
total weight v, using only some of the first i items {I

1

, . . . , Ii}. The original
problem is the value C(W,n): The knapsack is of maximum total weight W ,
and we have the n items at our disposal.

To write the recurrence, we have two choices: (1) either we have chosen the
last object, or (2) we have not, therefore leading to:

C(v, i) = max

⇢

C(v, i� 1) last object not chosen;
C(v � wi, i� 1) + ci last object chosen;

with the initialization conditions:
• C(v, i) = 0 for v = 0 or i = 0;
• C(v, i) = �1 if v < 0 (capacity exceeded).
The optimal solutions of all subproblems that we solve allow us to compute

the optimal solution of the original problem. Similarly to the coin chang-
ing problem, we need to carefully respect the precedence constraints of the
computations, and we want to never compute twice the same value of the
function C(v, i). The algorithm is formalized in Algorithm 4.3. The prece-
dence constraints are shown in Figure 4.2. Because the computation is done
row by row, these constraints are always respected.

The complexity of the greedy algorithm is in O(n log n), because the n items
must be sorted. However, the complexity of the dynamic programming algo-

86 Chapter 4. Dynamic programming

1 for i = 0 to n do
2 C(0, i) 0 { Initialization: case v = 0 }

3 for v = 1 to W do
4 C(v, 0) 0 { Initialization: case i = 0 }

5 for i = 1 to n do
6 for v = 1 to W do
7 C(v, i) C(v, i� 1)
8 if v � wi > 0 then
9 C(v, i) max(C(v, i), C(v � wi, i) + ci)

ALGORITHM 4.3: dynamic-programming algorithm for the knapsack prob-
lem.

FIGURE 4.2: Precedence constraints for the knapsack dynamic-programming
algorithm.

rithm is in O(n ⇥ W), because we need to compute n ⇥ W values of the
function C(v, i), and each computation takes constant time.

4.3 Designing dynamic-programming algorithms

In the previous two sections, we have given examples of dynamic-programming
algorithms. The basic reasoning to obtain the optimal algorithm is similar in
both cases:

1. Identify subproblems whose optimal solutions can be used to build an
optimal solution to the original problem. Conversely, given an optimal

4.4. Exercises 87

solution to the original problem, identify subparts of the solution that
are optimal solutions for some subproblems. Usually, this step means
that we identify a more complex problem derived from the original prob-
lem.

2. Write the recurrence.

3. Write the initial cases.

4. Write the algorithm, usually as an iterative algorithm, and taking care
to enforce precedence constraints (use a figure to check that these con-
straints are indeed satisfied). A recursive algorithm may be used, but it
requires tests to avoid redundant computations.

5. Study the complexity of the algorithm (usually straightforward from the
iterative version of the algorithm).

Such an algorithm is bottom-up; we need results of the multiple subprob-
lems to make a choice and compute the optimal solution, while the greedy
algorithms were top-down, making a local choice at each step.

With dynamic-programming algorithms, one must be particularly cautious
about the size of the data. It is not unusual to write nonpolynomial dynamic-
programming algorithms. For instance, in the knapsack problem, the cost
of the dynamic-programming algorithm is O(nW). However, data can be
encoded in

Pn
i=1

logwi +
Pn

i=1

log ci 6 n(logW + logC), which means that
W is in fact exponential in the problem size. This important encoding issue
is related to weak NP-completeness and pseudo-polynomial algorithms, which
we come back to in Section 6.6, p. 145.

4.4 Exercises

Exercise 4.1: Matrix chains (solution p. 90)

Consider n matrices A
1

, . . . , An, where Ai is of size Pi�1

⇥ Pi (1 6 i 6 n).
We want to compute A

1

⇥A
2

⇥ · · ·⇥An. The problem is to decide in which
order the multiplications should be done and, therefore, to add parentheses
to the expression, in order to minimize the number of operations. Note that
it costs Pa ⇥ Pb ⇥ Pc to multiply a matrix of size Pa ⇥ Pb by a matrix of size
Pb ⇥ Pc.

Propose a dynamic-programming algorithm to solve the problem and give
its complexity. Be careful to define the initial conditions and the recurrence.

88 Chapter 4. Dynamic programming

Exercise 4.2: The library (solution p. 91)

The library is planning to move. It has a collection of n books b
1

, b
2

, . . . , bn.
Book bi has a width wi and a height hi. The books are stored on identical
shelves of width L. Each shelf is used to store a set of books of consecutive
indices. In other words, for each shelf, there exist two indices i and j such
that the shelf exactly includes the books bi, bi+1

, . . . , bj�1

, bj .

1. We assume first that all heights are identical: hi = h, for 1 6 i 6 n,
and we want to minimize the number of shelves that are used. Propose
a greedy algorithm to solve the problem and prove that it is optimal.

2. Now, books have di↵erent heights, but we can adjust the distance be-
tween two shelves. The new objective criteria is the total space usage,
defined as the sum of the heights of the higher book on each shelf. Give
an example where the greedy algorithm of the previous question is no
longer optimal, design an optimal algorithm to solve this problem, and
give its complexity.

3. We come back to the problem with identical heights. Now, we want to
place the n books on k shelves of same length L, and the objective is
to minimize L, while k is fixed. In other words, we need to partition
the n books into k sets, where the width of the widest set is as small
as possible. Design an algorithm to solve the problem, and give its
complexity in terms of n and k.

Exercise 4.3: Polygon triangulation (solution p. 93)

We consider planar convex polygons. A triangulation of a polygon is a set of
lines that do not intersect inside the polygon and that divide the polygon into
triangles. Here, the triangulation lines all pass through polygon vertices.

Let P = hv
0

, . . . , vni be a convex polygon, where v
0

, . . . , vn are the polygon
vertices numbered in the direct order, and let w be a weight function defined
on the triangles formed by the sides and the lines drawn in P . For instance,
w(i, j, k) can be the perimeter of the triangle defined by the vertices vi, vj ,
and vk. The problem is to find a triangulation that minimizes the sum of the
weight of the triangles induced by the triangulation.

1. For 1 6 i < j 6 n, we define t(i, j) as the weight of an optimal triangula-
tion of the polygon hvi�1

, . . . , vji, with t(i, i) = 0 for 1 6 i 6 n. Express
a recurrence to compute t, derive an algorithm to solve the problem,
and give its complexity.

2. If the weight function can be anything, how many values do we need to
know for the function to be defined on all polygon triangles? Compare
with the complexity of the algorithm.

4.4. Exercises 89

3. If the weight of a triangle is equal to its surface, what can you say about
the algorithm that you have designed?

Exercise 4.4: Square of ones (solution p. 96)

Given a matrix A of size n⇥m with coe�cients in {0, 1}, we want to find the
maximum width K of a square of ones in A, as well as the coordinates (I, J)
of the top left corner of such a square. In other words, for all i, j such that
I 6 i 6 I +K � 1 and J 6 j 6 J +K � 1, we have A[i, j] = 1.

1. Design a dynamic-programming algorithm to solve this problem.

2. What is the complexity of your algorithm?

(Hint: Consider t[i, j], the width of the biggest square of ones whose top
left corner is (i, j).)

Exercise 4.5: The wind band (solution p. 98)

In a wind band, there are n musicians of size t
1

, t
2

, . . . , tn. For concerts,
the orchestra has m suits (m > n) of size u

1

, u
2

, . . . , um. Every year, some
musicians leave the band and they are replaced by new ones, and we need
to give each musician a suit of appropriate size: ↵(i) is the index of the suit
given to the musician of size ti.

1. Yves, the drum player, believes that the objective is to minimize the
average di↵erence between the size of a musician and the size of their
suit, i.e., minimize 1

n

Pn
i=1

|ti � u↵(i)|. He proposes a greedy algorithm.
We find i and j such that |ti�uj | is minimum, we give the suit of size uj

to the musician of size ti, and we iterate until everybody received a suit.
Is this algorithm optimal?

2. Anne, the horn player, believes that it is more fair to minimize the
average square of di↵erences: 1

n

Pn
i=1

(ti� u↵(i))
2. Show on an example

the advantage of this objective function, compared to Yves’s. Is the
greedy algorithm optimal for this objective function?

3. If there are as many suits as musicians (i.e., n = m), then design an
optimal algorithm for Anne’s objective function.

4. Design an optimal algorithm for the general case m > n (and Anne’s
objective function).

Exercise 4.6: Ski rental (solution p. 98)

The problem is to distribute m pairs of skis of lengths s
1

, . . . , sm to n persons
of size h

1

, . . . , hn, all wanting to go skiing. We assume that there are enough

90 Chapter 4. Dynamic programming

skis in the rental shop for everybody (i.e., m > n). The allocation is defined
by an injective function f : {1, . . . , n} ! {1, . . . ,m}, and f is optimal when
it minimizes A(n,m) =

Pn
k=1

|sf(k) � hk|.

1. Design an e�cient algorithm that returns an optimal allocation of the
skis.

(Hint: Prove that the tallest person can be allocated the longest pair
of skis used.)

2. What is the complexity of the algorithm? You should refine the analysis
to guarantee that the algorithm is in O(n log n) if m = n.

3. Prove that we can obtain a better complexity when n2 = o(m).

(Hint: Restrict to O(n2) pairs of skis.)

Exercise 4.7: Building set (solution p. 102)

We want to build a tower as high as possible, from a set of bricks. We have
n di↵erent types of bricks, and as many bricks of each type as we want. The
brick of type i is a parallelepiped of size {xi, yi, zi}, and it can be oriented in
any way, two dimensions being the base of the brick, and the third one being
the height. When building the tower, a brick can be placed on top of another
only if the two dimensions of its base are strictly smaller than the dimensions
of the brick on which we want to place it.

1. Design an optimal dynamic-programming algorithm to build a tower of
maximum height.

2. What is the complexity of this algorithm?

4.5 Solutions to exercises

Solution to Exercise 4.1: Matrix chains

We want to compute A
1

⇥ · · · ⇥ An. Let us look for the optimal cost of
computing the product Ai ⇥ · · · ⇥ Aj . We denote this cost by C(i, j). The
optimal solution for the problem will be obtained for i = 1 and j = n.

We define C(i, j) by induction. We partition in two the product of matrices
(Ai, . . . , Aj) to indicate which two matrices were multiplied in the last matrix
multiplication. In other words, if we cut (Ai, . . . , Aj) after the position k, this
means that the last multiplication was between matrix Ai ⇥ Ai+1

⇥ · · ·⇥ Ak

and matrix Ak+1

⇥ · · · ⇥ Aj . Let us assume that the optimal solution was
to cut (Ai, . . . , Aj) after the matrix Ak. Then the optimal cost to compute

Chapter 5

Amortized analysis

In this chapter, we briefly discuss amortized analysis, the goal of which is to
average the cost of n successive operations. This should not be confused with
the average cost of an operation. We first describe the three classical methods
with examples (Section 5.1) and then proceed with exercises in Section 5.2,
with solutions in Section 5.3.

5.1 Methods for amortized analysis

First, we introduce two examples to illustrate the methods used to conduct an
amortized analysis. Then, we present the three classical methods: aggregate
analysis, the accounting method, and the potential method.

5.1.1 Running examples

The first example is a k-bit counter that we want to increment. Initially, the
counter has a value of 0, and each operation increments it. Formally, this
counter is represented by an array A of k bits, where A[i] is the (i + 1)-th
bit, for 0 6 i 6 k � 1. A number x represented by this counter is such that
x =

Pk�1

i=0

A[i].2i. For instance, if k = 6 and if we perform n = 4 operations,
we obtain the following sequence:

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 1 0 0

The cost of an increment is defined as the number of bits that should be
modified. This cost is not constant for each value of the counter; it is equal
to the number of successive 1s at the right of the counter, plus 1 (switching
the first 0 to 1).

The second example consists of inserting n elements in a table, dynamically,
starting from an empty table. We insert a new element directly in the table if

105

106 Chapter 5. Amortized analysis

there is space, with a cost 1. Otherwise, we create a new table that has twice
the size of the original table (or a table of size 1 for the first insertion); we
copy the content of the original table and insert the new element. The cost
is then the size of the original table plus 1. Note that the table is always at
least half full (an empty table is considered full), so even if the cost may be
high for some operations, we then have free space for the next operations.

For both examples, the amortized analysis consists of asking the following
question: What is the cost of n successive operations?

5.1.2 Aggregate analysis

The goal of this method is to show that the cost of n successive operations
can be bounded by T (n). Therefore, in the worst case, the cost per operation
on average, i.e., the amortized cost per operation, is bounded by T (n)/n.

For the k-bit counter, it is obvious that the cost of n successive increment
operations is bounded by nk. However, this upper bound can be improved.
Indeed, the right-most bit flips each time, the second one flips every second
time, and so on. Therefore, the cost of n operations is at most n+ n

2

+ n
4

+· · · 6
2n, regardless of the value of k. This leads to an amortized cost per operation
of 2.

For the table insertion, for any integer k > 0, the cost of the (2k + 1)-th
insertion is c(i) = 2k + 1, i.e., the size of the table is doubled. Otherwise, the
cost is c(i) = 1 (including the cost of the first insertion, c(1)). Therefore, we
have:

n
X

i=1

c(n) 6 n+

blog
2

(n)c
X

k=0

2k 6 3n

and an amortized cost of 3.

5.1.3 Accounting method

The principle of this method is to pay in advance for costly operations that
may happen afterwards, hence, keeping a constant cost per operation. One has
to guarantee that at the time of operation i, one has enough credit (including
advance payment and the payment for the operation) to cover the cost of the
operation.

For the k-bit counter, each time we flip a bit from 0 to 1, we decide to pay
2 euros1: 1 euro for the flip and another one so that we will be able to flip
back the bit from 1 to 0 without having to pay. For this example, since at
each increment there is only one bit to flip from 0 to 1, the cost is 2 at each

1Yes, $2 would be okay, too.

5.1. Methods for amortized analysis 107

increment, and, hence, an upper bound of 2n for n operations (note that we
may have paid for some operations that have not been done yet).

For the table insertion, we decide to pay €3 at each insertion: €1 is used to
pay for the insertion, a second one will be used to pay for the transfer of the
element when a new table will be required, and a third one is assigned to an
element in the first half of the table that also will need to be transferred later
when the table is full. Therefore, each time the size of the table is doubling,
we can transfer all elements at no cost. This leads to an upper bound of 3n.

5.1.4 Potential method

This last method consists of representing the prepaid work of the accounting
method by a potential that can be used to pay for future operations. The
prepaid work of the accounting method is no longer associated with objects
but rather with the data structure itself. We define a potential function, which
associates to each data structure a potential. This potential function should
always be greater or equal to the potential function of the data structure
before the first operation, so that there is always enough potential to pay for
an operation. We introduce the following notations:

• �
0

is the potential before the first operation.
• �i > �

0

is the potential of the data structure after i operations.
• ci is the cost of operation i.
• ĉi = ci + �i � �i�1

is the amortized cost of operation i. A costly
operation may have a small amortized cost if the potential function has
decreased with operation i, i.e., �i � �i�1

< 0.

Therefore, the amortized cost of a sequence of n operations can be computed
as:

n
X

i=1

ĉi =
n
X

i=1

ci + �n � �
0

.

Because �n � �
0

> 0, the total amortized cost
Pn

i=1

ĉi gives an upper
bound on the total actual cost

Pn
i=1

ci. Note that we often define � so that
�

0

= 0 and �i > 0, for convenience.

For the k-bit counter, �i is the number of bits that are at value 1 after
operation i. This number is always positive or null, and it is initially null. Let
t(i) be the number of right-most successive 1s just before operation i. The
potential after operation i is, therefore, �i = �i�1

� t(i) + 1 because t(i) 1s
have been reset to 0, and one 0 has taken the value 1. Moreover, the cost of
operation i is ci = t(i) + 1:

· · · 0 1 · · · 1 �i�1

· · · 1 0 · · · 0
| {z }

�i = �i�1

� t(i) + 1.

t(i)

108 Chapter 5. Amortized analysis

Therefore, the amortized cost of operation i is ĉi = ci + �i � �i�1

=
t(i) + 1 + (�t(i) + 1) = 2.

For the table insertion, the potential can be seen as the richness of the
table; a table is rich when it is full. The table potential equals twice the
number of elements in the table minus the size of the table. Because the table
is always at least half full, this value cannot be negative. Formally, let numi

be the number of elements after i operations, and let sizei be the size of the
table after i operations. Initially, num

0

= size
0

= �
0

= 0, and the potential
function is expressed as �i = 2numi � sizei > 0. Because we perform only
insertions, numi = numi�1

+ 1 = i.
If the size of the table remains identical after operation i, we have sizei =

sizei�1

and ci = 1. Therefore, ĉi = ci + �i � �i�1

= 1 + 2 = 3. However,
if sizei = 2sizei�1

, this means that the cost of the operation was ci = numi

and that the table was full after operation i� 1, i.e., sizei�1

= numi�1

, and,
therefore, ĉi = ci + �i � �i�1

= numi + 2� sizei�1

= 3.

5.2 Exercises

Exercise 5.1: Binary counter (solution p. 112)

Consider the running example of the k-bit counter introduced in Section 5.1.1
with an increment function.

1. Show that if we had also a decrement function on the counter, then a
sequence of n operations could have a cost in ⇥(nk).

2. We keep only the increment function, and we add a reset operation
that resets the counter to its initial value 0. Show how to implement
this counter as a table of bits so that any sequence of n operations
(increment or reset) takes a time O(n) on a counter with initial value 0,
with the accounting method.

(Hint: Keep a pointer to the highest-order 1.)

Exercise 5.2: Inserting and deleting (solution p. 113)

Consider the running example of table insertion introduced in Section 5.1.1.
We consider now that it is also possible to delete elements from the table.

1. If we double the size of the table when it is full, and we halve the size of
the table when it is less than half empty, what would be the amortized
cost?

5.2. Exercises 109

2. Propose an implementation of the insert and delete functions with a
constant amortized cost. Apply the accounting method and then the
potential method to compute the amortized cost.

Exercise 5.3: Stack (solution p. 114)

We consider a stack with the following operations: push(S, x) pushes object x
onto stack S, pop(S) pops the top of the stack and returns the popped object
(it returns an error if the stack is empty), and, finally, multipop(S, k) removes
the k top objects of the stack, and the entire stack if it contains fewer than
k objects (it tests at each step whether the stack is empty). Initially, the stack
is empty.

1. What is the time complexity of each of these operations? Use the aggre-
gate analysis to obtain the amortized cost of a sequence of n operations.

2. Use the accounting method to analyze the amortized cost.

3. Use the potential method to analyze the amortized cost.

4. Propose an implementation of a first-in first-out queue with two stacks,
such that adding an element in the queue and removing an element from
the queue both have an amortized cost of O(1).

Exercise 5.4: Deleting half the elements (solution p. 115)

We want to implement a data structure S with real numbers, with the follow-
ing operations: insert(S, x) inserts the object x in S, and delete(S) removes
the d|S|/2e largest elements of S. Propose an implementation such that the
amortized cost of both operations is cost.

(Hint: You can find in linear time the median of a list, see Section 9.3
of [27].)

Exercise 5.5: Searching and inserting (solution p. 116)

We consider a data structure for n elements. Let k = dlog(n + 1)e, and let
(nk�1

, nk�2

, . . . , n
0

) be the binary representation of n. The data structure
consists of k sorted arrays A

0

, A
1

, . . . , Ak�1

, and the size of Ai is 2i for 0 6
i 6 k � 1. The array Ai is full if ni = 1, and empty otherwise, so that
the total number of elements is n =

Pk�1

i=0

ni2i. Note that each individual
array is sorted, but there is no particular relationship between elements of
two di↵erent arrays.

1. Propose a search operation for this data structure (find if an element is
in the data structure), and analyze its worst-case running time.

110 Chapter 5. Amortized analysis

2. Propose an insert operation for this data structure (insert a new element
in the data structure), and analyze its worst-case and amortized running
times.

3. Discuss how to implement a delete operation.

4. Compare the costs achieved by this data structure with the costs of
searching and inserting in a sorted array of size n.

Exercise 5.6: Splay trees (solution p. 117)

The problem is to perform a sequence of m access operations on a set of n
elements that are totally ordered. The elements are represented as a binary
search tree: There is one element per node, and for any node x, all the elements
in the left subtree of x are smaller that x, while all the elements in the right
subtree of x are greater than x. The operation access(i) is then in O(d), where
d is the depth of node x containing element i. In order to reduce the total
access cost in a sequence of n accesses, we aim at moving frequently accessed
elements toward the root. Therefore, each time any element x is accessed, we
use the splaying heuristic. We repeat the following splaying steps until x is
the root of the tree (see Figure 5.1).

• zig: If p(x), the parent of x, is the tree root, rotate the edge joining x
with p(x) (this case is terminal).

• zig-zig: If p(x) is not the root and x and p(x) are both left or both right
children, rotate the edge joining p(x) with p(p(x)), and then rotate the
edge joining x with p(x).

• zig-zag: Otherwise, rotate first the edge joining x with p(x) and then
the edge joining x with the new p(x) (that was initially p(p(x))).

1. Apply the splaying heuristic on node a of the tree below:

i

J

h

I

g

H

f

A

e

G

d

B

c

C

b

D

a

E F

5.2. Exercises 111

y

x

c

ba

zig

x

y

a

b c

z

y

dx

c

ba

zig-zig

x

a

y

z

b

c d

z

y

d

a

x

b c

zig-zag
y

a b

x

z

c d

FIGURE 5.1: The di↵erent splaying steps, where x is the accessed element.

2. What is the time complexity of the splaying heuristic, in terms of number
of rotations?

3. To analyze the amortized complexity of splaying, we use a potential
function defined as follows: We assume that each element i has a positive
weight w(i), whose value is arbitrary but fixed. The size s(x) of a node x
is the sum of the weights of all elements in the subtree rooted in x, and
the rank of x is r(x) = log s(x). The potential of a tree is the sum of
the ranks of all its nodes. The cost of an operation is the number of
rotations, but we still charge 1 if there is no rotation.

Let r(x) (resp. r0(x)) be the rank of x after (resp. before) the opera-
tion. Show that the amortized cost of a zig is at most 1+3(r0(x)�r(x))
and the amortized cost of a zig-zig or a zig-zag is at most 3(r0(x)�r(x)).
(Note that if a, b > 0, a+ b 6 1, then log(a) + log(b) 6 �2.)

4. Deduce that the amortized time to splay a tree with root t at a node x
is at most 3(r(t)� r(x)) + 1 = O(log(s(t)/s(x))). Note that this is true
for any positive weights.

5. Prove that the total access time is O((m + n) log n +m) (recall that n
is the number of elements in the tree, and m is the number of accesses).
Hint: Assign a weight to each element.

112 Chapter 5. Amortized analysis

6. For any element i, q(i) is the access frequency of i, i.e., the total num-
ber of times i is accessed (within the m accesses). Show that if ev-
ery element is accessed at least once, then the total access time is

O
⇣

m+
Pn

i=1

q(i) log
⇣

m
q(i)

⌘⌘

. Hint: Assign a weight to each element.

Exercise 5.7: Half perimeter of a polygon (solution p. 119)

We consider a polygon with n vertices, numbered in the clockwise order from
0 to n� 1. The edge from i to i+ 1 mod n, for 0 6 i < n, has a length ai.

1. We aim at finding the two vertices i and j that minimize the absolute
value of the di↵erence between the two portions of perimeters that they

define, i.e., that minimize (the sums are modulo n)
�

�

�

Pj�1

l=i al �
Pi�1

l=j al
�

�

�

.

(a) Design a naive algorithm and give its complexity.

(b) Design a linear-time algorithm.

2. Find in linear time the three vertices i, j, and k that minimize the
di↵erence between the larger third and the smaller third portions of the
perimeter that they define, i.e.,

max
⇣

Pj�1

l=i al,
Pk�1

l=j al,
Pi�1

l=k al
⌘

� min
⇣

Pj�1

l=i al,
Pk�1

l=j al,
Pi�1

l=k al
⌘

.

5.3 Solutions to exercises

Solution to Exercise 5.1: Binary counter

1. After 2k�1 � 1 operations, the value of the counter is 0 1 1 · · · 1. If we
perform a sequence of operations (increment, decrement), the counter
will alternate between 1 0 0 · · · 0 and 0 1 1 · · · 1, hence, having a
cost k for each operation, and for n operations, a cost in ⇥(nk).

2. We introduce a new variable, maxA, that contains the index of the
highest-order 1 in the counter A. Initially, maxA = �1 because there
are only 0s in the counter. This value is updated at each operation, see
Algorithms 5.1 and 5.2, where |A| = k.

Chapter 6

NP-completeness

In this chapter, we introduce the complexity classes that are of paramount
importance for algorithm designers: P, NP, and NPC. We take a strictly prac-
tical approach and determinedly skip the detour through Turing machines. In
other words, we limit ourselves to NP-completeness, explaining its importance
and detailing how to prove that a problem is NP-complete.

After introducing our approach in Section 6.1, we define the complexity
classes P and NP in Section 6.2. NP-complete problems are introduced in
Section 6.3, along with the practical reasoning to prove that a problem is
NP-complete. Several examples are provided in Section 6.4. We discuss sub-
tleties in problem definitions in Section 6.5 and strong NP-completeness in
Section 6.6. Finally, we make our conclusions in Section 6.7.

6.1 A practical approach to complexity theory

This chapter introduces the key complexity classes that algorithm designers
are confronted with: P, which stands for Polynomial, and NP, which stands
for Nondeterministic Polynomial. In fact, we depart from the original defi-
nition of the class NP and use the (equivalent) characterization Polynomial
with Certificate. Within the NP class, we focus on the subclass NPC of NP-
complete problems.

When writing this chapter, we faced a cruel dilemma. Either we use a formal
approach, which requires an introduction to Turing machines, explain their
characteristics, and classify the languages that they can recognize, or we use
a practical approach that completely skips the detour through the theoretical
computer science framework and defines complexity classes out of nowhere
(almost!). We firmly believe that there is no trade-o↵ in between, and that
a comprehensive exposure does require Turing machines. However, given the
main objectives of this book, we chose the latter approach. The price to pay
is that the reader will have to take for granted a key result, namely Cook’s
theorem [25], which we will state without proof. Cook’s theorem provides the
first NP-complete problem, and we will have to trust him on this. However,
the main advantage is that we can concentrate on the art of the algorithm

125

126 Chapter 6. NP-completeness

designer, namely polynomial reduction.

First, why Turing machines? To assess the complexity of a problem, we need
to define its size and the number of time steps required to solve it. But what
is appropriate within a time step? A formal answer relies on Turing machines.
The size of a problem is the number of consecutive positions used to store its
data on the (infinite) ribbon of the machine. The number of time steps is the
number of moves before the Turing machine terminates the execution of its
program, given the data initially stored on its ribbon. Instead, in the practical
approach, we simply define the size of a problem as the number of memory
locations, or bits, that are needed to store its data, and we define a time
step as the maximum time needed to execute an elementary operation. Here,
an elementary operation is defined as any reasonable computation. And, the
trouble begins. Fetching the values of two memory locations, adding them
and storing them back into some memory location, is that an elementary
operation? Yes—well, provided that the access to the memory locations takes
constant time, which may require that the total memory is bounded, or at
least that two di↵erent memory locations used to solve the problem are not
too far apart in storage. We are not far from moving the head of the Turing
machine from one position to another! Similarly, adding two bits or two
bytes or two double-precision floating point numbers (64 bits) is indeed an
elementary operation, but adding two integers of unbounded length is not.
In fact, an elementary operation is anything that can be done in polynomial
time by a Turing machine, but this statement is helpful mostly to those who
are familiar with Turing machines. Here is an example of an operation that
is not reasonable. If we have two prime numbers p and q of r bits, we can
compute their product n = p⇥ q in O(r2), but given n, we cannot find p and
q in time polynomial in r.

We refer the reader interested in the formal approach to some excellent
books. The big classic is the book by Garey and Johnson [38] with a com-
prehensive treatment of NP-completeness. A very intuitive proof of Cook’s
theorem is given by Wilf [108]. More on complexity theory is provided by
Papadimitriou [82].

6.2 Problem classes

In this section, we first emphasize the importance of polynomials in the theory.
Then, we discuss how to define the problem size and how to encode data. This
is illustrated through classical examples; integers are coded in a logarithmic
size, but we should be careful if objects must be enumerated (set of nodes in
a graph, list of tasks, etc).

6.2. Problem classes 127

6.2.1 Problems in P

The following remark, admittedly simple, is fundamental: The composition
of two polynomials is a polynomial. Thanks to this observation, key values
(time, size) can be defined up to a polynomial factor. From the point of
view of complexity classes, values like n, n3, or n27 + 17n5 + 42 are totally
equivalent; all these values are polynomial in n. Hence, there is no di↵erence if
an elementary operation of the algorithm would cost n3 or n27+17n5+42 time
steps of a Turing machine; as long as there is a polynomial number of such
operations, the total number of time steps for the Turing machine remains
polynomial.

The theory deals with decision problems, with a yes/no answer, rather than
with optimization problems (this is related to languages that are accepted by
Turing machines). A decision problem is in the complexity class P if it can
be solved in polynomial time. Owing to the previous remark, we do not need
to specify the degree of the polynomial, which is not relevant as far as theory
is concerned (we come back to this last point below). Hence, the key for
understanding this class P is the notion of “polynomial time.” As mentioned
before, one must decide what can be done within one unit of time. One
usually assumes that one can add, multiply, or access memory in constant
time, but the multiplication of large numbers (respectively, memory accesses)
can depend on the size of the numbers (respectively, of the memory).

From an algorithmic point of view, we usually suppose that we can add,
multiply, access memory within one unit of time, as long as numbers and
memory size are bounded, which seems reasonable. These operations are
then of polynomial time, and thus this model is polynomial with respect to
the theoretical one with the Turing machine, as long as we are careful when
dealing with nonbounded integers.

Also, the resolution time must be a polynomial of the data size, so one
needs to define this “data size” carefully. This data size can strongly depend
on the way an instance is encoded. Intuitively, integers can be coded in binary,
therefore requiring a logarithmic size rather than a linear one (when encoded
in unary). The encoding with any other basis b 6= 2 has the same size as the
binary encoding, up to a constant factor (log

2

(n)/ logb(n) = 1/ logb(2)). How-
ever, some integers describing a problem instance should not be encoded in
binary when they code objects to be enumerated. Otherwise, some “elemen-
tary” operations would have a cost exponential in the data size. We illustrate
this by detailing two problem examples.

Example: 2-partition

DEFINITION 6.1 (2-PARTITION). Given n positive integers a
1

, . . . , an,
is there a subset I of {1, . . . , n} such that

P

i2I ai =
P

i/2I ai?

The input data of a problem instance is a set of n integers. In theory,
these n integers could be encoded either in unary or in binary. However, by

128 Chapter 6. NP-completeness

convention, in complexity theory, any integer appearing in the coding of an
instance must be encoded in binary. The only exception is for data whose
encoding in unary would not change the overall data size of the instance
(i.e., if the new data size remains polynomial in the original data size). For
instance, for 2-PARTITION, the choice of encoding for the value n itself does
not matter because encoding n integers requires a data size of at least one
per integer and thus of at least n. Therefore, for the sake of simplicity, one
usually encodes n in unary. Then, with the mandatory binary encoding of
the n integers, the data size is

P

16i6n log(ai). With a unary encoding of the
integers, the data size of an instance would have been

P

16i6n ai.
The choice of the encoding is vital for such a problem. Indeed, one can find

an algorithm whose time is polynomial in n⇥
P

16i6n ai. We design a simple
dynamic-programming algorithm; we solve the problems c(i, T), where c(i, T)
equals true if there is a subset of {a

1

, . . . , ai} of sum T (and false otherwise),
for 1 6 i 6 n and 0 6 T 6 S =

P

16i6n ai. The solution to the original

problem is c(n, S
2

). The recurrence relation is c(i, T) = c(i � 1, T � ai) _
c(i � 1, T). This algorithm is in O(nS). Therefore, this algorithm runs in
a time that would be polynomial in the size of the data if we had allowed
the integers to be coded in unary. However, the algorithm running time is
exponential in the data size when integers are coded in binary, as mandated.
Such an algorithm is said to be pseudopolynomial.

No one knows an algorithm that is polynomial in the data size (i.e., in
O(n log(S))), so the question whether the 2-PARTITION problem is or isn’t
in P is left open.

Example: Bipartite graphs

DEFINITION 6.2 (BIPARTITE). Given a graph G = (V,E), is G a bipar-
tite graph?

This is a decision problem; the answer must be yes or no. The input data
of a problem instance is a graph (V,E), where V is the set of vertices and
E the set of edges. The size of the data depends on how the graph is stored
(or encoded). The graph consists of |V | = n vertices. One usually codes n
in unary rather than in binary. Independent vertices are vertices that are not
endpoints of any edge. Independent vertices play a trivial role with respect to
the problem, and they can therefore be safely discounted. Then, each vertex
is the endpoint of at least one edge, |E| > n/2, and encoding n in binary
does not change the data size. Therefore, for the sake of simplicity, in any
graph problem the number of vertices is always encoded in unary for the same
reason.

Then, the identifier of a vertex can be encoded in binary, thus in log(n)
for one vertex leading to a total of n log(n), which is still polynomial in n.
The number of edges is also polynomial in n because there are at most n2

edges. Then, altogether, the total size of the problem data is a polynomial

6.2. Problem classes 129

in n, where n is the number of vertices of the graph. When designing graph
algorithms, one often denotes the size of data of a graph as |V |+ |E| (strictly
speaking, it should be |V |+ |E| log(|V |), but each expression is polynomial in
the other one). This allows us to refine the cost study of the algorithms, in
particular when |E| ⌧ |V |2. However, |V | + |E| is still polynomial in n, so
this refinement does not alter the problem classification.

Now, given a graph, in order to answer the question (yes or no), we need
to perform a number of operations that is polynomial in n (greedy graph
coloring). This problem is, therefore, in the complexity class P because it can
be solved in a time that is polynomial in the data size.

6.2.2 Problems in NP

To define the complexity class NP, we need to define the certificate of a prob-
lem, which is (an encoding of) a solution to the problem.

Problem solution: Certificate

Back to the 2-PARTITION problem, if we are given a subset I ✓ {1, . . . , n},
we can check in polynomial time (even in linear time) whether

P

i2I ai =
P

i/2I ai, and, therefore, we can answer whether the problem has a positive an-
swer in polynomial time. Moreover, the size of the certificate I is O(n log(n)),
which is polynomial in the problem size (the certificate contains O(n) identi-
fiers, each coded on O(log(n)) bits).

Another way to provide a solution to 2-PARTITION would be to give the
certificate {ai}i2I , but if the ais are coded in unary in the certificate, it is of
exponential size. However, if the ais are coded in binary, then the certificate
has polynomial size and it is perfectly acceptable; a certificate is valid if it is
polynomial in the problem size.

For the bipartite graph problem, the certificate would be the set of indices
of vertices of one of the two subsets of the graph, whose size is polynomial in
the problem size. Given this set, it is then easy to check that it is a correct
solution by looking at each edge of the graph, which takes a polynomial time.

(See also Section 6.4.4 on scheduling problems for an illustration of the care
that must be taken to design a certificate of polynomial size.)

Definition of NP

We are now ready to define the problem class NP. This is the class of decision
problems for which we can verify a certificate in a time that is polynomial
in the problem size. By verify, we mean check that the certificate is indeed a
solution, i.e., that the answer to the problem is yes. Both previous examples
are, therefore, in NP because, if we are given a certificate of polynomial size,
we can check in polynomial time whether it is a solution to the problem.

We make a short digression to explain that NP stands for Nondeterminis-
tic Polynomial, for reference to nondeterministic Turing machines that were

130 Chapter 6. NP-completeness

originally used to define the class. As already mentioned, we define NP as
Polynomial with Certificate in this book, and we ignore equivalent character-
izations of the NP class, either older (nondeterministic Turing machines) or
newer (the famous PCP theorem). (See [4] for more information.)

It is time to recapitulate; we have defined two classes of decision problems:
P: Given an instance I of the problem of size |I| when encoded in binary,

there is an algorithm whose running time is polynomial in |I| and which
reports whether the instance has a solution or not;

NP: Given an instance I of the problem of size |I| when encoded in binary,
and a certificate of size polynomial in |I|, there is an algorithm whose
running time is polynomial in |I| and which reports whether the certifi-
cate is indeed a solution to the instance.

We observe that P ✓ NP. If we can find a solution in polynomial time, then
we can verify the solution in polynomial time, with an empty certificate. Most
researchers believe that the inclusion is strict, i.e., P 6= NP, because it should
be easier to check whether a certificate is a solution to the problem than to
find a solution to that problem. As you may have heard before, this question
is open at the time of this writing.

We have already seen that BIPARTITE is in P; therefore, it is in NP. Also,
2-PARTITION is in NP, but we do not know whether it is in P or not. Below
are a few more examples to illustrate the class NP.

Examples: Problems in NP

DEFINITION 6.3 (COLOR). Given a graph G = (V,E) and an integer k
(1 6 k 6 |V |), can we color G with at most k colors?

This is a graph coloring problem; two vertices connected with an edge can-
not be assigned the same color. The size of the data is a polynomial in
|V |+ log(k). Indeed, we need to enumerate all vertices similarly to the prob-
lem bipartite, hence the term |V |, while the integer k is encoded in binary.
Since k 6 |V | (one never needs more colors than vertices), the size of the data
is a polynomial in |V |. A certificate can be the list of the vertices together
with their color, whose size is linear in the size of the problem instance. The
verification would amount to checking that no two adjacent vertices are as-
signed the same color, and that no more than k colors are used in total, which
can be done in linear time as well.

DEFINITION 6.4 (HC – Hamiltonian Cycle). Given a graph G = (V,E),
is there a cycle that goes through each vertex once and only once?

Similarly to other graph problems, the size of the data is a polynomial
in |V |. A certificate can be the ordered list of the vertices that constitute the
cycle (with linear size again). As before, the verification is easy: Check that
the cycle is built with existing edges in the graph, and that each vertex is
visited once and only once.

6.2. Problem classes 131

DEFINITION 6.5 (TSP – Traveling Salesman Problem). Given a complete
graph G = (V,E), a cost function w : E ! N and an integer k, is there a
cycle C going through each vertex once and only once, with

P

e2C w(e) 6 k?

This classical traveling salesman problem is a weighted version of the HC
problem. There are several variants of the problem with various constraints
on the cost function w: The weights can be arbitrary, satisfy the triangular
inequality, or correspond to the Euclidean distance. The variants do not
change the problem complexity. The size of the data is a polynomial in |V |+
P

e2E log(w(e)) + log(k). We need to enumerate vertices, and other integers
are coded in binary. A certificate can be the ordered list of the vertices that
constitute the cycle, and the verification is similar to that for the HC problem.

No one knows how to find a solution to these three problems in polynomial
time.

Problems not in NP?

One rarely encounters a problem whose membership status, with respect to
NP, is unknown. It is even rarer to come across a problem that is known
not to belong to NP. These problems are usually not very interesting from an
algorithmic point of view. They are, however, fundamental for the theory of
complexity. We provide a few examples below.

Negation of TSP: Given a problem instance of TSP, is it true that there
is no cycle in the graph of length |V |/2?

This problem is similar to TSP, but the question is asked in the reverse way.
It is di�cult to think of a certificate of polynomial size that would allow us
to check in polynomial time that the answer to the question is yes. Whether
this problem belongs to NP is an open question.

Square: Given n squares whose areas sum up to 1, can we partition the
unit square into these n squares?

We are interested in this problem because it plays a prominent role in the
case study of Chapter 14. Its complexity depends on the exact definition that
is used. First, we give the variant of the problem that is used in Chapter 14;
we are given n squares of size ai, with

P

16i6n a
2

i = 1. The ai are rational
numbers, ai = bi/ci, and the problem size is

P

16i6n log(bi)+
P

16i6n log(ci).
A certificate can be the position of each square, for 1 6 i 6 n, for instance
the coordinates of its top left corner. This certificate is of polynomial size.
We can then check in polynomial time whether it is a solution of the problem
or not (however, writing such a verification procedure requires some care).
Hence, this variant is in NP.

Another variant consists of having as input mi squares of size ai, for 1 6
i 6 p, with n =

P

16i6p mi and
P

16i6p mia2i = 1. The size of the data
is then n +

P

16i6p log(mi) +
P

16i6p log(bi) +
P

16i6p log(ci). We do not
need to enumerate all squares but only the p basic squares, while the mis

132 Chapter 6. NP-completeness

can be coded in binary. Then, in a certificate of polynomial size, we cannot
enumerate all the n squares to give their coordinates. There might exist a
compact analytical formula that would characterize solutions (say, the j-th
square of size ai is placed at coordinates f(i, j)), but this is far from being
obvious. We do not know whether this latter variant is in NP or not.

It is much harder to identify a problem that is known not to be in NP, at
least without making any assumption like P 6= NP. A (complicated) example
is the problem of deciding whether two regular expressions represent di↵er-
ent languages, where the expressions are limited to four operators: union,
concatenation, the Kleene star (zero or more copies of an expression), and
squaring (two copies of an expression). Any algorithm for this problem re-
quires exponential space, hence, exponential verification time [77].

Another problem that is not in NP is the program termination problem, or
halting problem (decide whether a program will terminate on a given input).
However, this example is a little excessive because no algorithm can exist to
solve it, regardless of its complexity [82].

6.3 NP-complete problems and reduction theory

As explained in the previous section, we do not know whether the inclusion
P ✓ NP is strict or not. However, we are able to compare the complexity of
problems in NP; Cook’s idea was to prove that some problems of the NP class
are at least as di�cult as all other problems of the same class. These problems
are called NP-complete and form the subclass NPC of the class NP. They are
the most di�cult problems of NP. If we are able to solve one NP-complete
problem in polynomial time, then we will be able to solve all problems of NP
in polynomial time, and we will have P = NP. The main objective of this
section is to explain this line of reasoning in full detail and to explore some
consequences.

We detail the theory of reduction, which aims at proving that a problem is
more di�cult than another one. However, if we want to prove that a problem
is more di�cult than any other one, we need to identify the first NP-complete
problem, as explained in Section 6.3.2. Note that a set of NP-complete prob-
lems with the corresponding reductions is presented in Section 6.4.

6.3.1 Polynomial reduction

We start by explaining the mechanism of polynomial reduction, i.e., how to
prove that a problem is more di�cult than another. Consider two decision
problems P

1

and P
2

. How can we prove that P
1

is more di�cult than P
2

? We
say that P

2

is polynomially reducible to P
1

and write P
2

pr�! P
1

if, whenever

6.3. NP-complete problems and reduction theory 133

we are given an instance I
2

of problem P
2

, we can convert it, with only a
polynomial-time algorithm, into an instance I

1

of P
1

, in such a way that I
2

has the answer “Yes” if and only if I
1

has the answer “Yes.”
Now, if P

2

is polynomially reducible to P
1

, then P
1

must be more di�cult
than P

2

(or more precisely, at least as di�cult as P
2

). Indeed, if there exists a
polynomial algorithm to solve P

1

, then by applying the polynomial reduction,
and because the composition of two polynomials is a polynomial, there exists
a polynomial algorithm to solve P

2

. Given an instance I
2

of P
2

, we can
indeed convert it into instance I

1

of P
1

, and since there is an equivalence
between solutions of I

1

and I
2

, the polynomial algorithm for P
1

executed on
instance I

1

returns the solution for instance I
2

. Take the contrapositive of
this statement. If there is no polynomial algorithm to solve P

2

, then there is
none to solve P

1

either, so P
1

is more di�cult.

We point out that polynomial reduction is a transitive operation: If P
3

pr�!
P
2

and P
2

pr�! P
1

, then P
3

pr�! P
1

. Again, this is because the composition of
two polynomials is a polynomial, nothing more.

Note also that it is mandatory to have the equivalence of solutions, i.e., if
I
1

has a solution then I
2

has one, and if I
2

has a solution then I
1

has one.
Otherwise, the polynomial reduction P

2

pr�! P
1

would not imply that P
1

is
more di�cult than P

2

.

6.3.2 Cook’s theorem

The fundamental result of the P versus NP theory is Cook’s theorem [25],
which shows that the satisfiability problem SAT is the most di�cult problem
in NP. This means that all other problems in NP are polynomially reducible
to SAT. We introduce SAT and give a brief intuitive sketch of Cook’s proof.

DEFINITION 6.6 (SAT). Let F be a Boolean formula with n variables
x
1

, . . . , xn and p clauses C
1

, . . . , Cp: F = C
1

^C
2

^· · ·^Cp, with, for 1 6 i 6 p,
Ci = x⇤

i
1

_ x⇤
i
2

_ · · · _ x⇤
i
f(i)

, 1 6 ik 6 n for 1 6 k 6 f(i), and x⇤ = x or x.

Does there exist an instantiation of the n variables such that F is true (i.e.,
Ci is true for 1 6 i 6 p)?

Clearly, SAT is in NPC, and a certificate can simply be the list of the in-
stantiation of each variable (whether a given xi is instantiated to true or false).
However, it seems di�cult to solve SAT without a certificate; because some
clauses have xi and other xi, we may have to try all 2n possible instantiations
to find one that satisfies the formula. In other words, SAT seems to be a hard
problem indeed.

Cook’s theorem states that all problems in NP are polynomially reducible
to SAT. The main idea of the proof is the following: Consider any problem P
in NP, and take an arbitrary instance I, together with its certificate C. The
proof goes by simulating the execution of the Turing machine that accepts the
couple (I, C) as input and outputs “Yes” after a polynomial number of steps.

134 Chapter 6. NP-completeness

Because Turing machines are simple, their behavior can be characterized by
clauses linking a set of variables. We can define xt,j,s as a variable that is true
if after t steps of computation, symbol s is in position j of the ribbon, and we
can simulate the operation of the machine using these variables. There are
many such variables, but only a polynomial number in |I|, and a polynomial
number of clauses as well. A detailed, but easy-to-follow, proof is given by
Wilf [108].

6.3.3 Growing the class NPC of NP-complete problems

Now that we have the first NP-complete problem handy, how can we find
more? To prove that a problem, P

1

, is in NPC, we merely have to prove
that SAT is polynomially reducible to this problem. Indeed, by composition,
all problems in NP are reducible to SAT, hence, to P

1

. The reduction takes
several steps:

1. Prove that P
1

2 NP : We must be able to build a certificate of poly-
nomial size, and then, for any instance I

1

of problem P
1

, we must be
able to check in polynomial time whether the certificate is a solution.
Usually, this first step is easy, but it should not be forgotten.

2. Prove the completeness of P
1

: We transform an arbitrary instance I of
SAT into an instance I

1

of P
1

in polynomial time, and such that:

(a) the size of I
1

is polynomial in the size of I;
(b) I

1

has a solution , I has a solution.

Let us come back to the construction of instance I
1

. The construction
should be done in polynomial time, but this is usually implicit because the
size of I

1

should be polynomial in the size of I, and because we perform only
“reasonable” operations.

Assume that we have polynomially reduced SAT to P
1

. We now have two
problems in NPC, namely, P

1

and SAT. If we want to extend the class to a
third problem, P

2

2 NP , should we reduce SAT or P
1

to P
2

? Of course, the
answer is that either reduction works. Indeed, we have so far:

• P
1

pr�! SAT and P
2

pr�! SAT (both by Cook’s theorem).

• SAT
pr�! P

1

(our previous reduction).

We can prove that SAT
pr�! P

2

either directly or via the reduction P
1

pr�! P
2

because SAT
pr�! P

1

and because, as we have already stated, polynomial
reduction is a transitive operation.

In other words, to show that some problem P
2

in NP is in NPC, we can pick
any NP-complete problem P

1

in NPC and show that P
1

pr�! P
2

. This will
show that P

2

is in NPC, and P
2

will itself become a candidate NP-complete
problem to pick up for later reductions.

6.3. NP-complete problems and reduction theory 135

A decision problem is said to be NP-hard when it can be polynomially
reduced from an NP-complete problem, but it is not known whether it belongs
to NP.

6.3.4 Optimization problems versus decision problems

We have been focusing so far on decision problems, but, in many practical
situations, we have to solve an optimization problem in which we want to
maximize or minimize a given criterion. Optimization problems (also called
search problems) are more complex than decision problems, but one can al-
ways restrict an optimization problem so that it becomes a decision problem.

For instance, the graph coloring problem is usually an optimization problem:
What is the minimum number of colors required to color the graph? The
restriction to the decision problem is the COLOR problem of Definition 6.3:
Can we color the graph with at most k colors? If we can solve the optimization
problem, we have immediately the solution to the decision problem, for any
value of k. In this particular case, we also can go the other way round. If
we are able to solve the decision problem, then we can find the answer to
the optimization problem by performing a binary search on k (1 6 k 6 |V |)
and computing the answer of the decision problem for each value of k. The
binary search adds a factor log(|V |) to the algorithm complexity, so that if
we had a polynomial algorithm, it remains polynomial. The two problems
(optimization and decision) have the same complexity. In most cases, the
optimization problem can be solved using a binary search as described above.
However, this result is not always true; it can be di�cult to find the answer
to the optimization problem, even though we can solve the decision problem.
In some extreme situations, there may be no solution to the optimization
problem. For instance, there is no solution to the problem “Find the smallest
rational number x such that x2 > 2” because

p
2 is irrational, while it is easy

to solve the decision problem in polynomial time: “Given a rational number x,
do we have x2 > 2?” (simply compute a square and compare it to 2).

Transforming a decision problem into an optimization problem may not
be natural or even possible. However, we can always define the associated
decision problem of an optimization problem: If the optimization problem
aims at minimizing a value x with some constraints, the decision problem
adds a value x

0

as an input to the problem, and the question is whether there
is a solution achieving a value x 6 x

0

.
A typical example is based on 2-PARTITION. Consider the scheduling prob-

lem with two processors, where we want to schedule n tasks of length ai. Ide-
ally, we want to 2-partition the tasks so that the execution finishes as soon as
possible, but if this is not possible, we minimize the di↵erence of finish times,
which amounts to minimizing the global finish time. Formally, the objective
is to find a subset I that minimizes x = |

P

i2I ai �
P

i/2I ai|. The associated
decision problem with target value x

0

= 0 is exactly 2-PARTITION, that will
be shown to be NP-complete (Exercise 7.20, p. 155). By misuse of language,

136 Chapter 6. NP-completeness

we say that an optimization problem is NP-complete if the associated deci-
sion problem for some well-chosen target value is NP-complete. Hence, the
scheduling problem with two processors as defined above is NP-complete.

6.4 Examples of NP-complete problems and reductions

At this point, we know that SAT is NP-complete. As already discussed,
we proceed by reduction to increase the list of NP-complete problems. In
this section, we show that 3-SAT, CLIQUE, and VERTEX-COVER are in
NPC. We also give references for the NP-completeness of 2-PARTITION, HC
(Hamiltonian Cycle), and then show that TSP (Traveling Salesman Problem)
is NP-complete.

6.4.1 3-SAT

DEFINITION 6.7 (3-SAT). Let F be a Boolean formula with n variables
x
1

, . . . , xn and p clauses C
1

, . . . , Cp: F = C
1

^C
2

^· · ·^Cp, with, for 1 6 i 6 p,
Ci = x⇤

i
1

_ x⇤
i
2

_ x⇤
i
3

, 1 6 ik 6 n for 1 6 k 6 3, and x⇤ = x or x. Does there
exist an instantiation of the variables such that F is true (i.e., Ci is true for
1 6 i 6 p)?

This problem is the restriction of SAT to the case where each clause consists
of three variables, i.e., following the notations of Section 6.3.2, f(i) = 3 for
1 6 i 6 p. In fact, 3-SAT is so close to SAT that one might wonder why
consider 3-SAT in addition to, or replacement of, SAT. The reason is that it is
much easier to manipulate clauses with exactly three variables. Furthermore,
proving the NP-completeness of 3-SAT is also a good exercise for our first
reduction.

THEOREM 6.1. 3-SAT is NP-complete.

Proof. This proof, as well as the next ones, follows the reduction method to
prove that a problem is NP-complete.

First, we prove that 3-SAT is in NP. We can simply claim that it is in NP
because it is a restriction of SAT, which itself is in NP. It also is easy to prove
it directly. We consider an instance I of 3-SAT, which is of size O(n + p).
A certificate is a set of truth values, one for each variable. Therefore, it is
of size O(n), which is polynomial in the size of the instance. It is easy to
check whether the certificate is a solution, and this takes a time O(n + p).
Altogether, 3-SAT is in NP.

To prove the completeness, we reduce an instance of SAT. So far, it is the
only problem that we know to be NP-complete, thanks to Cook’s theorem, so
we have no choice.

6.4. Examples of NP-complete problems and reductions 137

Let I
1

be an instance of SAT. First, we need to build an instance I
2

of 3-
SAT that will have a solution if and only if I

1

has one. I
1

consists of p clauses
C

1

, . . . , Cp, of lengths f(1), . . . , f(p), and each clause is made of some of the
n variables x

1

, . . . , xn.
Instance I

2

initially consists of the n variables x
1

, . . . , xn. Then, we add
to I

2

variables and clauses corresponding to each clause Ci of I1. We build
a set of clauses made of exactly three variables, and the goal is to have the
equivalence between Ci and the constructed clauses. We consider various
cases:

• If Ci has a single variable x, we add to instance I
2

two new variables ai
and bi and four clauses: x_ai _ bi, x_ai _ bi, x_ai _ bi, and x_ai _ bi.

• If Ci has two variables x
1

_x
2

, we add to instance I
2

one new variable ci
and two clauses: x

1

_ x
2

_ ci and x
1

_ x
2

_ ci.
• If Ci has three variables, we add it to I

2

.
• If Ci has k variables, with k > 3, Ci = x

1

_ x
2

_ · · · _ xk, then we
add k � 3 new variables zi

1

, zi
2

, . . . , zik�3

and k � 2 clauses: x
1

_ x
2

_ zi
1

,

x
3

_ zi
1

_ zi
2

, . . ., xk�2

_ zik�4

_ zik�3

, and xk�1

_ xk _ zik�3

.
Note that all clauses that are added to I

2

are exactly made of three vari-
ables, and that the construction is done in polynomial time. Then, we must
check the di↵erent points of the reduction.

First, note that size(I
2

) is polynomial in size(I
1

) (and even linear); indeed,
size(I

2

) = O(n+
Pp

i=1

f(i)).
Then, we start with the easy side, which consists of proving that if I

1

has
a solution, then I

2

has a solution. Let us assume that I
1

has a solution. We
have an instantiation of variables x

1

, . . . , xn such that Ci is true for 1 6 i 6 p.
Then, a solution for I

2

keeps the same values for the xis, and set all aj , bj and
cj values to true. Therefore, if a clause with at most three variables is true
in I

1

, all corresponding clauses in I
2

are true. Consider now a clause Ci in I
1

with k > 3 variables: Ci = x
1

_x
2

_ · · ·_xk. Let xj be the first variable of the
clause that is true. Then, for the solution of I

2

, we instantiate zi
1

, . . . , zij�2

to
true and zij�1

, . . . , zik�3

to false. With this instantiation, all clauses of I
2

are
true, and thus I

1

) I
2

.
For the other side, let us assume that I

2

has a solution. We have an
instantiation of all variables xi, ai, bi, ci, and zij that is a solution of I

2

. Then,
we prove that the same instantiation of x

1

, . . . , xn is a solution of the initial
instance I

1

. First, for a clause with one or two variables, whatever the values
of ai, bi, and ci, we necessarily have x or x

1

_ x
2

equal to true because we
have added clauses constraining the extra variables. The clauses with three
variables remain true since we have not modified them. Finally, let Ci be a
clause of I

1

with k > 3 variables, Ci = x
1

_ x
2

_ · · · _ xk. We reason by
contradiction. If this clause is false, then, necessarily, because of the first
clause added to I

2

when processing clause Ci, zi
1

must be true, and similarly
we can prove that all zij variables must be true. The contradiction arises for

the last clause because it imposes that zik�3

should be true if xk�1

and xk are

138 Chapter 6. NP-completeness

both false. Therefore, by contradiction, at least one of the xjs must be true
and the clause of I

1

is true. We finally have I
2

) I
1

, which concludes the
proof.

As a final remark, we point out that not all restrictions of a given NP-
complete problem remain NP-complete. For instance, 2-SAT, the SAT prob-
lem where each clause contains exactly two variables, belongs to P. Several
variants of 3-SAT are shown NP-complete in the exercises.

6.4.2 CLIQUE

We now consider a problem that is very di↵erent from SAT.

DEFINITION 6.8 (CLIQUE). Let G = (V,E) be a graph and k be an
integer such that 1 6 k 6 |V |. Does there exist a clique of size k (i.e., a
complete subgraph of G with k vertices)?

This is a graph problem, and the size of the instance is polynomial in |V |
(recall that |E| 6 |V |2, so we do not need to consider |E| in the instance size).

THEOREM 6.2. CLIQUE is NP-complete.

Proof. First we prove that CLIQUE is in NP. The certificate is the list of
vertices of a clique, and we can check in polynomial time (even quadratic
time) whether it is a clique or not. For each vertex pair of the certificate, the
edge between these vertices must be in E.

The completeness is obtained with a reduction from 3-SAT. We could do
a reduction from SAT, but 3-SAT is more regular, so we give it preference
for the reduction. Let I

1

be an instance of 3-SAT with n variables and p
clauses. Then we build an instance I

2

of CLIQUE. We add three vertices to
the graph for each clause (each vertex corresponds to one of the literals of
the clause) and then we add an edge between two vertices if and only if (i)
they are not part of the same clause and (ii) they are not antagonist (i.e., one
corresponding to a variable xi and the other to its negation xi). An example is
shown in Figure 6.1, with the graph obtained for a formula with three clauses
C

1

^C
2

^C
3

, with C
1

= x
1

_x
2

_x
3

, C
2

= x
1

_x
2

_x
3

, and C
3

= x
1

_x
2

_x
3

.
Note that I

2

is a graph with 3p vertices; the size of this instance, therefore,
is polynomial in the size of I

1

. Moreover, we fix in instance I
2

the integer k
of the CLIQUE definition such that k = p. We are now ready to check the
equivalence of the solutions.

Assume first that the instance I
1

of 3-SAT has a solution. Then, we pick
a vertex corresponding to a variable that is true in each clause, and it is easy
to check that the subgraph made of these p vertices is a clique. Indeed, two
of such vertices are not in the same clause, and they are not antagonistic;
therefore, there is an edge between them.

On the other side, if there is a clique of size k in instance I
2

, then necessarily
there is one vertex of the clique in each clause (otherwise, the two vertices

6.4. Examples of NP-complete problems and reductions 139

x2

x1

x1

C1

C2
C3

x2 x3

x1

x2

x3 x3

FIGURE 6.1: Example: Reduction of an instance of 3-SAT to an instance of
CLIQUE.

within the same clause would not be connected). We choose these vertices
to instantiate the variables, and we obtain a solution because we never make
contradictory choices (because two antagonistic vertices cannot be part of the
clique, there is no edge between them). This concludes the proof.

We discuss variants of the CLIQUE problem in Section 6.5.

6.4.3 VERTEX-COVER

We continue to enrich the class NPC with another graph problem. We say
that an edge e = (u, v) is covered by its endpoints u and v.

DEFINITION 6.9 (VERTEX-COVER). Let G = (V,E) be a graph and k
be an integer such that 1 6 k 6 |V |. Do there exist k vertices vi

1

, . . . , vi
k

such
that each edge e 2 E is covered by (at least) one of the vi

j

, for 1 6 j 6 k?

THEOREM 6.3. VERTEX-COVER is NP-complete.

Proof. It is easy to check that VERTEX-COVER is in NP. The certificate is
a set of k vertices, Vc ✓ V , and for each edge (v

1

, v
2

) 2 E, we check whether
v
1

2 Vc or v
2

2 Vc. The verification is done in time |E|⇥ k, and, therefore, it
is polynomial in the problem size.

This problem is once again a graph problem, so we choose to use a reduction
from CLIQUE, which turns out to be straightforward. Let I

1

be an instance
of CLIQUE: It consists of a graph G = (V,E) and an integer k. We consider
the following instance I

2

of VERTEX-COVER. The graph is G = (V,E),
which is the complementary graph of G, i.e., an edge is in G if and only if it
is not in G (see the example in Figure 6.2). Moreover, we set the size of the
covering set to |V |� k.

If instance I
1

has a solution, G has a clique of size k, and, therefore, the |V |�
k vertices that are not part of the clique form a covering set of G. Reciprocally,

140 Chapter 6. NP-completeness

FIGURE 6.2: Example: Reduction of an instance of CLIQUE (on the left,
graph G, k = 4) to an instance of VERTEX-COVER (on the right, graph G,
size of the cover |V |� k = 2).

if I
2

has a solution, then the vertices that are not part of the covering set form
a clique in the original graph G. This concludes the proof.

6.4.4 Scheduling problems

Scheduling is the activity that consists of mapping an application onto a tar-
get platform and of assigning execution times to its constitutive parts. The
application can often be represented as a task graph, where nodes denote
computational tasks and edges model precedence constraints between tasks.
For each task, an assignment (choose the processor that will execute the task)
and a schedule (decide when to start the execution) are determined. The
goal is to obtain an e�cient execution of the application, which translates
into optimizing some objective function. The traditional objective function in
the scheduling literature is the minimization of the total execution time, or
makespan; however, we will see examples with other objectives, such as those
of the case study devoted to online scheduling (Chapter 15).

Traditional scheduling assumes that the target platform is a set of p identical
processors, and that no communication cost is paid. In that context, a task
graph is a directed acyclic vertex-weighted graph G = (V,E,w), where the
set V of vertices represents the tasks, the set E of edges represents precedence
constraints between tasks (e = (u, v) 2 E if and only if u � v, where � is the
precedence relation), and the weight function w : V �! N⇤ gives the weight
(or duration) of each task. Task weights are assumed to be positive integers.
A schedule � of a task graph is a function that assigns a start time to each
task: � : V �! N⇤ such that �(u)+w(u) 6 �(v) whenever e = (u, v) 2 E. In
other words, a schedule preserves the precedence constraints induced by the
precedence relation � and embodied by the edges of the precedence graph. If
u � v, then the execution of u begins at time �(u) and requires w(u) units
of time, and the execution of v at time �(v) must start after the end of the
execution of u. Obviously, if there were a cycle in the task graph, no schedule
could exist, hence, the restriction to acyclic graphs and, thus, the focus on
Directed Acyclic Graphs (DAGs).

6.4. Examples of NP-complete problems and reductions 141

There are other constraints that must be met by schedules, namely, re-
source constraints. When there is an infinite number of processors (in fact,
when there are as many processors as tasks), the problem is with unlimited
processors, and denoted P1|prec|Cmax in the literature [44]. We use the
shorter notation SCHED(1) in this book; each task can be assigned to its
own processor. When there is a fixed number p < n of available processors,
the problem is with limited processors, and the general problem is denoted
SCHED(p). SCHED(2) represents the scheduling problem with only two pro-
cessors. Note that SCHED(1) is equivalent to SCHED(q) for any value q > n,
where n is the number of tasks. In the case with limited processors, a problem
is defined by the task graph and the number of processors p. An allocation
function alloc : V �! P is then required, where P = {1, . . . , p} denotes the set
of available processors. This function assigns a target processor to each task.
The resource constraints simply specify that no processor can be allocated
more than one task at the same time:

alloc(T) = alloc(T 0))
⇢

�(T) + w(T) 6 �(T 0)
or �(T 0) + w(T 0) 6 �(T).

This condition expresses the fact that if two tasks T and T 0 are allocated to
the same processor, then their executions cannot overlap in time.

The makespan MS(�, p) of a schedule � that uses p processors is its total
execution time: MS(�, p) = maxv2V {�(v) + w(v)} (assuming that the first
task(s) is (are) scheduled at time 0). The makespan is the total execution time,
or finish time, of the schedule. Let MSopt(p) be the value of the makespan of
an optimal schedule with p processors: MSopt(p) = min� MS(�, p). Because
schedules respect precedence constraints, we have MSopt(p) > w(�) for all
paths � in G (weights extend to paths in G as usual). We also have Seq 6
p ⇥ MSopt(p), where Seq =

P

v2V w(v) = MSopt(1) is the sum of all task
weights.

While SCHED(1) has polynomial complexity (simply traverse the graph
and start each task as soon as possible using a fresh processor), problems with
a fixed amount of resources are known to be di�cult. Letting DEC be the
decision problem associated with SCHED, and INDEP the restriction of DEC
to independent tasks (no precedence constraints), i.e., E = ;, well-known
complexity results are summarized below:

• INDEP(2) is NP-complete but can be solved by a pseudopolynomial
algorithm. Moreover, 8 " > 0, INDEP(2) admits a (1+")-approximation
whose complexity is polynomial in 1

" (see Section 8.1.5, p. 187).
• INDEP is NP-complete in the strong sense (see Exercise 7.10, p. 152)
but can be approximated up to some constant factor (see Exercise 9.5,
p. 215). Moreover, 8" > 0, there is a (1 + ")-approximation algorithm
for this problem [50].

• DEC(2) (and hence DEC) is NP-complete in the strong sense (see Ex-
ercise 7.11, p. 152).

142 Chapter 6. NP-completeness

All these results are gathered here for the sake of comprehensiveness. The
impatient reader who wonders what is the meaning of NP-complete in the
strong sense may refer to Section 6.6, p. 145, and to understand what is an
approximation algorithm, she/he may have a quick look at Section 8.1, p. 179
right now.

Scheduling and certificates

Scheduling problems provide a nice illustration of the attention that must be
paid to certificates. Consider the DEC decision problem, namely, scheduling
a task graph with p processors and a given deadline D. For the schedule to
be valid, both precedence and resource constraints must be enforced. The
question is to decide whether there exists a schedule whose makespan does
not exceed the deadline.

A naive verification of the schedule is to describe which tasks are executed
onto which processors at each time step. Unfortunately, this description may
lead to a certificate of exponential size; the time steps range from 1 to D,
and the size of the scheduling problem is O(n + p + logW + logD), where
W =

P

v2V w(v).
A polynomial size verification of the schedule can be easily obtained using

events, which are time steps where a new task begins or ends. There is a
polynomial number of such events (2n), and for each of them we perform a
polynomial number of checks. From the definition of the schedule, we first
construct the ordered list of events in polynomial time. The basic idea is to
maintain the set of tasks that have been completed and the set of processors
that are currently idle. If the event corresponds to starting a new task, we
check that all its predecessors have been completed, and that the target pro-
cessor belongs to the set of idle processors (and then we remove it from this
set). If the event corresponds to completing a task, we mark the task ac-
cordingly, and we re-insert the target processor into the set of idle processors.
Note that if several events take place at the same time step, we should start
with those that correspond to task completions. We perform these checks one
event after the other until we reach the last one, which corresponds to the
completion of the last task, and which much take place not later than D.

In summary, we see that the weights of the tasks (given by the function w)
prevent us from using a naive verification of the validity of a schedule at each
step of its execution. This is because the makespan is not polynomial in the
problem size.

6.4.5 Other famous NP-complete problems

We have initiated discussions with the 2-PARTITION problem (Definition 6.1)
that is one of the most widely used problems to perform reductions, since it
turns out to be NP-complete while being quite simple in its formulation. The
NP-completeness of 2-PARTITION will be shown in Exercise 7.20, p. 155, but

6.5. Importance of problem definition 143

from now on, we assume that this problem is indeed NP-complete.

The COLOR problem (see Definition 6.3) given in Section 6.2.2 is also NP-
complete and the proof is the purpose of Exercise 7.7, p. 151. Other problems
will discuss variants of this graph coloring problem.

Another useful problem is HC (Hamiltonian Cycle, see Definition 6.4). We
have already shown that HC is in NP (see Section 6.2.2). For the completeness,
we refer the interested reader to involved reduction in [27]. There is a nice
reduction from 3-SAT in the first edition of the book, and the current edition
performs a reduction from VERTEX-COVER.

Starting from HC, it is easy to prove that TSP (see Definition 6.5) also is
NP-complete. It is clear that TSP is in NP; a certificate is an ordered list of
vertices. The reduction comes from HC. Let I

1

be an instance of HC: This is
a graph G = (V,E). We build the following instance I

2

of TSP. The graph
G0 = (V,E0) has the same set of vertices as G, but it is a complete graph. We
set k = 0, i.e., we want to find a cycle of weight 0. Finally, for e 2 E0 we define
the cost function w such that w(e) = 0 if e 2 E, and w(e) = 1 otherwise. This
reduction is obviously of polynomial time, and the equivalence of solutions is
straightforward. Note that this last NP-completeness result comes from the
fact that TSP is a weighted version of HC.

For a reference list of problems known to be NP-complete, we refer the
reader to the book by Garey and Johnson [38].

6.5 Importance of problem definition

In this section, we point out subtleties in problem definitions. A parameter
can be either fixed for the problem or part of the problem instance. Consider
the problem CLIQUE introduced in Section 6.4.2. Given a graph G = (V,E),
we introduce the notion of �-clique of size k, where � is a rational such that
0 < � 6 1 [83]; a �-clique is a subgraph of G of size k (k vertices), with edge
density at least �. The edge density is the ratio of the number of edges in the
subgraph over the number of edges in a clique of size k, i.e.,

�

k
2

�

. We can now
define a variant of the CLIQUE problem:

DEFINITION 6.10 (BCLIQUE). Let G = (V,E) be a graph, � be a ratio-
nal number such that 0 < � 6 1, and k be an integer such that 1 6 k 6 |V |.
Does there exist a �-clique of size k in G?

In the BCLIQUE problem, � is part of the instance. Therefore, we can do a
trivial reduction from CLIQUE, letting � = 1, to prove that it is NP-complete.
However, we may define the problem in a di↵erent way, where � is given. For
a constant � such that 0 < � 6 1, we define:

144 Chapter 6. NP-completeness

DEFINITION 6.11 (BCLIQUE(�)). Let G = (V,E) be a graph and k be
an integer such that 1 6 k 6 |V |. Does there exist a �-clique of size k in G?

We have CLIQUE = BCLIQUE(1). However, the NP-completeness of
CLIQUE does not imply the NP-completeness of BCLIQUE(�) for any value
of �. We prove this NP-completeness for any fixed value 0 < � < 1 in the
following theorem:

THEOREM 6.4. BCLIQUE(�) is NP-complete for any rational number � =
p
q , where p and q are positive integer constants and p < q.

Proof. It is clear that BCLIQUE(�) is in NP, and the reduction comes logically
from the classical CLIQUE problem. The idea is to construct an auxiliary
graph G0 = (V 0, E0) and to prove that G has a clique of size k if and only if
G [G0 has a �-clique of size |V 0|+ k.

We build the set of vertices V 0 of size |V 0| = 4(|V |2 + k2)q � k, containing
vertices v0

1

to v0|V 0|. For 1 6 i 6 |V 0| and j 2 [i+1, i+ |V |] mod |V 0|, we add

an edge between vi and vj . Therefore, each node has 2|V | edges, and we have
added a total of |V ||V 0| edges. Next, we add random edges in order to have a

total of K = p
q

�|V 0|+k
2

�

�
�

k
2

�

edges between the |V 0| vertices. Because |V 0|+k

is a multiple of 2q, K is an integer. Moreover, |V 0| is large enough so that

we can prove that
�|V 0|

2

�

> K > |V ||V 0| (see [83]), i.e., there were initially
fewer than K edges, and we can have a total of K edges without exceeding
the maximum number of edges in |V 0|.

There remains to prove that G has a clique of size k if and only if G [G0

has a p
q -clique of size |V 0|+ k. Suppose first that there is a clique C of size k

in G. We consider the subgraph Q of G [G0 containing vertices C [V 0. We
have |Q| = |V 0|+k and the number of edges is K+

�

k
2

�

= p
q

�|V 0|+k
2

�

; therefore,

Q is a p
q -clique by definition.

Suppose now that there is a p
q -clique Q of size |V 0|+ k in G [G0. We first

construct a p
q -clique Q0 such that |Q0| = |Q| and V 0 ⇢ Q0. Since |Q| > |V 0|,

|V 0 \Q| 6 |V |, and each vertex in V 0 \Q cannot be connected to more than
|V | � 1 vertices of V 0 \ Q. Moreover, each vertex of V 0 \ Q is of degree at
least 2|V | and, therefore, it is connected to at least |V |+1 vertices of Q, while
vertices of Q\V are connected to at most |V |�1 vertices (all of them from V).
Therefore, we can replace |V 0\Q| vertices of Q\V with the remaining vertices
of V 0, with no reduction in the edge density. We obtain a p

q -clique Q0 such

that |Q0| = |Q| and V 0 ⇢ Q0. Then, |Q0\V | = k. To see that Q0\V is a clique
of size k in V , consider the density of G0; it is K by construction. If Q0 \ V
does not contribute

�

k
2

�

edges, then Q0 cannot have density p
q . Therefore,

Q0 \ V is a clique of size k, hence concluding the proof.

In scheduling problems (see Section 6.4.4, p. 140), the same distinction
is often implicitly made, whether the number of processors p is part of the
problem instance or not. For instance, if all tasks are unit-weighted, DEC is

6.6. Strong NP-completeness 145

NP-complete (with p in the problem instance), while DEC(2) can be solved
in polynomial time and DEC(3) is an open problem [38].

6.6 Strong NP-completeness

The last technical discussion of this chapter is related to weak and strong NP-
completeness. This refinement of the NPC problem class applies to problems
involving numbers, such as 2-PARTITION, but also TSP, because of edge
weights.

Consider a decision problem P , and let I be an instance of this problem.
We have already discussed how to compute size(I), the size of the instance,
encoded in binary. We now define max(I), which is the maximum size of
the instance, typically corresponding to the problem instance with integers
coded in unary. To give an example, consider an instance I of 2-PARTITION
with n integers a

1

, . . . , an. As already discussed, we can have size(I) = n +
P

16i6n log(ai), or any similar (polynomially related) expression. Now we can
have max(I) = n+

P

16i6n ai, or max(I) = n+max
16i6n ai, or any similar

(polynomially related) expression.
Then, given a polynomial p, we define Pp, the problem P restricted to p, as

the problem restricted to instances such thatmax(I) is smaller than p(size(I)),
i.e., the size of the instance coded in unary is bounded applying p to the binary
size of the instance. A problem P (in NP) is NP-complete in the strong sense
if and only if there exists a polynomial p such that Pp remains NP-complete.
Otherwise, if the problem restricted to p can be solved in polynomial time,
the problem is NP-complete in the weak sense; intuitively, in this case, the
problem is di�cult only if we do not bound the size of the input in the problem
instance.

Note that for a graph problem such as the bipartite graph problem, there
are no numbers, so max(I) = size(I) and the problem is NP-complete in the
strong sense. For problems with numbers (including weighted graph prob-
lems), one must be more careful. Coming back to 2-PARTITION, we have
seen in Section 6.2.1 that it can be solved by a dynamic-programming al-
gorithm running in time O(n

Pn
i=1

ai), or equivalently in time O(max(I)).
Therefore, any instance I of 2-PARTITION can be solved in time polyno-
mial in max(I), which is the definition of a pseudopolynomial problem. And
2-PARTITION is not NP-complete in the strong sense (one says it is NP-
complete in the weak sense).

To conclude this section, we introduce a problem with numbers that is NP-
complete in the strong sense: 3-PARTITION. The name of this problem is
misleading because this problem is di↵erent from partitioning n integers into
three sets of same size.

146 Chapter 6. NP-completeness

DEFINITION 6.12 (3-PARTITION). Given an integer B, and 3n integers
a
1

, . . . , a
3n, can we partition the 3n integers into n triplets, each of sum B?

We can assume that
P

3n
i=1

ai = nB (otherwise, there is no solution), and that
B/4 < ai < B/2 (so that one needs exactly three elements to obtain a sum B).

Contrary to 2-PARTITION, 3-PARTITION is NP-complete in the strong
sense [38].

6.7 Why does it matter?

We conclude this chapter with a discussion on polynomial problems. Why
focus on polynomial problems? If the size of the data is in n, from a practical
perspective it is much better to have an algorithm in (1.0001)n, which is
exponential, than a polynomial-time algorithm in n1000. In such a case, the
polynomial-time algorithm is still slower than the exponential one for n = 109,
and, therefore, the exponential algorithm is faster in any practical situation.
However, n1000 is not practical either. In general, polynomial algorithms have
a small degree, typically not exceeding 4 and almost always smaller than 10.

Polynomial-time algorithms are likely to be e�cient algorithms, so when
confronted with a new problem, the first thing we do is to look for an algorithm
that would solve it in polynomial time. If we succeed, we are finished. If we
do not succeed, we have another way to go—prove that the problem is NP-
complete. Then the chance of somebody else coming later and providing an
optimal solution to the problem is very small because it is very unlikely that
P = NP. In other words, if we can show that our problem is more di�cult
than one (hence all) of these famous NP-complete problems, then we show
strong evidence of the intrinsic di�culty of the problem.

Of course, proving a problem NP-complete does not make it go away. One
needs to keep a constructive approach, such as proposing an algorithm that
provides a near-optimal solution in polynomial time (or again, proving that
no such approximation algorithm exists). This is the subject of Chapter 8.

6.8 Bibliographical notes

As already mentioned, our approach to NP-completeness is original. See
the book by Garey and Johnson [38] for a comprehensive treatment of NP-
completeness and a famous catalog of NP-complete problems. A very intuitive
proof of Cook’s theorem is given in the book by Wilf [108]. A theory-oriented
approach with Turing machines and complexity results is available in the book

6.8. Bibliographical notes 147

by Papadimitriou [82]. The more adventurous reader can investigate the book
by Arora and Barak [4].

Chapter 8

Beyond NP-completeness

At the conclusion of Chapter 6, we stated that proving a problem is NP-
complete does not make it go away. The subject of this chapter is to go
beyond NP-completeness and to describe the various approaches that can be
taken when confronted with an NP-complete problem.

The first approach (see Section 8.1) is the most elegant. When deriving
approximation algorithms, we search for an approximate solution, but we also
guarantee that it is of good quality. Of course, the approximated solution
must be found in polynomial time.

The second approach (see Section 8.2) is less ambitious. Given an NP-
complete problem, we show how to characterize particular instances that have
polynomial complexity.

The third approach (see Section 8.3) often provides useful lower bounds.
The idea is to cast the optimization problem under study in terms of a lin-
ear program. While solving a linear program with integer variables is NP-
complete, solving a linear program with rational variables has polynomial
complexity (we are restricted to rational variables because of the impossibil-
ity of e�ciently encoding real numbers). The di�culty is then to reconstruct
a solution of the integer linear program from an optimal solution of that pro-
gram with rational variables. This is not always possible, but this method at
least provides a lower bound on any optimal integer solution.

We briefly introduce, in Section 8.4, randomized algorithms as a fourth ap-
proach that solves “most” instances of an NP-complete problem in polynomial
time.

Finally, we provide in Section 8.5 a detailed discussion of branch-and-bound
and backtracking strategies, where one explores the space of all potential so-
lutions in a clever way. While the worst-case exploration may require expo-
nential time, on average, the optimal solution is found in “reasonable” time.

8.1 Approximation results

In this section, we first define polynomial-time approximation algorithms and
(fully) polynomial-time approximation schemes (PTAS and FPTAS). Then,

179

180 Chapter 8. Beyond NP-completeness

we give some examples of approximation and inapproximability results.

8.1.1 Approximation algorithms

In Chapter 6, we have defined the NP-completeness of problems and exhibited
several NP-complete decision problems. As discussed in Section 6.3.4, the
target problem is often an optimization problem that has been restricted to a
decision problem so that we can prove its NP-completeness.

If the optimal solution of an optimization problem cannot be found in poly-
nomial time, one may want to find an approximate solution in polynomial
time.

DEFINITION 8.1. A �-approximation algorithm is an algorithm whose
execution time is polynomial in the instance size and that returns an approx-
imate solution guaranteed to be, in the worst case, at a factor � away from
the optimal solution.

For instance, for each instance I of a minimization problem, the solution
of the approximation algorithm for instance I must be smaller than or equal
to � times the optimal solution for instance I.

The closer � to 1, the better the approximation algorithm. We catego-
rize some particular approximation algorithms for which � is close to 1 as
polynomial-time approximation schemes.

DEFINITION 8.2. A Polynomial-Time Approximation Scheme (PTAS) is
such that for any constant � = 1+" > 1, there exists a �-approximation algo-
rithm, i.e., an algorithm that is polynomial in the instance size and guaranteed
at a factor �.

Note that the algorithm may not be polynomial in 1/" and thus have a
high complexity when " gets close to zero. A Fully PTAS is such that the
algorithm is polynomial both in the instance size and in 1/".

DEFINITION 8.3. A Fully Polynomial-Time Approximation Scheme, or
FPTAS, is such that for any constant � = 1 + " > 1, there exists a �-
approximation algorithm that is polynomial in the instance size and in 1/".

The di↵erence between PTAS and FPTAS is simply that the 8" quantifier
changes sides. For a PTAS, " is a fixed constant, so that 2

1

" is a constant as
well. On the contrary, the complexity of an FPTAS scheme must be polyno-
mial in 1

" . Of course, having an FPTAS is a stronger property than having
a PTAS (i.e., FPTAS) PTAS).

Finally, we define asymptotic PTAS and FPTAS, which add a constant to
the approximation scheme. We define formally only the APTAS for a mini-
mization problem, and the definition can easily be extended for maximization
problems and AFPTAS.

8.1. Approximation results 181

DEFINITION 8.4. An Asymptotic Polynomial-Time Approximation Sche-
me, or APTAS, is such that for any constant � = 1 + " > 1, there exists an
algorithm, polynomial in the instance size, such that CAPTAS 6 �Copt + �
(for a minimization problem), where CAPTAS is the cost of the solution of the
algorithm, Copt is the cost of an optimal solution, and � is a constant that
may depend on " but should be independent of the problem size.

In the following, we discuss several approximation algorithms, and we show
how to prove that an algorithm is an approximation algorithm (possibly an
(A)PTAS or (A)FPTAS) or how to prove that a problem cannot be approxi-
mated in polynomial time up to any fixed constant �.

8.1.2 Vertex cover

We consider here the classical vertex cover problem, which was shown to be
NP-complete in Section 6.4.3. We discuss a weighted version of this problem
in Section 8.3.

We first recall the definition of the vertex cover problem in its optimization
problem formulation. Given a graph G = (V,E), we want to find a set of
vertices of minimum size that is covering all edges (i.e., any edge in E includes
at least one of the vertices of the set).

We consider the following greedy algorithm to solve the problem, called
greedy-vc. Initialize S = ;. Then, while some edges are not covered (i.e.,
neither of their end vertices are in set S), pick one edge e = (u, v), add both
vertices u and v to set S, and mark all edges including u or v as covered. It is
clear that greedy-vc returns a valid vertex cover, and that it is polynomial in
the size of the instance. We now prove that it is a 2-approximation algorithm
for the vertex cover optimization problem.

THEOREM 8.1. Greedy-vc is a 2-approximation algorithm for vertex
cover.

Proof. Let A be the set of edges selected by the greedy algorithm. Two edges
of A cannot have a common vertex, and, therefore, the size of the cover of
this algorithm is C

greedy-vc

= 2|A|. However, all edges selected greedily
are independent, and each of them must be covered in any solution; hence,
an optimal solution has at least |A| vertices: Copt > |A|. We deduce that
C

greedy-vc

6 2⇥ Copt, which concludes the proof.

Note that this approximation factor of 2 is achieved, for instance, if G con-
sists of two vertices joined by an edge. There is a polynomial-time algorithm
that is a 2 � log(log(|V |))

2 log(|V |) approximation [79], but, for instance, we do not
know any polynomial-time algorithms that would be a 1.99 approximation
(the problem is still open).

182 Chapter 8. Beyond NP-completeness

8.1.3 Traveling salesman problem (TSP)

Let G = (V,E) be a complete graph and w : E ! N be a cost function. The
TSP problem consists of finding a cycle C going through each vertex once and
only once, with

P

e2C w(e) 6 k. The decision problem, in which k is a fixed
integer, is NP-complete, as mentioned in Section 6.4.5. For the optimization
problem, the goal is to minimize k.

First, we prove that TSP cannot be approximated unless P = NP. Then,
we propose an approximation algorithm in the particular case where the cost
function follows the triangle inequality.

Inapproximability of TSP

THEOREM 8.2. For any constant � > 1, there does not exist any �-
approximation algorithm for TSP unless P = NP.

To prove such a result, the methodology is often as follows. The idea
consists of assuming that there is a �-approximation algorithm for the target
problem (by definition, this is a polynomial-time algorithm). Then, one uses
this approximation algorithm to solve in polynomial time a problem that is
known to be NP-complete. For TSP, we show how any instance of problem
Hamiltonian Cycle (HC, see Definition 6.4) can be solved in polynomial time
using any approximation algorithm for TSP.

Proof. Let us assume that there is a �-approximation algorithm for TSP. We
consider an instance Ihc of HC, which is a graph G = (V,E), with n = |V |.
Then, we build an instance Itsp of TSP as follows. In the complete graph,
we build a cost function such that w(e) = 1 if e 2 E, and w(e) = �n + 1
otherwise. The size of Itsp is obviously polynomial in the size of Ihc.

We use the �-approximation algorithm to solve Itsp. Let Calgo be its so-
lution. This solution is such that Calgo 6 �Copt, where Copt is the optimal
solution.

We consider the two following cases:

• If Calgo > �n + 1, then Copt > n. This means that instance Ihc has
no solution. Indeed, a Hamiltonian Cycle for Ihc would be a solution of
cost n for Itsp.

• Otherwise, Calgo < �n + 1, and therefore the solution of Itsp is not
using any edge not in E (otherwise, the cost would be at least �n+ 1).
This solution is therefore a Hamiltonian Cycle for Ihc, which means that
instance Ihp has a solution.

Therefore, the result of the algorithm for Itsp allows us to conclude whether
there is a Hamiltonian Cycle in Ihc, which concludes the proof.

Note that we assumed that � is constant, but we can even have � = 1+2�n,
since the algorithm would still be polynomial in the instance size (� can be

8.1. Approximation results 183

encoded in logarithmic size, hence in O(n)). However, Theorem 8.2 does not

forbid the existence of a 22
�n

-approximation algorithm.

Approximation algorithm with triangle inequality

We now assume that the cost function w satisfies the triangle inequality, i.e.,
for all vertices v

1

, v
2

, v
3

2 V , w(v
1

, v
3

) 6 w(v
1

, v
2

) + w(v
2

, v
3

).
The approximation algorithm spanning-tsp works as follows. First, we

build a minimum spanning tree T of the graph G, which can be done in
polynomial time with a greedy algorithm (remove edges by nonincreasing
costs while keeping a connected graph, see Section 3.4). Then, we perform a
tree traversal of T (once a node u is visited, one completely visits the subtree
rooted at one of the children of u before starting to visit any subtree rooted at
another child). Each edge of T is visited exactly twice. We extract a solution
for TSP, i.e., a Hamiltonian Cycle, by recording the order in which vertices
are visited for the first time. From this ordered list of vertices, we build a
cycle by taking the edges that link consecutive vertices (recall that the graph
is complete).

We now prove that this algorithm is a 2-approximation.

THEOREM 8.3. Spanning-tsp is a 2-approximation algorithm for the
traveling salesman problem with the triangle inequality.

Proof. The optimal cost Copt is at least equal to the sum of the costs of the
edges in the minimum spanning tree T , denoted by w(T). Indeed, an optimal
solution is a cycle. If we remove an edge from an optimal solution, we obtain
a spanning tree, and T is a spanning tree of minimum weight. Therefore,
Copt > w(T).

Now, we consider the cost of the solution returned by the algorithm. We
denote this solution by S and its cost by C

spanning-tsp

. Let O be the order in
which the vertices are visited in the traversal of T . Vertices that are not leaves
of T appear several times in O. S is obtained from O by keeping only the
first occurrence of each vertex. Because of the triangular inequality, deleting
a vertex from O does not increase the cost of the associated path. (Suppose
we delete the vertex y in the sequence (x, y, z) of O; this is equivalent to
replacing the two edges (x, y) and (y, z) with the single edge (x, z).) Hence,
C

spanning-tsp

is less than or equal to the cost of the path associated with O.
Furthermore, the path associated with O contains each edge exactly twice,
and its cost is exactly 2 ⇥ w(T). Therefore, C

spanning-tsp

6 2Copt, which
proves the approximation result.

8.1.4 Bin packing

In this section, we introduce a new classical problem that is the bin packing
problem.

184 Chapter 8. Beyond NP-completeness

DEFINITION 8.5 (BP – Bin Packing). Given n rational numbers (also
called objects) a

1

, . . . , an, with 0 < ai 6 1, for 1 6 i 6 n, can we partition
them in k bins B

1

, . . . , Bk of capacity 1, i.e., for each 1 6 j 6 k,
P

i2B
j

ai 6 1?

First, we prove the NP-completeness of this problem, then we exhibit several
approximation results.

NP-completeness of BP

THEOREM 8.4. BP is NP-complete.

Proof. It is straightforward to see that BP is in NP: A certificate is the list,
for each bin, of the indices of the numbers it contains.

The reduction comes from 2-PARTITION. We consider an instance I
1

of
2-PARTITION, with n integers b

1

, . . . , bn. We build the following instance I
2

of BP: For 1 6 i 6 n, ai =
2b

i

S , with S =
Pn

i=1

bi, and we set k = 2.
It is then straightforward to see that the size of the new instance is poly-

nomial and to check the equivalence of solutions.

Inapproximability of BP

THEOREM 8.5. For all " > 0, there does not exist any (3
2

�")-approximation
algorithm for BP unless P = NP.

Proof. Let us assume that there is a (3
2

� ")-approximation algorithm for BP.
We then exhibit a polynomial algorithm to solve 2-PARTITION.

Given an instance of 2-PARTITION, we execute the algorithm for BP with
the ai as defined earlier. If there exists a 2-PARTITION of the bi, the al-
gorithm returns at most 2 ⇥ (3

2

� ") = 3 � 2" bins, so it returns two bins.
Otherwise, the algorithm returns a solution with at least three bins. Thanks
to the polynomial approximation algorithm, we can solve 2-PARTITION in
polynomial time, which implies that P = NP. This concludes the proof.

Approximation algorithms for BP

We start with a simple greedy algorithm in which we select objects in a random
order, and, at each step, we place the object either in the last used bin where
it fits (next-fit algorithm) or in the first used bin where it fits (first-fit
algorithm); otherwise (i.e., the object is not fitting in any used bin), we create
a new bin and place the object in this new bin. We prove below that next-fit
(and, hence, first-fit) is a 2-approximation algorithm for the BP problem.

THEOREM 8.6. Next-fit is a 2-approximation algorithm for BP.

Proof. Let A =
Pn

i=1

ai. We have a lower bound on the cost of the optimal
solution (the number of bins used by the optimal solution): Copt > dAe.

Now we bound the cost of next-fit as follows. If we consider two consecu-
tive bins, the sum of the objects that they contain is strictly greater than 1;

8.1. Approximation results 185

otherwise, we would not have created a new bin. Therefore, if C
next-fit

= K,
and Bk is the k-th bin of the solution returned by next-fit, for 1 6 k 6 K,
then by summing the contents of two consecutive bins, we get

K�1

X

k=1

0

@

X

i2B
k

ai +
X

i2B
k+1

ai

1

A > K � 1 .

Moreover, by definition of A, we have
PK�1

k=1

⇣

P

i2B
k

ai +
P

i2B
k+1

ai
⌘

6 2A,

and, therefore, K � 1 < 2A 6 2dAe. Finally, C
next-fit

= K 6 2dAe 6 2Copt,
which concludes the proof.

Note that the approximation ratio is tight for the next-fit algorithm. Con-
sider an instance of BP with 4n objects such that a

2i�1

= 1

2

and a
2i =

1

2n , for
1 6 i 6 2n. Then, if next-fit chooses the objects in the sequential order, its
solution uses 2n bins (one object a

2i�1

and one object a
2i in each bin), while

the optimal solution uses only n + 1 bins (for 1 6 i 6 2n, the 2n objects a
2i

in one bin and two objects a
2i�1

in each of the other n bins).
The previous algorithms can be qualified as online algorithms because no

sorting is done on the objects, and we can pack them in the bins when they
arrive, on the fly. If we have the knowledge of all objects before executing
the algorithm, we can refine the algorithm by sorting the objects beforehand.
Such algorithms are called o✏ine algorithms. The first-fit-dec algorithm
sorts the objects by nonincreasing size (dec stands for decreasing), and then
it applies the first-fit rule: The object is placed in the first used bin in which
it fits; otherwise, a new bin is created.

THEOREM 8.7. C
first-fit-dec

6 3

2

Copt + 1, where C
first-fit-dec

is the cost
returned by the first-fit-dec algorithm, and Copt is the optimal cost.

Note that this is not an approximation algorithm as defined above because
of the “+1” in the expression, which corresponds to one extra bin that the
first-fit-dec algorithm may use. This is rather an asymptotic approximation
algorithm, which is similar to an A(F)PTAS scheme. Indeed, the constant 1
is independent of the problem size, and the algorithm is asymptotically a
3

2

-approximation.

Proof. We split the ai in four categories:

A =

⇢

ai >
2

3

�

B =

⇢

2

3
� ai >

1

2

�

C =

⇢

1

2
� ai >

1

3

�

D =

⇢

1

3
� ai

�

Case 1: There is at least one bin containing only objects of category D in
the solution of first-fit-dec. In this case, at most one bin (the last one) has
a sum of objects of less than 2

3

, and it contains only objects of category D.
Indeed, if the objects of D of the last bin have not fit in the previous bins, it
means that each bin (except the last one) has a sum of objects of at least 2

3

.

186 Chapter 8. Beyond NP-completeness

Therefore, if we ignore the last bin, Copt > Pn
i=1

ai > 2

3

(C
first-fit-dec

� 1),
which concludes the proof for this case.

Case 2: There is no bin with only objects of category D. In this case, we
can ignore the objects of category D because they are added into the bins at
the end of the algorithm, and they do not lead to the creation of new bins.
We now prove that the solution of first-fit-dec for the objects of A, B, and C
is optimal. Indeed, in any solution, objects of A are alone in a bin, and there
are at most two objects of B and C in a bin, with at most one object of B.
The first-fit-dec algorithm is placing first each object A and B in a separate
bin, then it does the best matching of objects C, because they are placed in
the bins by decreasing order. In this case, first-fit-dec is optimal.

Note that the reasoning does not hold if the categories are made di↵erently,
with, for instance, 1

4

instead of 1

3

. Indeed, we can then fit three objects of
category C in a single bin, and the reasoning does not hold anymore. However,
we point out that it is also possible to prove that C

first-fit-dec

6 11

9

Copt + 1,
and we refer to [112] for further details. The idea of the proof is similar, but
more categories of objects are considered, and the algorithm turns out to be
much more complex.

Without allowing an extra bin, we can finally prove that first-fit-dec is a
3

2

-approximation algorithm.

THEOREM 8.8. First-fit-dec is a 3

2

-approximation algorithm for the bin
packing problem.

Proof. Let k = C
first-fit-dec

be the cost returned by the first-fit-dec algo-
rithm, and let j =

⌃

2

3

k
⌥

. Bins are numbered from 1 to k, and we consider two
cases.

Case 1: If bin j contains an object ai such that ai >
1

2

, then if j0 < j, there
is an object ai0 in bin j0 such that ai0 > ai >

1

2

. This is true for 1 6 j0 < j,
and, therefore, there are at least j objects of size greater than 1

2

that should
be placed in distinct bins. This implies that the optimal cost Copt is greater
than j.

Case 2: None of the bins j0 > j contains any object of size strictly greater
than 1

2

; there are at least two objects per bin, except for bin k that may
contain only one object, hence 2(k�j)+1 objects in bins j, j+1, . . . , k. None
of these objects fits into bins 1, 2, . . . , j � 1, by definition of first-fit-dec.
We show below that 2(k � j) + 1 > j � 1, and by combining j � 1 of these
objects with each of the first j � 1 bins, we obtain that the sum of the ais
is strictly greater than j � 1, i.e., Copt is greater than j. In order to prove
the inequality 2(k � j) + 1 > j � 1, we show that j =

⌃

2

3

k
⌥

6 2

3

(k + 1).
Let y = j � 2

3

k. Note that j and k are integers, and 0 6 y < 1. Moreover,
k = 3

2

j � 3

2

y. If j is even, then 3

2

j is an integer; therefore, 3

2

y is an integer
strictly smaller than 3

2

, i.e., 3

2

y 6 1 and y 6 2

3

. Otherwise, 3

2

y + 1

2

is an
integer, and because y < 1, we have 3

2

y + 1

2

< 2, i.e., 3

2

y + 1

2

6 1 and y 6 1

3

.
Altogether,

⌃

2

3

k
⌥

= j = 2

3

k + y 6 2

3

k + 2

3

.

8.1. Approximation results 187

In both cases, we have

Copt > j =

⇠

2

3
k

⇡

> 2

3
C

first-fit-dec

,

which concludes the proof.

8.1.5 2-PARTITION

We discuss approximation algorithms for the 2-PARTITION problem. The
optimization problem associated with 2-PARTITION is the following: Given n
integers a

1

, . . . , an, find a subset I of {1, . . . , n} such that max
�

P

i2I ai,
P

i/2I ai
�

is minimum. Note that the minimum is always at least max (Pmax, Psum/2),
where Pmax = max

16i6n ai and Psum =
Pn

i=1

ai.
This problem is similar to a scheduling problem with two identical proces-

sors. There are n independent tasks T
1

, . . . , Tn, and task Ti (1 6 i 6 n) can
be executed on one of the two processors in time ai. The goal is to minimize
the total execution time. The processors are denoted by P

1

and P
2

.
We start by analyzing two greedy algorithms for this problem. Then, we

show how to derive a PTAS for 2-PARTITION and even an FPTAS.

Greedy algorithms

The two natural greedy algorithms are the following. We choose tasks in a
random order (online algorithm, greedy-online) or sorted by nonincreasing
execution time (o✏ine algorithm, greedy-o✏ine), and we assign the chosen
task to the processor that has the lowest current load.

The idea of sorting in the o✏ine algorithm is that a task with a large execu-
tion time, if considered at the end of the algorithm, may unbalance the entire
execution. However, the o✏ine version requires that all execution times are
known beforehand. The online algorithm can be applied in a problem where
tasks arrive dynamically (for instance, scheduling user jobs on a biprocessor
server).

THEOREM 8.9. Greedy-online is a 3

2

-approximation algorithm, and gree-
dy-o✏ine is a 7

6

-approximation algorithm for the 2-PARTITION problem.
Moreover, these approximation ratios are tight.

Proof. First, we consider the greedy-online algorithm. Let us assume that
processor P

1

finishes the execution at time M
1

> M
2

(where M
2

is the time at
which P

2

finishes its execution), and that Tj is the last task executed on P
1

.
We have M

1

+ M
2

= Psum. Moreover, since the greedy algorithm chose
processor P

1

to execute task Tj , it means that M
1

� aj 6 M
2

; otherwise,
Tj would have been scheduled on P

2

. Finally, the cost of greedy-online is
such that:

C
online

= M
1

=
1

2
(M

1

+(M
1

�aj)+aj) 6
1

2
(M

1

+M
2

+aj) =
1

2
(Psum+aj),

188 Chapter 8. Beyond NP-completeness

and since Copt > Psum/2 and Copt > ai for 1 6 i 6 n, we have C
online

6
Copt +

1

2

Copt =
3

2

Copt, which concludes the proof.

For the o✏ine version of the greedy algorithm, we start as before, but we
refine the inequality aj 6 Copt. If aj 6 1

3

Copt, we obtain the approximation
ratio of the theorem, i.e., C

o✏ine

6 7

6

Copt. We focus now on the case where
aj > 1

3

Copt. Then, j 6 4. Indeed, if aj were the fifth task, because the tasks
are sorted by nonincreasing execution times, there would be at least five tasks
of time at least 1

3

Copt, and any schedule would need to schedule at least three
of these tasks on the same processor, leading to an execution time strictly
greater than Copt, and hence a contradiction. Then, we note that, in this
case, the cost C

o✏ine

when we restrict to the scheduling of the first four tasks
is identical to the cost when scheduling all tasks. Finally, it is easy to check
(exhaustively) that greedy-o✏ine is optimal when scheduling at most four
tasks. We conclude that C

o✏ine

= Copt in this case, which ends the proof.

Finally, we prove that the ratios are tight. For greedy-online, we consider
an instance with two tasks of time 1 and one task of time 2. The greedy algo-
rithm schedules the tasks in time 3 (each task of time 1 on a distinct processor,
then the task of time 2 after one of those), while the optimal algorithm takes
a time 2 (with the two first tasks on the same processor). For greedy-o✏ine,
we consider an instance with two tasks of time 3 and three tasks of time 2.
The greedy algorithm schedules each task of time 3 on a distinct processor,
leading to a total execution time of 7, while the optimal solution consists of
grouping those two tasks on the same processor, with a total time of 6.

PTAS: A (1 + ")-approximation algorithm

THEOREM 8.10. 8" > 0, there is a (1 + ")-approximation algorithm for
the 2-PARTITION problem. In order words, 2-PARTITION has a PTAS.

Proof. We consider an instance I of 2-PARTITION, a
1

, . . . , an (recall that
the ais can be interpreted as the execution time of tasks), and " > 0.

We classify the tasks into two categories. Let L = max (Pmax, Psum/2).
The big tasks are in the set Tbig = {i | ai > "L}, while the small tasks are in
the set Tsmall = {i | ai 6 "L}. We consider an instance I⇤ of the problem with
the tasks of Tbig, and

⌅

S
"L

⇧

tasks of identical size "L, where S =
P

i2T
small

ai.
The proof goes as follows. We show that the optimal schedule for in-

stance I⇤ has a cost C⇤
opt close to the cost Copt of the optimal schedule for

instance I, i.e., C⇤
opt 6 (1 + ")Copt. Moreover, it is possible to compute the

optimal schedule for instance I⇤ in a polynomial time. Building upon this
schedule, we finally construct a solution to the original instance I, with a
guaranteed cost.

First, we prove that C⇤
opt 6 (1 + ")Copt. Let opt be an optimal schedule

for instance I, of cost Copt. Then, let S
1

(resp. S
2

) be the sum of the small
tasks in this optimal schedule on processor P

1

(resp. P
2

). We build a new
schedule sched⇤ in which the big tasks of the optimal schedule opt remain on

8.1. Approximation results 189

the same processors, but small tasks are replaced with
⌃

S
i

"L

⌥

tasks of size "L
on processor Pi, for i = 1, 2. Because

⇠

S
1

"L

⇡

+

⇠

S
2

"L

⇡

>
�

S
1

+ S
2

"L

⌫

=

�

S

"L

⌫

,

we have scheduled at least as many tasks of size "L as the total number of
small tasks in instance I⇤. Moreover, the execution time on processor Pi, for
i = 1, 2, has been increased of at most

⇠

Si

"L

⇡

⇥ "L � Si 6 "L ,

which means that the cost of this schedule is such that C⇤
sched 6 Copt + "L.

Moreover, this schedule is a schedule for instance I⇤ and, therefore, C⇤
sched >

C⇤
opt. Finally, C

⇤
opt 6 Copt + "L 6 Copt + "⇥ Copt, which concludes the proof

that C⇤
opt 6 (1 + ")Copt.

Next, we discuss how to find an optimal schedule for instance I⇤. First,
we provide a bound on the number of tasks in I⇤. Because we replaced small
tasks of I with tasks of size "L, we have not increased the total execution
time, which is at most Psum 6 2L. Each task of I⇤ has an execution time
of at least "L (small tasks), so there are at most 2L

"L = 2

" tasks. Note that
this is a constant number because " is a constant. Moreover, we note that the
size of I⇤ is polynomial in the size of instance I (because the size of I⇤ is a
constant). We can optimally schedule I⇤ by trying all 2

2

" possible schedules
and keeping the best one. Of course, this algorithm is not polynomial in 1/",
but it is polynomial in the size of the instance I because it is a constant.

Now we have an optimal schedule opt⇤ for instance I⇤, of cost C⇤
opt, and we

aim to build a schedule sched for instance I. For i = 1, 2, we let L⇤
i = B⇤

i +S⇤
i

be the total execution time of processor Pi in the schedule opt⇤, where B⇤
i

(resp. S⇤
i) is the time spent on big (resp. small) tasks. Then, we build the

schedule sched in which the big tasks are kept on the same processor as in
opt⇤, and we greedily assign small tasks to processors. First, we assign small
tasks to processor P

1

until their processing time does not exceed S⇤
1

+ 2"L.
Then, we schedule the remaining small tasks to processor P

2

. Let us prove
now that once all small tasks have been scheduled, the execution time has not
increased by more than 2"L.

Because small tasks have a size of at most "L, the greedy algorithm assigns
at least a total of S⇤

1

+ "L small tasks on processor P
1

. Then, there are at
most a total of S � (S⇤

1

+ "L) small jobs to assign to processor P
2

. However,
by construction of I⇤, we have S⇤

1

+ S⇤
2

= "L
⌅

S
"L

⇧

> S � "L and, therefore,
S � (S⇤

1

+ "L) 6 S⇤
2

, and the execution time of P
2

in the new schedule sched
is not greater than in the schedule opt⇤.

The schedule sched is a schedule for instance I, which is built in polynomial
time. The cost of this schedule is at most Csched 6 C⇤

opt + 2"L. We use the

190 Chapter 8. Beyond NP-completeness

previous result that C⇤
opt 6 (1+")Copt and the fact that L 6 Copt to conclude

that Csched 6 C⇤
opt + 2"L 6 (1 + 3")Copt. This is true for all ", so we can

apply this algorithm with "/3 to obtain the desired ratio.

Note that a simpler proof can be done by using an optimal schedule for the
big tasks, of cost Cbig, and the greedy-online algorithm introduced above.
Once the small tasks have been scheduled greedily on the two processors,
there are two cases. If the total time has not changed, i.e., it is Cbig, it
is optimal. Otherwise, the processor that ends the execution is executing a
small task aj . This means that before the greedy choice of scheduling task aj
onto this processor, the finishing time of the processor was less than Psum/2;
otherwise, task aj would have been assigned to the other processor because of
the greedy choice. Finally, the cost of the schedule returned by this algorithm
is at most Psum/2 + aj 6 L+ "L 6 (1 + ")Copt.

A PTAS provides an approximate solution that is as close to the optimal
as one wants. The only downside is that the algorithm running time increases
with the quality of the approximate solution. Some readers may thus be
puzzled by the idea of having a PTAS or an FPTAS for an NP-complete
problem whose objective function takes values in a discrete set, such as 2-
PARTITION. Indeed, a PTAS, for such a problem, enables one to obtain an
optimal solution whenever one is ready to pay the cost. Let us consider any
given instance I of 2-PARTITION. Let S be the sum of the elements of I. If
" < 1

S , then any 1 + " approximation produces an optimal solution. Indeed,
(1 + ")Copt < (1 + 1

S)Copt 6 Copt + 1 because Copt 6 S and because the
objective function can take only integral values. This may be surprising at
first sight, but it does not contradict anything we have written so far. One
should not forget that the running time of an FPTAS is polynomial in the
size of 1

" , that is, in our example, in the size of S. The running time of a
PTAS can even be exponential in the size of 1

" . Finding the optimal solution
for 2-PARTITION in time exponential in the size of S is quite simple. One
generates all the subsets of I and computes the sum of the elements of each
subset. If I includes n elements, there are 2n = O(2S) subsets of I. The sum
of the elements of each of them is computed in time O(n) and thus O(S).
Therefore, readers should not be surprised that, for a given value of ", an
algorithm whose running time is polynomial in the size of the instance can
find an optimal solution to 2-PARTITION.

FPTAS for 2-PARTITION

We have provided a PTAS for 2-PARTITION, but the algorithm finds an
optimal schedule for instance I⇤ (i.e., an optimal schedule of the big tasks),
and this is not polynomial in 1/". Below, we provide an FPTAS, i.e., a (1+")-
approximation algorithm that is polynomial in the size of I and in 1/".

8.1. Approximation results 191

THEOREM 8.11. 8" > 0, there is a (1 + ")-approximation algorithm for
the 2-PARTITION problem that is polynomial in 1/". In order words, 2-
PARTITION has an FPTAS.

Proof. The idea of the proof is to encode the schedules as vector sets, in
which the first (resp. second) element of a vector represents the running time
of the first (resp. second) processor. Formally, for 1 6 k 6 n, V Sk is the set
of vectors representing schedules of tasks a

1

, . . . , ak: V S
1

= {[a
1

, 0], [0, a
1

]},
and we build V Sk from V Sk�1

as follows. For all [x, y] 2 V Sk�1

, we add
[x + ak, y] and [x, y + ak] to V Sk. The optimal schedule is represented by a
vector [x, y] 2 V Sn, and it is such that max(x, y) is minimized.

The approximation algorithm enumerates all possible schedules, but some
of them are discarded on the fly so that we keep a polynomial algorithm.

Let � = 1 + "
2n . We partition the square Psum ⇥ Psum following the

power of �, from 0 to �M . We have M = dlog
�

(Psum)e =
l

ln(P
sum

)

ln(�)

m

6
⌃�

1 + 2n
"

�

ln(Psum)
⌥

. Indeed, note that if z > 1, then ln(z) > 1� 1

z .
The idea of the algorithm consists of building the vector sets but adding a

new vector to a set only if there are no other vectors in the same square of
the partitioned Psum ⇥ Psum square. Because M is polynomial in 1/" and in
ln(Psum), and the size of instance I is greater than ln(Psum), the algorithm
is polynomial both in the size of I and in 1/". We need to prove that this
algorithm is a (1 + ")-approximation to conclude the proof.

First, let us formally describe the algorithm. Initially, V S#

1

= V S
1

. Then,

for 2 6 k 6 n, we build V S#

k from V S#

k�1

as follows. For all [x, y] 2 V S#

k�1

,

we add [x+ ak, y] (resp. [x, y + ak]) to V S#

k if and only if there is no vector

from V S#

k in the same square. Note that two vectors [x
1

, y
1

] and [x
2

, y
2

] are
in the same square if and only if x

1

�

6 x
2

6 �x
1

and y
1

�

6 y
2

6 �y
1

.
We keep at most one vector per square at each step, which gives an overall

complexity in n⇥M2, which is polynomial both in the size of instance I and
in 1/".

Next, we prove that for all 1 6 k 6 n and [x, y] 2 V Sk there exists
[x#, y#] 2 V S#

k such that x# 6 �kx and y# 6 �ky. The proof is done
recursively. The result is trivial for k = 1. If we assume that the result is
true for k � 1, then let us consider [x, y] 2 V Sk. Either x = u + ak and
y = v (case 1), or x = u and y = v + ak (case 2), with [u, v] 2 V Sk�1

. By
recursion hypothesis, there exists [u#, v#] 2 V S#

k�1

with u# 6 �k�1u and

v# 6 �k�1v. For case 1, note that [u# + ak, v#] may not be in V S#

k , but

we know that there is at least one vector in the same square in V S#

k ; there

exists [x#, y#] 2 V S#

k such that x# 6 �
�

u# + ak
�

and y# 6 �v#. Finally,
we have x# 6 �ku +�ak 6 �k(u + ak) = �kx and y# 6 �v# 6 �ky, and
case 2 is symmetrical. This proves the result.

For k = n, we can deduce that max(x#, y#) 6 �n max(x, y). There remains
to be proven that �n 6 (1+"), where �n =

�

1 + "
2n

�n
. We rearrange the last

192 Chapter 8. Beyond NP-completeness

inequality and study the function f(z) =
�

1 + z
n

�n � 1 � 2z, for 0 6 z 6 1,

f 0(z) = 1

nn
�

1 + z
n

�n�1 � 2. We deduce that f is a convex function, and that

its minimum is reached in �
0

= n
�

n�1

p
2� 1

�

. Moreover, f(0) = �1 and

f(1) =
�

1 + 1

n

�n � 3 6 0. Because f is convex, and f(z) 6 0 for z = 0
and z = 1, we can deduce that f(z) 6 0 for 0 6 z 6 1. This concludes the
proof.

8.2 Polynomial problem instances

When confronted with an NP-complete problem, one algorithmic solution con-
sists of finding good approximation algorithms. While some problems may
have good approximation schemes, such as PTAS or FPTAS (see Section 8.1),
some problems cannot be approximated. However, with a slight change of the
problem parameters (constant value for a parameter, di↵erent rule of the
game, etc.), it may be possible to find a good approximation algorithm or
even to be able to solve the problem in pseudopolynomial or polynomial time.

The analysis of a problem is comprehensive when we are able to identify at
which point the problem becomes NP-complete and then at which point the
problem cannot be approximated any more. We refine the problem complexity
as follows:

• The class P consists of all optimization problems that can be solved in
polynomial time.

• The class FPTAS consists of all optimization problems that have an
FPTAS, and it contains P.

• The class PTAS consists of all optimization problems that have a PTAS,
and it contains FPTAS.

• The class APX consists of all optimization problems that have a polyno-
mial-time approximation algorithm with a constant ratio, and it contains
PTAS.

• Finally, the class NP contains APX: Some problems may be in NP but
not in APX.

We also consider the class of problems that can be solved in pseudopoly-
nomial time, PPT. This class includes P but none of the other previous
classes. Some problems that can be solved in pseudopolynomial time may
not have an FPTAS or may not even be in APX. The problems of (i) find-
ing a pseudopolynomial-time algorithm to solve the problem exactly and (ii)
finding good polynomial-time approximation algorithms are not correlated.

8.2. Polynomial problem instances 193

In the following, we illustrate how the problem can move from one category
to another when parameters are modified. In particular, we check whether the
problem can be solved in polynomial time or in pseudopolynomial time, and
if there is no polynomial-time algorithm to solve the problem, we investigate
polynomial-time approximation algorithms.

8.2.1 Partitioning problems

First, we provide both the optimization and decision versions of the parti-
tioning problem that we consider, and then we investigate variants of the
problem.

Optimization problem (PART-OPT). Let a
1

, . . . , an be n positive
integers. The goal is to partition these integers into p subsets A

1

, . . . , Ap, in
order to minimize the maximum (over all subsets) of the sum of the integers
in a subset:

min

0

@ max
16j6p

X

i2A
j

ai

1

A .

Decision problem (PART-DEC). The associated decision problem is
the following: Let a

1

, . . . , an be n positive integers. Given a bound K, is it
possible to partition these integers into p subsets A

1

, . . . , Ap, such that the
sum of the integers in each subset does not exceed K? In other words,

for all 1 6 j 6 p,
X

i2A
j

ai 6 K .

We can easily prove, from a reduction from 3-PARTITION, that PART-
DEC is NP-complete in the strong sense. No pseudopolynomial algorithm
is known to solve PART-DEC. However, PART-OPT is a classical scheduling
problem. The goal is to schedule n independent tasks onto p processors, where
ai is the execution time of task Ti, for 1 6 i 6 n, and the goal is to minimize
the total execution time. There is a PTAS to approximate this problem [49].

One way to simplify the problem is to restrict it to the case p = 2. The prob-
lem is then equivalent to 2-PARTITION, and it can be solved in pseudopolyno-
mial time using a dynamic-programming algorithm (see Section 6.2.1). More-
over, this problem is in the class FPTAS, as was shown in Section 8.1.5.

In order to identify polynomial instances of this problem, we consider the
following variants:

1. We consider the case in which all integers are equal, i.e., a
1

= a
2

=
· · · = an = a. In this case, we can find the solution to the optimization

problem, which is simply
l

n
p

m

⇥ a. Therefore, we also can solve the

decision problem in polynomial time, even in constant time.

2. We change the rule of the game. The subsets must contain only con-
tinuous elements, for instance, [ai, ai+1

, . . . , ai0]. The subsets are then

194 Chapter 8. Beyond NP-completeness

intervals, and the problem can be solved in polynomial time. It is the
classical chains-on-chains partitioning problem (see Chapter 11), which
can be solved, for instance, with a dynamic-programming algorithm in
time O(n2 ⇥ p).

If we consider the problem as a scheduling problem where we must schedule
n tasks onto p processors, we can conclude that the problem becomes di�cult
(NP-complete) as soon as the tasks are di↵erent (the case of identical tasks
is case 1) and as soon as we are allowed any mapping (no fixed ordering to
enforce, such as in case 2). Moreover, while the problem is in PPT and has an
FPTAS with p = 2 processors, it is no longer in PPT for an arbitrary number
of processors and has only a PTAS.

For a deeper analysis of partitioning problems, the interested reader can
refer to the chains-on-chains partitioning case study (Chapter 11).

8.2.2 Assessing problem complexity

In this section, we mention two classical approaches when facing NP-complete
problems and aiming at identifying polynomial instances. We illustrate these
approaches with two di↵erent problems.

The first problem is a routing problem, which is discussed extensively in
Chapter 13. Given a directed graph G = (V,E) and a set of terminal pairs
R = {Ri = (si, ti)}, the goal is to connect as many pairs as possible using
edge-disjoint simple paths. In a solution A, each Ri 2 A must be assigned
a simple path ⇡i from si to ti in G so that no two paths ⇡i and ⇡j , where
Ri 2 A, Rj 2 A and i 6= j, have an edge in common.

The goal is to maximize |A|, the cardinality of A, i.e., the number of con-
nected terminal pairs. It turns out that this routing problem is NP-complete,
and Chapter 13 presents approximation algorithms. But how can we find
polynomial instances? A first idea is to bound the number of terminal pairs
with a constant, but this does not work, as it turns out that the problem
remains NP-complete with only two terminal pairs [35]. Another idea is to
restrict the problem to some special classes of graphs. We show in Chapter 13
that the problem is polynomial for linear chains and stars, regardless of the
number of terminal pairs.

The second problem is a geometric problem, which is investigated in Chap-
ter 14. How can we partition the unit square into p rectangles of given area
s
1

, s
2

, . . . , sp (such that
Pp

i=1

si = 1) so as to minimize the sum of the p
half perimeters of the rectangles? In Chapter 14, we explain the relevance
of this problem to parallel computing, and we show that it is NP-complete.
What can we do here? The problem becomes polynomial if we restrict to
same-size rectangles [64], but this is very restrictive. Another approach is to
change the rules of the game and ask for some specific partitioning of the
unit square. Indeed, we show in Chapter 14 that the problem becomes poly-
nomial when restricting to column-based partitioning, i.e., imposing that the

8.3. Linear programming 195

rectangles are arranged along several columns within the unit square. Going
further in that direction, we show that the optimal column-based partitioning
is indeed a good approximation of the general solution. We hope that this
short discussion will urge the reader to read the full case study of Chapter 14.

8.3 Linear programming

Sometimes the solution of an NP-complete problem can be expressed as the
solution of an integer linear program. Once we have written an optimization
problem as an integer linear program, we can do three things:

1. Solve the integer linear program to obtain optimal solutions for (very)
small instances.

2. Relax the integer linear program into a (rational) linear program and
solve it to obtain a bound on the optimal solution for the original prob-
lem.

3. Relax the integer linear program into a (rational) linear program, solve
the latter program to obtain a rational solution, and build an integral
solution from the rational one.

We first introduce the necessary notions and definitions (Section 8.3.1). Then
we describe several rounding approaches to transform a solution of a relaxed
linear program into a solution of the original integer linear program (Sec-
tion 8.3.2).

8.3.1 Formal definition

Linear programming is a mathematical method in which an optimization prob-
lem is expressed as the minimization (or maximization) of a linear function
whose arguments are constrained by a set of a�ne equations and inequalities.

DEFINITION 8.6 (Linear program). A linear program is an optimization
problem of the form:

Minimize cT · x subject to

Ax 6 b and x > 0

where x is an (unknown) vector of variables of size n, A is a (known) matrix of
coe�cients of sizem⇥n, and b and c are the two (known) vectors of coe�cients
of respective size m and n (and where cT is the transpose of vector c).

An integer linear program is a linear program whose variables can take only
integral values. A mixed linear program is a linear program in which some
variables must take integral values and some can take rational values.

196 Chapter 8. Beyond NP-completeness

In the above formal definition, linear programs are given under a canonical
form. Therefore, the formal definition of linear programs may look more
restrictive than the informal definition we gave right before the formal one.
In fact, both definitions are equivalent:

• A maximization problem with the objective function cT ·x is equivalent
to a minimization problem with the objective function �cT · x.

• An equality dT · x = e is equivalent to the set of two inequalities:
⇢

dT · x 6 e
�dT · x 6 �e.

• A variable that can take both positive and negative values can be equiv-
alently replaced by the di↵erence of two nonnegative variables.

An example: Weighted vertex cover

In Section 8.1.2, we have seen the classical version of the vertex cover problem.
Given a graph G = (V,E), we want to return a set U of vertices (U ⇢ V)
of minimum size that is covering all edges, i.e., such that for each edge e =
(i, j) 2 E, i 2 U and/or j 2 U .

Here, we consider the weighted version of this problem. We assign a weight
wi to each vertex i 2 V . The problem is then to minimize

P

i2U wi, where
U is once again a vertex cover. This problem amounts to the classical one if
wi = 1 for all i 2 V and is also NP-complete.

We express this minimization problem as an integer linear program. We
introduce a set of Boolean variables, one for each vertex, stating whether the
corresponding vertex belongs to the cover. Let xi be the variable associated
with vertex i 2 V . We will have xi = 1 if i belongs to the cover (i 2 U) and
xi = 0 otherwise.

Minimize
X

i2V

xiwi subject to

8

<

:

8(i, j) 2 E �xi � xj 6 �1
8i 2 V xi 6 1
8i 2 V xi > 0

(8.1)

We now show that solving the Integer Linear Program (8.1), with xi 2 {0, 1},
is absolutely equivalent to solving the minimum weighted vertex cover problem
for the graph G.

One can easily check that, if U is an optimal solution to the weighted vertex
cover problem, then, by letting xi = 1 for any vertex i in U and xj = 0 for
any vertex j not in U , one builds a solution to the above linear program for
which the objective function takes the value of the cost of the cover U .

Reciprocally, consider an optimal solution to the Integer Linear Program (8.1),
with xi 2 {0, 1}. From this solution, we build a subset U of V as follows.
For any vertex i of V , i belongs to U if and only if xi = 1. For any edge

8.3. Linear programming 197

e = (i, j) 2 E we have �xi � xj 6 �1, which is equivalent to xi + xj > 1. In
other words, either xi or xj or both variables are equal to 1 (remember that
here the xis are integer variables). Therefore, at least one of the two vertices
i and j is a member of U , and U is thus a cover. The objective function is
obviously the cost of the cover U . Therefore, U is a cover of minimum weight.

Complexity

In the general case, the decision problem associated with the problem of solv-
ing integer linear programs is an NP-complete problem [58, 38]. However,
(rational) linear programs can be solved in polynomial time [93]. Hence, the
motivation, when confronted with an NP-complete problem, is to express it as
an integer or mixed linear program and then to solve this program as if it were
a rational linear program. This method is called relaxation. However, the so-
lution obtained this way may be meaningless. For instance, in the case of the
linear program for the weighted vertex cover problem (Linear Program (8.1)),
one of the variables xi can have a value di↵erent from 0 and 1, which does not
make any sense because a vertex cannot be partially included in the solution.
The problem then becomes how to build an integral solution from a rational
one. We now focus on this problem, which is called rounding.

8.3.2 Relaxation and rounding

Rounding to the nearest integer

The simplest rounding method is the rounding of any rational variable to the
nearest integer. (Obviously, this method is not fully defined because one will
still have to decide how to handle variables whose values are of the form z+0.5
where z is an integer.) We illustrate this method with the weighted vertex
cover problem.

Algorithm lp-wvc is defined as follows. First, solve the Linear Program (8.1)
over the rationals rather than on the integers, and let {x⇤

i }i2V be the found
optimal solution. Then, any vertex i of V belongs to the cover U if and only
if x⇤

i > 1

2

. In other words, we build from the x⇤
i s the Boolean variables xis,

by: xi = 1 , x⇤
i > 1

2

. Not only is Algorithm lp-wvc correct, it is even an
approximation algorithm, as we now prove.

THEOREM 8.12. lp-wvc is a 2-approximation algorithm for weighted ver-
tex cover.

Proof. First, we check that lp-wvc returns a cover. Let (i, j) 2 E be an
edge. Then, because the x⇤

i s are a rational solution to the linear program, we
have x⇤

i + x⇤
j > 1, and at least one of them is greater than or equal to 1/2.

Therefore, in the solution of our problem, we have either xi = 1 or xj = 1 (we
also can have xi = xj = 1). Therefore, the edge (i, j) is covered, xi + xj > 1.

To prove that the algorithm is a 2-approximation, we compare the cost of
the algorithm C

lp-wvc

=
P

i2V xiwi with the cost of an optimal solution Copt.

198 Chapter 8. Beyond NP-completeness

The result comes from two observations: (i) For all i, we have xi 6 2x⇤
i

(whether i has been chosen to be part of the cover or not), and (ii) the optimal
solution of the linear program over the integers has necessarily a higher cost
than the rational solution (the integer solution is a solution to the rational
problem). Because

P

i2V x⇤
iwi is an optimal solution to the rational problem,

Copt >
P

i2V x⇤
iwi. Finally, we have

C
lp-wvc

=
X

i2V

xiwi 6
X

i2V

(2x⇤
i)wi 6 2Copt,

which concludes the proof.

Threshold rounding

We do not have any a priori guarantee that the rounding to the nearest integer
will produce a valid integer solution. We illustrate this potential problem with
the set cover problem.

DEFINITION 8.7 (SET-COVER). Let V be a set. Let S be a collection
of k subsets of V : S = {S

1

, . . . , Sk} where, for 1 6 i 6 k, Si ⇢ V . Let K be
an integer, with K < k. Is there a subcollection of at most K elements of S
that covers all elements of V ?

SET-COVER is an NP-complete problem [58, 38]. It easily can be coded as
an integer linear program. Let �i,j be a Boolean constant indicating whether
the element v 2 V belongs to the subset s 2 S. As previously, variable xs

indicates whether the set s 2 S belongs to the solution. The following integer
linear program then searches for a minimum set cover. The first inequality
just states that, whatever the element v of V , at least one of the subsets
containing v must be picked in the solution.

Minimize
X

s2S
xs subject to

8

>

>

<

>

>

:

8v 2 V �
X

s2S

�v,sxs 6 �1

8s 2 S xs 6 1
8s 2 S �xs 6 0

(8.2)

Now, consider the following particular instance of minimum cover: V =
{a, b, c, d} and S = {S

1

= {a, b, c}, S
2

= {a, b, d}, S
3

= {a, c, d}, S
4

= {b, c, d}}.
One can easily see that any two elements of S define an optimal solution. We

8.3. Linear programming 199

write explicitly the Linear Program (8.2) for that instance:

Minimize xS
1

+ xS
2

+ xS
3

+ xS
4

subject to

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�xS
1

� xS
2

� xS
3

6 �1
�xS

1

� xS
2

� xS
4

6 �1
�xS

1

� xS
3

� xS
4

6 �1
�xS

2

� xS
3

� xS
4

6 �1
8s 2 {S

1

, S
2

, S
3

, S
4

} xs 6 1
8s 2 {S

1

, S
2

, S
3

, S
4

} �xs 6 0.

(8.3)

By summing the first four inequalities, we obtain xS
1

+ xS
2

+ xS
3

+ xS
4

> 4

3

.
Hence, the optimal value of the objective function is not smaller than 4

3

. Then,
one can check that x⇤

S
1

= x⇤
S
2

= x⇤
S
3

= x⇤
S
4

= 1

3

defines an optimal solution
of the relaxed (rational) version of the Linear Program (8.3). Rounding this
optimal rational solution to the nearest integer would lead to xS

1

= xS
2

=
xS

3

= xS
4

= 0, which, obviously, does not define a cover. To circumvent this
problem, rather than to round each variable to the nearest integer, one can
use a generalization of this technique: threshold rounding. When variables
are 0-1 variables, that is, when variables can take only the values 0 or 1, one
first sets a threshold and then rounds to 1 exactly those variables whose values
are not smaller than the threshold. This technique leads to an approximation
algorithm for the minimum set cover problem.

THEOREM 8.13. Let P = (V,S) be an instance of the minimum set cover
problem in which each element of V belongs to at most p elements of S. Then,
solving the Linear Program (8.3) over the rationals and rounding the solution
with the threshold 1

p builds a cover whose size is at most p times the optimal.

Proof. Let us consider an optimal solution x⇤ of the relaxed linear program.
Let v be any element of V . By definition of p, v belongs to q 6 p elements
of S: S�(1), . . . , S�(q). The Linear Program (8.2) contains the constraint
�x⇤

S
�(1)

� x⇤
S
�(2)

� · · · � x⇤
S
�(q)

6 �1. Therefore, there exists at least one

i 2 [1, q] such that xS
�(i)

> 1

q > 1

p and the solution contains at least one
element of S that includes v, namely, S�(i). Thus, the solution is a valid
cover. Then, for any element s of S, xs 6 p ⇥ x⇤

s. Indeed, if x⇤
s > 1

p , then
xs = 1 and xs = 0 otherwise. This completes the proof for the approximation
ratio.

Randomized rounding

In the previous two approaches, the value of a variable in a rational solution
was considered to be a deterministic indication of what should be the value
of this variable in an integer solution. In the randomized rounding approach,
the fractional part of such a value is interpreted as a probability.

200 Chapter 8. Beyond NP-completeness

Let us consider a nonintegral component x⇤
i of an optimal rational solu-

tion x⇤, and let y⇤i be its fractional part: x⇤
i = bx⇤

i c + y⇤i , with 0 < y⇤i < 1.
Then, in randomized rounding, y⇤i is considered to be the probability that, in
the integral solution, xi will be equal to dx⇤

i e rather than to bx⇤
i c. In practice,

using any uniform random generator over the interval [0, 1], one generates a
number r 2 [0, 1]. If r > y⇤i , then we let xi = dx⇤

i e, and xi = bx⇤
i c otherwise.

Iterative rounding

In all the previously described rounding approaches, a single relaxed linear
program is solved, and then one tries to build an integral solution from the
rational solution. A potential problem of these approaches is that the as-
signment of a particular value to one of the variables may force the value of
some other variables in any valid solution. For instance, let us go back to the
example showing that rounding to the nearest integer could lead to nonfea-
sible solutions to the minimum cover problem. There, setting xS

1

= 0 and
xS

2

= 0 imposes that xS
3

= xS
4

= 1 (because, respectively, a and b must be
covered). Rounding to the nearest integer ignores this implication and leads
to an infeasible solution. A way to avoid such a problem is to assign values
only to a subset of the variables and then solve the relaxed version of the
linear program while taking into account the assignments made so far. This
way, we obtain a new rational solution where fewer variables have noninte-
gral values. The process is then iterated until an integral solution is built (or
the transformed linear program has no solution). The smaller the number of
variables assigned at each iteration, the higher the probability to end up with
a valid solution but also the higher the number of iterations, the complexity,
and the execution time.

8.4 Randomized algorithms

In this section, we briefly explore how randomized algorithms can help deal
with NP-complete problems. We restrict ourselves to a randomized algorithm
to solve the NP-complete HC problem (recall that HC stands for Hamiltonian
Cycle, see Definition 6.4, p. 130). Given an undirected graph, the algorithm
incrementally builds a cycle, taking random decisions on the next vertex to
visit to augment the current path. The algorithm will indeed output a Hamil-
tonian cycle with high probability as soon as the graph contains enough edges.
We will quantify this last statement in what follows.

8.4. Randomized algorithms 201

8.4.1 The algorithm

Consider a graph G = (V,E). How can we build a Hamiltonian cycle in G
by taking random decisions? The first idea is to grow a path iteratively by
picking any neighbor of the current path head that has not been picked so
far. Start by picking a vertex, say v

1

, at random, and make it the head of the
path. Then, pick any neighbor of v

1

, say v
2

, and make it the new head of the
path. Progress likewise at each step; pick any neighbor vk+1

of the current
path head vk, and make it the new head of the path. But what if vk+1

is
equal to some vertex vi, 1 6 i 6 k � 1, that is already present in the path?
Then, the algorithm can perform a rotation, as illustrated by Figure 8.1.

v1 v2 v3 vi vi+1 vk

v1 v2 v3 vi vi+1 vk

Rotation (vi, vk)

FIGURE 8.1: Rotation (vk, vi) of the path. The new head is vi+1

.

We obtain the following algorithm, where at each step we pick at random
a neighbor u of the current path head vk among the set of edges originating
from vk that have not been used so far. At the beginning, no edge has been
used yet.

8.4.2 Results

What is the probability that Algorithm 8.1 will successfully build a Hamilto-
nian cycle for G? We would like to express this probability as a function of
n = |V |, the number of vertices in G. Note that there exist exactly 2n(n�1)/2

di↵erent graphs with n vertices because there are
�

n
2

�

possible edges that can
or cannot be added to the graph.

THEOREM 8.14. There exist constants c and d such that if we pick at ran-
dom a graph G with n vertices and at least c log n edges, then with probability
at least 1 � 1

n , Algorithm 8.1 will find a Hamiltonian cycle during its first
dn log n steps.

Proving this theorem is not di�cult. This requires, however, some ba-
sic knowledge about probability theory (binomial distributions and Markov
bound essentially) that is out of the scope of this chapter. We refer the reader
to [78] for a proof and many more details about random graphs. We limit
ourselves to some comments. First, the randomized algorithm does not give
any insight on the P versus NP problem, nor does it help solve all instances of
the HC problem. However, on the positive side, we have a fast algorithm that

202 Chapter 8. Beyond NP-completeness

Input: graph G = (V,E) with n vertices
Output: a Hamiltonian cycle in G or failure

1 foreach v 2 V do
2 unused(v) := {(v, u) | (v, u) 2 E}
3 pick a vertex at random and make it the head of the path
4 while true do
5 let (v

1

, . . . , vk) be the current path (with head vk)
6 if unused(vk) = ; then return failure
7 else let (vk, u) be the first element in unused(vk)
8 delete edge (vk, u) from unused(vk) and unused(u)
9 if u /2 {v

1

, . . . , vk�1

} then
10 add u to the path and let vk+1

= u be the new path head
11 else
12 let i be such that vi = u
13 if k = n and vi = v

1

then return {v
1

, . . . , vn}
14 else rotate (vk, vi) and let vi+1

be the new path head

ALGORITHM 8.1: Randomized algorithm for the HC problem.

solves HC in most instances, as soon as the graph has enough edges. This
is expected news, as we expect a random graph to be connected and then to
have large cliques, or a Hamiltonian cycle, when its number of edges grow.
But the beauty of Theorem 8.14 is to quantify this observation.

8.5 Branch-and-bound and backtracking

In this last section, we introduce branch-and-bound and backtracking tech-
niques. The principle is to represent as a tree the search space (i.e., all candi-
date solutions) and then to explore this tree and remove branches that either
lead to no valid solution or lead to solutions that are less good. Such algo-
rithms return exact solutions to an NP-complete problem. For decision prob-
lems, the technique is called backtracking, while it is called branch-and-bound
for optimization problems. While there is no guarantee on the execution time
of such algorithms (the worst case may well be exponential because we may
need to explore the entire search space), they are o↵ering practical and often
e�cient solutions to deal with NP-complete problems.

We first present a small example of a backtracking algorithm with the n-
queens problem. Then, we investigate branch-and-bound with the knapsack
problem. Finally, we discuss some more complex graph algorithms.

8.5. Branch-and-bound and backtracking 203

FIGURE 8.2: The n-queens backtracking tree.

8.5.1 Backtracking: The n queens

In a chess game, a queen can move as far as she wants: horizontally, vertically,
or diagonally. We consider a chess board with n rows and n columns. The
problem is to place n queens on this chess board so that none of them can
attack any other in one move.

In any solution, there is exactly one queen per row. Therefore, the search
space is of size nn. However, because of the many constraints, many solutions
can be discarded. The idea of the backtracking algorithm is to place a queen
on the first row (n possible choices) and then perform a recursive call for the
next row. We discard the choices that lead to no solution, and if no solution is
found on a branch of the tree, we go up in the tree and try the next possibility
(the next branch).

Figure 8.2 illustrates the tree for n = 4. Because the problem is symmetri-
cal, we develop only the portion of the tree in which we place the first queen
either on the first or on the second column. Once a queen has been placed,
the squares on which it is not possible to place another queen have been col-
ored. Therefore, if we place the first queen on the top left corner, the queen
on the second row can be placed only on the third or fourth column. If we
place it on the third column, there is no further choice for the third queen.
If we place it on the fourth column, we can still place the third queen on the
second column, but then there is no possibility for the last queen. However,
a solution is found by exploring the second branch of the tree.

204 Chapter 8. Beyond NP-completeness

8.5.2 Branch-and-bound: The knapsack

A branch-and-bound algorithm works in two phases. The branch consists of
splitting a set of solutions into subsets, while the bound consists of evaluating
the solutions of a subset by bounding the value of the best solution in this
subset.

We consider the knapsack problem, which was introduced in Section 4.2
and that we redefine briefly. Given a set of items I

1

, . . . , In, where item Ii has
a weight wi and a value ci (1 6 i 6 n), we want to determine the items to
include in the collection so that the total weight is less than a given limit W
and the total value is as large as possible. We consider the variant of the
problem where we have as many units of each item as we want. Let xi be the
number of units of item Ii that we decide to add into the knapsack. The goal
is to maximize

Pn
i=1

xi ⇥ ci, under the constraint
Pn

i=1

xi ⇥ wi 6 W .
We consider the running example from [15]. There are four items, and the

goal is to find max(4x
1

+5x
2

+6x
3

+2x
4

), under the constraint 33x
1

+49x
2

+
60x

3

+ 32x
4

6 130.
The search space is represented as a tree. The leaves of the tree correspond

to maximal solutions, i.e., solutions to which we cannot add any item because
of the constraint on total weight. At the root of the tree, we have not chosen

any item. The root has
l

W
w

1

m

+ 1 children, which corresponds to picking,

respectively, 0, 1, . . . ,
l

W
w

1

m

units of I
1

. Then, for each of these nodes, we add

one child for each possible number of units of the next item that can be chosen.
For the last item, we fill the knapsack by adding systematically as many units
of this item as we can. A part of the tree corresponding to this example is
depicted in Figure 8.3. Its height is equal to the number of di↵erent items, n.
Each leaf corresponds to a solution, and the number of leaves is exponential
in the problem size.

Note that we have ordered the items such that the ci/wi are nonincreasing,
i.e., the first item has the best value/weight ratio.

Given a search space represented by a tree, the branch-and-bound algorithm
works as follows. At the beginning, there is only one active node, the root of
the tree. At each step, we choose an active node, and we process its children
nodes. If a child has only one child itself, we traverse the branch until we
eventually find a leaf or a node with at least two children. Then we evaluate
the node as follows: (i) If the node is a leaf, it corresponds to a solution, and
we can compute the exact value of this solution. We keep the best solution
between case (i) and the previously best known solution; (ii) otherwise, we
provide an upper bound on the solutions in the branch by filling the unused
weight with the item that has not yet been considered and that has the best
value/weight ratio as if it were a liquid, that is, as if we were allowed to use a
noninteger number of items. All the nodes from case (ii) become active. Before
moving to the next step (i.e., picking up a new active node), we remove the
active nodes that will never lead to a better solution than one of the solutions

8.5. Branch-and-bound and backtracking 205

FIGURE 8.3: Branch-and-bound algorithm for the knapsack problem.

already found, i.e., if their upper bound is smaller than the value of the best
solution. This corresponds to the pruning of the search space.

In the example (see Figure 8.3), we first process the child node correspond-
ing to x

1

= 3. We cannot add any other item in the knapsack, so we reach
a leaf of the tree. The value of the solution is 3 ⇥ 4 = 12. This is the best
current solution. Then, we consider the second child node of the root, corre-
sponding to x

1

= 2. It has two children, corresponding to x
2

= 1 and x
2

= 0
(we cannot add more than one unit of item I

2

in the knapsack). Therefore,
we evaluate this node. The upper bound is computed with x

1

= 2, and all the
remaining space (130� 66) is filled with item I

2

, which is the remaining item
with the best value/weight ratio. We obtain 2⇥4+5/49⇥ (130�66) = 14.53.
Because 14.53 > 12 + 1, it may be possible to find a better solution than
the current one (whose value is 12) in this tree, i.e., a solution whose value
is at least 13 (solutions are integers). Therefore, this node becomes active.
With x

2

= 1, we obtain a solution of value 13. Then, we evaluate the node
for x

2

= 0 because there may still be a solution of value 14 in this subtree.
The evaluation is done by filling the remaining space with item I

3

, leading to
2 ⇥ 4 + 6/60 ⇥ (130 � 66) = 14.4. This branch leads to a solution 14, with
x
3

= 1. Because the upper bound for this subtree is 14.4, we cannot find a
better solution. We evaluate the third child of the root to 13.89 and then the
last child to 13.26; therefore, no better solution can be found. There are no
more active nodes. The nodes of the tree colored in black are the nodes that
have been evaluated.

Note that several strategies can be considered for the choice of the next ac-
tive node. A depth-first search, as we have done in the example, is very practi-
cal because there are few nodes that are simultaneously active. A breadth-first

206 Chapter 8. Beyond NP-completeness

search often leads to poor results. Another strategy consists of picking the
active node with the best evaluation. Some hybrid strategies also can be con-
sidered. For instance, one can perform a depth-first search until a solution is
found and then use a best evaluation strategy to find even better solutions.
Such a strategy may allow the pruning of several branches.

Note that other strategies can be used to solve this kind of problem. The
branch-and-bound algorithm is often not very e�cient in the worst case. How-
ever, it often leads to e�cient algorithms on average, as we detail in the next
section.

8.5.3 Graph algorithms

In this section, we consider two important NP-complete graph problems that
we aim to solve with backtracking algorithms. First, we investigate the prob-
lem of finding the largest independent set, and then we investigate the graph
coloring problem.

8.5.3.1 Independent sets

Let G = (V,E) be a graph with n vertices, numbered from 1 to n. The
problem is to find the size of the largest independent set of G, i.e., a subset
S ✓ V such that, for all i, i0 2 S, (i, i0) /2 E, and |S| is maximum.

The backtracking algorithm is easy to describe and analyze for this problem.
The idea is to explore all possible independent sets and to build a tree with all
the solutions to the problem. The root of the tree corresponds to the empty
set. The children of the root node correspond to independent sets of size 1,
and we add a node only if it is an independent set. The tree is built in a depth-
first traversal. First, we search for independent sets containing vertex 1, which
correspond to the first child of the root, denoted {1} (if (1, 1) /2 E). We then
try to increase the size of this set by adding vertex 2. The children of {1} are
the independent sets of size 2 containing vertex 1. If (1, 2) 2 E, then there
is no independent set containing both 1 and 2; therefore, we do not add any
node in the solution tree and proceed with vertices 3, . . . , n. Otherwise, we
add {1, 2} as a child node of {1} and move to the next level of the tree, trying
to add vertices 3, . . . , n to this independent set and building independent sets
of size 3. When no vertex can be further added, we backtrack up in the tree
and develop all remaining branches of the solution tree. The height of the
solution tree gives the maximum size of an independent set.

The solution tree has one node per independent set and, therefore, the
complexity of the algorithm depends on the number of independent sets, which
can be exponential: For a graph with E = ;, this number is 2n. However, for
a clique of size n, there are only n+1 independent sets. The analysis aims at
determining the average complexity of the algorithm, i.e., the average number
of independent sets, denoted In.

Let I(G) be the number of independent sets of a graph G = (VG, E).

8.5. Branch-and-bound and backtracking 207

H(G,S) equals 1 if S is an independent set of G, and 0 otherwise. Therefore,
I(G) =

P

S✓V
G

H(G,S), and the sum contains the 2n possible subsets of V .
The average number of independent sets In is then the sum over all possible

graphs G with n vertices, divided by the number of such graphs, 2n(n�1)/2.
We obtain

In = 2�n(n�1)/2
X

|V
G

|=n

X

S✓V
G

H(G,S) .

We can invert the two sums, and we examine
P

|V
G

|=n H(G,S). Given
a set S, this value corresponds to the number of graphs with n nodes that
contain S as an independent set. If |S| = k, there are k(k � 1)/2 edges that
cannot exist in G, and there are n(n�1)/2�k(k�1)/2 possible edges, which
leads to 2n(n�1)/2�k(k�1)/2 graphs with n vertices such that H(G,S) = 1.
Finally, since the number of sets S with k vertices is

�

n
k

�

, we obtain

In =
n
X

k=0

✓

n

k

◆

2�k(k�1)/2 .

On average, the algorithm is much better than in the worst case; for in-
stance, with n = 40, In = 3862.9, while 2n > 1012. In fact, for large values
of n, In = O(nlog(n)) and, therefore, the average complexity of the algorithm
remains subexponential.

8.5.3.2 Graph coloring

For the graph coloring problem, the backtracking algorithm leads to more
e�cient results on average than for the independent sets problem because it
turns out that the average complexity is, in fact, constant for a fixed number
of colors, even when the number of vertices tends to infinity.

Let G = (V,E) be a graph with n vertices, numbered from 1 to n, and K
be an integer. The K-coloring problem is to associate a color with each vertex
such that two vertices connected by an edge have a di↵erent color, where K
is the number of colors.

The backtracking algorithm builds all partial colorings of the graph with
only a subset of vertices {1, . . . , L}, with 1 6 L 6 n. The root of the tree
corresponds to the coloring of the empty graph; it is represented by an empty
set. It has K children nodes, corresponding to the possible colors for vertex 1.
The node is labeled by the set of colors for the vertices that we consider,
i.e., the children of the root are labeled 1, . . . ,K. Similar to the backtracking
algorithm for the independent sets problem, we build the tree in a depth-first
traversal. We add a node 11 as a child of 1 if and only if (1, 2) /2 E, then
we assign the lowest possible color to the third vertex, and so on. If there
is no possible color for one of the vertices, or if we have successfully colored
all vertices, we go up in the tree until we can try another color for one of

208 Chapter 8. Beyond NP-completeness

the vertices. (Remember that the backtracking algorithm builds all partial
colorings of the graph.)

Note that the branch of a tree may stop before a color has been assigned
to each vertex, and it may happen that no valid coloring can be found. At
level L of the tree, we have all partial colorings of vertices {1, . . . , L}, and
a valid coloring has been found if the tree has nodes of level n. Graph G
restricted to vertices {1, . . . , L} is denoted HL(G) in the following.

The goal is to determine the average number of nodes An,K of a backtrack
tree generated when coloring a graph of size n with at most K colors. There
are 2n(n�1)/2 di↵erent graphs, and we decompose the backtrack trees into
levels. If G is a graph with n vertices, we denote by P (K,HL(G)) the number
of nodes at level L of the backtrack tree of G. It is equal to the number of
correct colorings of graph HL(G) with K colors. Finally,

An,K = 2�n(n�1)/2
X

|V
G

|=n

n
X

L=0

P (K,HL(G)) .

We invert the two sums and examine
P

|V
G

|=n P (K,HL(G)), given a level L.

Note that there are exactly 2n(n�1)/2�L(L�1)/2 graphs that share the same
graph HL(G), and, therefore,

An,K = 2�n(n�1)/2
n
X

L=0

2n(n�1)/2�L(L�1)/2BL,K =
n
X

L=0

2�L(L�1)/2BL,K ,

where BL,K is the total number of correct colorings with K colors of all
graphs with L vertices. Given a coloring, we denote by si the number of
vertices that are colored with the color i, for 1 6 i 6 K. Because the graphs
have L vertices, we have

PK
i=1

si = L. Moreover, an edge can connect only
two vertices of di↵erent colors, and, thus, the maximum number of edges is
En,K = s

1

s
2

+ s
1

s
3

+ · · ·+ s
1

sK + s
2

s
3

+ · · ·+ sK�1

sK =
P

16i<j6K sisj . We
compute this value as follows:

En,K = 1

2

P

i 6=j sisj =
1

2

⇣

PK
i,j=1

sisj �
PK

i=1

s2i

⌘

= 1

2

⇣

PK
i=1

si
⌘

2

� 1

2

PK
i=1

s2i = 1

2

L2 � 1

2

PK
i=1

s2i .

It is easy to check that
PK

i=1

s2i > L2/K, because L =
PK

i=1

si:

PK
i=1

s2i � L2/K =
PK

i=1

s2i � 2L2/K + L2/K

=
PK

i=1

�

s2i � 2Lsi/K + L2/K2

�

=
PK

i=1

(si � L/K)2 > 0 .

Therefore, En,K 6 1

2

L2 � 1

2

L2/K = L2(1 � 1/K)/2. The number of graphs

HL(G) with the same coloring is at most 2L
2

(1�1/K)/2. Because there are
at most KL di↵erent colorings (counting invalid ones), we obtain BL,K 6
KL2L

2

(1�1/K)/2, and, finally,

8.6. Bibliographical notes 209

An,K 6
n
X

L=0

2�L(L�1)/2KL2L
2

(1�1/K)/2 6
1
X

L=0

KL2L/22�L2/2K .

This infinite series is converging; therefore, A(n,K) is bounded for all n.

8.6 Bibliographical notes

The FPTAS for scheduling independent tasks on two processors (Section 8.1.5)
is presented in [95]. Further references for approximation algorithms are the
books by Ausiello et al. [5] and by Vazirani [103]. Randomized algorithms
(Section 8.4) are dealt with in the books by Mitzenmacher and Upfal [78] and
by Motwani and Raghavan [80]. Section 8.5.2 (branch-and-bound) is inspired
from [15]. The backtracking graph algorithms (Section 8.5.3) are analyzed
in [108].

