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AbstractÐIn this paper, we study the implementation of dense linear algebra kernels, such as matrix multiplication or linear system

solvers, on heterogeneous networks of workstations. The uniform block-cyclic data distribution scheme commonly used for

homogeneous collections of processors limits the performance of these linear algebra kernels on heterogeneous grids to the speed of

the slowest processor. We present and study more sophisticated data allocation strategies that balance the load on heterogeneous

platforms with respect to the performance of the processors. When targeting unidimensional grids, the load-balancing problem can be

solved rather easily. When targeting two-dimensional grids, which are the key to scalability and efficiency for numerical kernels, the

problem turns out to be surprisingly difficult. We formally state the 2D load-balancing problem and prove its NP-completeness. Next,

we introduce a data allocation heuristic, which turns out to be very satisfactory: Its practical usefulness is demonstrated by MPI

experiments conducted with a heterogeneous network of workstations.

Index TermsÐHeterogeneous network, heterogeneous grid, different-speed processors, load-balancing, data distribution, data
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1 INTRODUCTION

HETEROGENEOUS networks of workstations (HNOWs) are
ubiquitous in university departments and companies.

They represent the typical poor man's parallel computer:
Running a large PVM or MPI experiment (possibly all night
long) is a cheap alternative to buying supercomputer hours.
The idea is to make use of all available resources, namely
slower machines in addition to more recent ones.

The major limitation to programming heterogeneous

platforms arises from the additional difficulty of balan-

cing the load when using processors running at different
speeds. This paper is devoted to providing the required

framework to build an extension of the ScaLAPACK
library [8] capable of running on top of HNOWs or

nondedicated parallel machines. More precisely, we
concentrate on dense linear algebra kernels, such as

matrix multiplication, or LU and QR decompositions. Our

goal is to come up with an efficient implementation of
such kernels within the framework of the library: The

idea is not to rebuild ScaLAPACK kernels from scratch;
instead, we take advantage of the deep modularity of the

library and we modify only high-level routines related to

data distribution. With processors running at different
speeds, block-cyclic distribution is no longer enough; new

data distribution schemes must be determined and
analyzed. We show that deriving efficient distribution

schemes is a rather simple task for linear networks, but

turns out to be surprisingly difficult for two-dimensional

grids. Technically, we prove that the underlying optimiza-

tion problem is NP-hard for two-dimensional grids and

we provide an efficient approximation of the optimal

solution.
The rest of the paper is organized as follows: In Section 2,

we discuss the framework for implementing our hetero-

geneous kernels and we briefly review the existing

literature. The core of the paper is composed of Sections 3

and 4, where we outline our main results: Section 3 is

devoted to data distribution schemes for unidimensional

grids; Section 4 is its counterpart for two-dimensional grids.

The practical usefulness of our tuned data distribution

schemes is demonstrated in Section 5 through several MPI

experiments run on two HNOWs configured as both

unidimensional and two-dimensional grids. Finally, we

give some remarks and conclusions in Section 6.

2 FRAMEWORK

2.1 Static Distribution Schemes

Because we have a library designer's approach, we target

static strategies to allocate data (and associated computa-

tions) to the heterogeneous processors. These processors

will be configured either as a unidimensional or as a two-

dimensional grids, according to the (virtual) hardware

configurations currently supported by ScaLAPACK. For

homogeneous platforms, ScaLAPACK uses a block-cyclic

distribution approach. This means that subblocks (rather

than single elements) of the matrices are distributed to

processors in a wraparound fashion along the processor

grid (this in both dimensions for a two-dimensional grid).

Processors are then responsible for the computations to be

performed on the data blocks that have been assigned to

them.
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The advantages of block-cyclic distribution for homo-
geneous platforms are easily understood. Blocked versions
of the classical (systolic-like) parallel algorithms for matrix
multiplication and linear system solvers [30] are used in
ScaLAPACK to squeeze the most out of state-of-the-art
processors with pipelined arithmetic units and multilevel
memory hierarchy [19], [10]. Blocked algorithms naturally
imply a distribution of matrix blocks to processors. Because
matrix blocks are not accessed and operated upon evenly in
dense system solvers (the matrix shrinks as the decomposi-
tion progresses), a cyclic distribution of blocks is used
rather than a plain block distribution. Altogether, the block-
cyclic distribution provides an efficient load-balancing of
the work while enabling local (scalar) computations to be
performed at the highest rate.

Blocked algorithms will be used for heterogeneous
platforms, too, so matrix blocks will be distributed to
processors as in the homogeneous case. However, a cyclic
distribution of blocks is no longer likely to provide good
load balancing. Intuitively, if a processor is, say, twice as
fast as another one, it should be allocated twice as many
blocks. Deriving efficient distribution schemes for hetero-
geneous machines is the main objective of this paper.

Our ScaLAPACK extension exposes a major difficulty
when using heterogeneous platforms. Indeed, assume the
platform is configured as a (virtual) two-dimensional grid:
Such a configuration may well be used for a large cluster of
workstations linked by a fast and dedicated network, such
as Myrinet [17]. In that case, a two-dimensional grid would
be preferred to a linear array for scalability reasons [10]: For
kernels such as matrix multiplication or LU and QR
decompositions, a 2D block-cyclic distribution is superior
to a 1D block-cyclic distribution, both theoretically [18], [11]
and experimentally [8]. It turns out that configuring
n heterogeneous processors into a p� q grid, with pq � n,
is very difficult: To build up the grid, we have to choose the
best layout of the processors among an exponential number
of possible processor arrangements. We formally state this
optimization problem and prove its NP-completeness in
Section 4.3.2; then, we provide an efficient heuristic in
Section 4.3.4.

2.2 Static versus Dynamic Strategies

Consider an HNOW: Whereas programming a large
application made up of several loosely coupled tasks can
be performed rather easily (because these tasks can be
dispatched dynamically on the available processors),
implementing a tightly coupled algorithm, such as a dense
linear algebra kernel, requires carefully tuned scheduling
and mapping strategies.

Distributing the computations (together with the asso-
ciated data) can be performed either dynamically or
statically or a mixture of both. On one hand, we may think
that dynamic strategies are likely to perform better because
the machine loads will be self-regulated, hence self-
balanced, if processors pick up new tasks just as they
terminate their current computation. However, data de-
pendences, in addition to communication costs and control
overhead, may well lead to slowing the whole process
down to the pace of the slowest processors [9]. On the other
hand, static strategies will suppress (or at least minimize)

data redistributions and control overhead during execution.
Furthermore, in the context of a numerical library, static
allocations seem to be necessary for a simple and efficient
memory allocation. This paper is devoted to the design of
an extension of the ScaLAPACK library and will consider
only static strategies. We agree, however, that targeting
larger platforms such as distributed collections of hetero-
geneous clusters, e.g., available from the metacomputing
grid [20], may well enforce the use of dynamic schemes.

2.3 Matrix Multiplication on Homogeneous Grids

In this section, we survey the algorithm used in
ScaLAPACK for matrix multiplication. Assume that we
target a 2D homogeneous: The p� q processors are
identical. In that case, ScaLAPACK uses a block version of
the outer product algorithm1 described in [1], [21], [30],
which can be summarized as follows:

. Take a macroscopic view and concentrate on
allocating (and operating on) matrix blocks to
processors: Each element in A, B, and C is a square
r� r block and the unit of computation is the
updating of one block, i.e., a matrix multiplication
of size r. In other words, we shrink the actual matrix
size N by a factor r and we perform the multi-
plication of two n� n matrices whose elements are
square r� r blocks, where n � N=r.

. At each step, a column of blocks (the pivot column)
is communicated (broadcast) horizontally and a row
of blocks (the pivot row) is communicated (broad-
cast) vertically.

. The A, B, and C matrices are identically partitioned
into p� q rectangles. There is a one-to-one mapping
between these rectangles and the processors. Each
processor is responsible for updating its C rectangle:
More precisely, it updates each block in its rectangle
with one block from the pivot row and one block
form the pivot column, as illustrated in Fig. 1. For
square p� p homogeneous 2D-grids, and when the
number of blocks in each dimension n is a multiple
of p (the actual matrix size is thus N � n:r), it turns
out that all rectangles are identical squares of n

p � n
p

blocks.

This paper is devoted to an extension of this algorithm to
a heterogeneous set of computing resources.
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1. ScaLAPACK uses a two-dimensional grid rather than a linear array for
scalability reasons [8].

Fig. 1. The MM algorithm on a 3� 4 homogeneous 2D-grid.



2.4 Related Work

There are many papers in the literature dealing with
dynamic schedulers to distribute the computations (to-
gether with the associated data) onto heterogeneous plat-
forms. Most schedulers use simple mapping strategies such
as master-slave techniques or paradigms based upon the
idea ªuse the past to predict the future,º i.e., use the currently
observed speed of computation of each machine to decide
for the next distribution of work: See the survey paper of
Berman [6] and the more specialized references [2], [13] for
further details. Several scheduling and mapping heuristics
have been proposed to map task graphs onto HNOWs [34],
[35], [32], [26]. Scheduling tools such as Prophet [36] or
AppLeS [6] are available (see also the survey paper [33]).

The static mapping of numerical kernels has, however,
received much less attention. To the best of our knowledge,
there is a single paper by Kalinov and Lastovetsky [28]
which has similar objectives as ours. They are interested in
LU decomposition on heterogeneous 1D and 2D grids. They
propose a ªheterogeneous block cyclic distributionº to map
matrix blocks onto the different-speed processors. They use
the mpC programming tool [3] to program the heteroge-
neous 1D or 2D grids, which they consider as fixed (they do
not discuss how to configure the grid). In fact, their
ªheterogeneous block cyclic distributionº does not lead to
a ªtrueº 2D-grid because each processor has more than four
direct neighbors to communicate with. We come back to
their work in Section 4.1.2.

For the sake of completeness, we quote the following
papers, which are not directly related to our work but
which share some of our objectives:

. The decomposition of general data-parallel pro-
grams for execution onto heterogeneous clusters
has been studied by Crandall and Quinn [15], [14]:
The idea is to split a data domain into different-size
blocks for different-speed processors. Similarly,
various array decomposition algorithms are pro-
posed by Kaddoura et al. [27].

. The NP-complete optimization problem studied in
Section 4.3.2 is related to some geometric problems
such as partitioning a rectangle with interior points
[31], [24] or array partitioning [25], [29]. Several NP-
complete geometric optimization problems are listed
in the NP Compendium [16], [4].

3 UNIDIMENSIONAL GRIDS

In this section, we target unidimensional grids, i.e., HNOWs
configured as linear arrays. We investigate data allocation
schemes to evenly balance the workload for ScaLAPACK
kernels on such platforms.

We start with the simple problem of distributing
independent chunks of computations to linear arrays of
heterogeneous processors (Section 3.1). We use this result to
tackle the implementation of linear solvers, for which we
propose an optimal data distribution in Section 3.2.

3.1 Distributing Independent Chunks

Consider the following simple problem: Given M indepen-
dent chunks of computations, each of equal size (i.e., each

requiring the same amount of work), how can we assign

these chunks to p physical processors P1; P2; . . . ; Pp of

respective cycle-times t1; t2; . . . ; tp so that the workload is

best balanced? Here, the execution time is understood as the

number of time units needed to perform one chunk of

computation, i.e., each processor Pi executes each computa-

tion chunk within ti time units. Then, how do we distribute

chunks to processors? The intuition is that the load of Pi
should be inversely proportional to ti. Since the loads (i.e.,

number of chunks) on each processor must be integers, we

use the following algorithm to solve the problem, where ci
denotes the number of chunks allocated to processor Pi.

Thus, the overall execution obtained with an allocation C �
�c1; c2; . . . ; cp� is given by maxi citi.

Algorithm 3.1: Optimal distribution for M independent
chunks over p processors of cycle-times t1; . . . ; tp:

# Initialization: Approximate the ci so that
ci � ti � Constant and c1 � c2 � . . .� cp �M.

Let ci �
1
tiPp

i�1
1
ti

�M
� �

for 1 � i � p.

# Iteratively increment some ci until
c1 � c2 � . . .� cp �M

For m � c1 � c2 � . . .� cp to M
find k 2 f1; . . . ; pg such that
tk � �ck � 1� � minfti � �ci � 1��g

ck � ck � 1

Proposition 1. Algorithm 3.1 gives the optimal allocation.

Proof. Consider an optimal allocation denoted by o1; . . . ; op.

Let j be such that 8i 2 f1; . . . ; pg; ojtj � oiti. To prove the

correctness of the algorithm, we prove the invariant

�I� : 8i 2 f1; . . . ; pg; citi � ojtj:
After the initialization,

ci �
1
tiPp
k�1

1
tk

�M:

We have

M �
Xp
k�1

ok � ojtj �
Xp
k�1

1

tk
:

Hence,

citi � MPp
k�1

1
tk

� ojtj

and invariant (I) holds.

We use an induction to prove that invariant (I) holds

after each incrementation. Suppose that, at a given step,

some ck will be incremented. Before that step,Pp
i�1 ci < M, hence, there exists k0 2 f1; . . . ; pg such that

ck0 < ok. We have tk0 �ck0 � 1� � tk0ok0 � tjoj and the choice

of k implies that tk�ck � 1� � tk0 �ck0 � 1�. Invariant (I)

does hold after the incrementation.
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Finally, the time needed to compute the M chunks
with the allocation c1; . . . ; cp is maxfti � cig � ojtj and
our allocation is optimal. tu

3.1.1 Complexity and Use

Since, after the initialization step, c1 � c2 � . . .� cp �M ÿ p,
there are at most p steps of incrementation, so that the
complexity2 of Algorithm 3.1 is O�p2�. This algorithm can
only be applied to simple load balancing problems such as
matrix product on a processor ring (see Section 3.2). Indeed,
such a program can be decomposed into successive
communication-free steps. The communication between
steps is reduced to a simple shift across the ring of
processes. Each step consists of a bunch of independent
chunks that can be distributed using Algorithm 3.1.
Consider a toy example with three processors of respective
cycle-times t1 � 3, t2 � 5, and t3 � 8. We aim to compute
the product C � A�B, where A and B are of size
2; 496� 2; 496. The matrices can be decomposed into 78�
78 square blocks of size 32� 32 (32 is a typical block size for
cache-based workstations [8]. Hence, M � 78 blocks of
columns have to be distributed among the processors and
M � 78 blocks of columns will be computed at each step.
Table 1 applies Algorithm 3.1 to this load balancing
problem. A few different steps for matrix multiplication
are represented in Fig. 2. Our simple allocation is quite
sufficient for matrix multiplication because each step is
optimally load-balanced.

3.2 Linear Solvers

Whereas the previous solution is well-suited to matrix
multiplication, it is not adapted for LU and QR decom-
positions, as explained below. Roughly speaking, the LU

decomposition algorithm works as follows on a homo-
geneous linear array [11]: As pointed out in Section 2.1, the
preferred distribution is a CYCLIC(b) distribution of
columns. At each step, the processor that owns the pivot
block factors it and broadcasts it to all the processors, which
update their remaining column blocks. At the next step, the
next block of b columns becomes the pivot panel, and the
computation progresses.

Because the largest fraction of the work takes place in the
update, we would like to load-balance the work so that the
update is best balanced. Consider the first step. After the
factorization of the first block, all updates are independent
chunks: Here, a chunk consists of the update of a single
block of b columns. If the matrix size is n �M � b, there
remains M ÿ 1 chunks to be updated. We can use
Algorithm 3.1 to distribute these independent chunks.
But, the size of the matrix shrinks as the computation goes
on. At the second step, the number of blocks to update is
only M ÿ 2. If we want to distribute these chunks
independently of the first step, redistribution of data will
have to take place between the two steps and this will incur
a lot of communications. Rather, in our library-oriented
perspective, we search for a static allocation of column
blocks to processors that will remain the same throughout
the computations as the decomposition progresses. We aim
at balancing the updates of all steps with the same
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2. Using a naive implementation. The complexity can be reduced down
to O�p log�p�� using ad hoc data structures.

TABLE 1
Steps of Algorithm 3.1 for Three Processors with t1 � 3, t2 � 5,

and t3 � 8 and M � 78

Fig. 2. Different steps of matrix multiplication on a platform made of three heterogeneous processors of respective cycle-times t1 � 3, t2 � 5, and

t3 � 8. All indices in the figure are block numbers.



allocation. As illustrated in Fig. 3, we need a distribution

that is somewhat repetitive (because the matrix shrinks),

but not fully cyclic (because processors have different

speeds).
Looking closer at the successive updates, we see that

only column blocks of index i� 1 to M are updated at step i.

Hence, our objective is to find a distribution such that, for

each i 2 f2; . . . ;Mg, the amount of blocks in fi; . . . ;Mg
owned by a given processor is approximately inversely

proportional to its cycle-time (proportional to its speed). To

derive such a distribution, we use a dynamic programming

algorithm [9], which is best explained using the former toy

example.

3.3 A Dynamic Programming Algorithm

Consider an example with three processors of (relative)

cycle-times t1 � 3, t2 � 5, and t3 � 8. In Table 2, we report

the allocations found by the algorithm up to M � 10. The

entry ªSelected processorº denotes the rank of the processor

chosen to build the next allocation. At each step, ªSelected

processorº is computed so that the cost of the allocation is

minimized. The cost of the allocation is computed as

follows: Let us denote by ci the number of chunks allocated

to processor Pi, then the execution time for an allocation

C � �c1; c2; . . . ; cp� is max1�i�p citi (the maximum is taken

over all processor execution times). So, the average cost to

execute one chunk is

C
z}|{

� max1�i�p citiPp
i�1 ci

:

For instance, at step 4, i.e., to allocate the fourth chunk,

we start from the solution for three chunks, i.e.,

�c1; c2; c3� � �2; 1; 0�. Which processor Pi should receive

the fourth chunk, i.e., which ci should be incremented?

There are three possibilities, �c1 � 1; c2; c3� � �3; 1; 0�,
�c1; c2 � 1; c3� � �2; 2; 0�, and �c1; c2; c3 � 1� � �2; 1; 1�, of re-

spective average costs 9
4 (P1 is the slowest), 10

4 (P2 is the

slowest), and 8
4 (P3 is the slowest). Hence, we select i � 3

and we retain the solution �c1; c2; c3� � �2; 1; 1�.

Of course, if we are to allocate 10 chunks, we can use
Algorithm 3.1 and find that five chunks should be given to
processor P1, three to P2, and two to P3. But, the dynamic
programming algorithm returns the optimal solution for
allocating any number of chunks, from one chunk up to M
chunks:

Proposition 2. The dynamic programming algorithm returns the
optimal allocation for any subset of chunks �1; s�, where
s �M.

See [9] for the proof. The complexity of the dynamic
programming algorithm is O�pM�,3 where p is the number
of processors and M is the upper bound on the number of
chunks. Note that the cost of the allocations is not a
decreasing function of M.

3.4 Application to LU Decomposition

For LU decomposition, we allocate slices of B blocks of
width r to processors, as illustrated in Fig. 4. B is a
parameter to be discussed below. For a matrix of size
n �M � b, we can simply let B �M, i.e., define a single
slice.

Within each slice, we use the dynamic programming
algorithm in a ªreverseº order. In other words, the kth
chunk (for 1 � k � B) is allocated to processor ��Bÿ k� 1�.
Consider the toy example in Table 1 with three processors
of relative speed t1 � 3, t2 � 5, and t3 � 8. The dynamic
programming algorithm allocates chunks to processors, as
shown in Table 2. Hence, the obtained pattern is
�P3P2P1P1P2P1P3P1P2P1� (see Fig. 5 for the detailed alloca-
tion within a slice). As illustrated in Fig. 4, at a given step,
there are several slices of at most B chunks and the number
of chunks in the first slice decreases as the computation
progresses (the leftmost chunk in a slice is computed first
and then there only remains Bÿ 1 chunks in the slice, and
so on). In the example, the reversed allocation best balances
the updates in the first slice at each step: At the first step,
when there are the initial 10 chunks and nine updates (the
first chunk is not updated), but also at the second step,
when only eight updates remain, and so on. The updating

1056 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 10, OCTOBER 2001

TABLE 2
Running the Dynamic Programming Algorithm with Three

Processors: t1 � 3, t2 � 5, and t3 � 8

Fig. 3. Thirty-third step of LU decomposition (indices are block
numbers): with the former distribution, the computation becomes less
balanced. Here, after factoring block 33, processor 1 has seven updates
and works for 7� 3 � 21 units of time, while processor 2 works 24� 5 �
120 units of time.

3. As for Algorithm 3.1, the complexity can easily be improved in
O�log�p�M�.



of the other slices remains well-balanced by construction
since their size does not change and we keep the best
allocation for B � 10. See Fig. 5 for the detailed allocation
within a slice, together with the cost of the updates.

3.4.1 ScaLAPACK on a Heterogeneous Linear Array

We are ready to propose an extension of the ScaLAPACK
library on a heterogeneous cluster configured as a uni-
dimensional array. The ScaLAPACK library is devoted to
dense linear solvers such as LU or QR factorizations. It
turns out that all these solvers share the same computation
unit, namely the processing of a block of b columns at a
given step. They all exhibit the same control graph: The
computation processes by steps; at each step, the pivot
block is processed and then it is broadcast to update the
remaining blocks.

The proposed data allocation is periodic: At the begin-
ning of the computation, we distribute slices of the matrix to
processors in a cyclic fashion. Each slice is composed of
B chunks (blocks of b columns) and is allocated according to
the previous discussion. The value of B is defined by the
user and can be chosen as M if n �M � b, i.e., we can
define a single slice for the whole matrix. But, we can also
choose a value independent of the matrix size: We may look
for a fixed value, chosen from the relative processor speeds,
to ensure good load-balancing.

A major advantage of a fully static distribution with a

fixed parameter B is that we can use the current

ScaLAPACK release with little programming effort. In the

homogeneous case with p processors, we use a CYCLIC(b)

distribution for the matrix data and we define p processes.

In the heterogeneous case, we still use a CYCLIC(b)

distribution for the data, but we define B processes which

we allocate to the p physical processors according to our

load-balancing strategy. The experiments reported in

Section 5 fully demonstrate that this approach is quite

satisfactory in practice.

4 TWO-DIMENSIONAL GRIDS

In this section, we first summarize existing algorithms for

matrix multiplication and dense linear solvers on 2D

(homogeneous) grids and we discuss their extension on

2D heterogeneous grids. Section 4.3 contains our most

involved results: We state the optimization problem to be

solved and we prove its NP-completeness, we discuss how

to find optimal solutions (with exponential cost), and we

introduce an efficient heuristic.

4.1 Linear Algebra Kernels on 2D Grids

In this section, we briefly recall the algorithms implemented

in the ScaLAPACK library [8] on 2D homogeneous grids,

which exhibit better scalability properties than unidimen-

sional grids because the communication operations are

more uniformly distributed so that, when the physical

network allows it, higher parallel efficiency can be

achieved, e.g., there will be almost no difference between

1D and 2D on simple Ethernet. Then, we discuss how to

modify these algorithms to cope with 2D heterogeneous

grids.
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Fig. 4. Allocating slices of B chunks.

Fig. 5. Comparison of two different distributions for the LU-decomposition algorithm on a heterogeneous platform made of three processors of

relative cycle-time 3, 5, and 8. The first distribution is the one given by our algorithm, the second one is the cyclic distribution. The total number of

chunks is B � 10.



4.1.1 Matrix Multiplication

Homogeneous Grids. For the sake of simplicity, we focus
here on the multiplication C � AB of two square n� n
matrices A and B. In that case, ScaLAPACK uses the outer
product algorithm described in [1], [21], [30]. Consider a

2D processor grid of size p� q. Assume first that n � p � q.
In that case, the three matrices share the same layout over
the 2D grid: Processor Pi;j stores ai;j, bi;j, and ci;j. Then, at
each step k:

. Each processor Pi;k (for all i 2 f1; ::; pg) horizontally
broadcasts ai;k to processors Pi;�.

. Each processor Pk;j (for all j 2 f1; ::; qg) vertically
broadcasts bk;j to processors P�;j,

so that each processor Pi;j can independently compute

ci;j � ci;j � ai;k � bk;j.
A block version of this algorithm is used in the current

version of the ScaLAPACK library because it is scalable,
efficient, and it does not need any initial permutation
(unlike Cannon's algorithm [30]). Moreover, on a homo-
geneous grid, broadcasts are performed as independent

ring broadcasts (along the rows and the columns), hence,
they can be pipelined. As already pointed out, ScaLAPACK
uses a blocked version of this basic algorithm. Each matrix
coefficient in the description above is replaced by a b� b
square block. A level of virtualization is added: usually, the

number of blocks dnr�ednre is much greater than the number
of processors p� q. Thus, blocks are scattered in a cyclic
fashion along both grid dimensions so that each processor is
responsible for updating several blocks at each step of the
algorithm. In other words, ScaLAPACK uses a CYCLIC(b)

allocation in both grid dimensions.

4.1.2 Heterogeneous Grids

Suppose now we have a p� q grid of heterogeneous
processors. Instead of distributing the b� b matrix blocks
cyclically along each grid dimension, we distribute block

panels cyclically along each grid dimension. A block panel is
a Bp �Bq rectangle of consecutive b� b blocks. See Fig. 6 for

an example with Bp � 4 and Bq � 3: This panel will be
distributed cyclically along both dimensions of the 2D grid.
The previous cyclic dimension for homogeneous grids
obviously corresponds to the case Bp � Bq � 1. Now, the
distribution of individual blocks is no longer purely cyclic,

but remains periodic. We illustrate in Fig. 7 how block
panels are distributed on the 2D-grid.

How many b� b blocks should be assigned to each
processor within a panel? Intuitively, as in the case of
unidimensional grids, the workload of each processor (i.e.,
the number of block per panel it is assigned to) should be
inversely proportional to its cycle-time. In the example of
Fig. 6, the allocation of the Bp �Bq � 4� 3 � 12 blocks of
the panel perfectly balances the load among the four
processors.

There is an important condition to enforce when assign-
ing blocks to processors within a block panel. We want each
processor in the grid to communicate only with its four
direct neighbors. This implies that each processor in a grid
row is assigned the same number of matrix rows. Similarly,
each processor in a grid column must be assigned the same
number of matrix columns. If these conditions do not hold,
additional communications will be needed, as illustrated in
Fig. 8.

Translated in terms of b� b matrix blocks, the above
conditions mean that each processor Pij, 1 � j � q, in the ith
grid row must receive the same number ri of blocks.
Similarly, Pij, 1 � i � p, must receive cj blocks. This
condition does hold in the example of Fig. 7, where
�c1; c2� � �2; 1� and �r1; r2� � �3; 1�, hence, each processor
only communicates with its direct neighbors.

Unfortunately, and in contrast with the unidimensional
case, the additional constraints induced by the communica-
tion pattern may well prevent the achievement of perfect
load balance amongst processors. Coming back to Fig. 6, we
did achieve a perfect load balance, owing to the fact that the
processor cycle-times could be arranged in the rank-1
matrix

t11 t12

t21 t22

� �
� 1 2

3 6

� �
:

For instance, change the cycle-time of P2;2 into t22 � 5. If we
keep the same allocation as in Fig. 6, P22 remains idle every
sixth time-step. Note that there is no solution to perfectly
balance the work. Indeed, let r1, r2, c1, and c2 be the number
of blocks assigned to each row and column grid.
Processor Pij computes ri � cj blocks in time ri � cj � tij.
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Fig. 6. A block panel with Bp � 4 and Bq � 3 for a 2� 2 processors grid
of respective cycle-time t1;1 � 1, t1;2 � 2, t2;1 � 3, and t2;2 � 6. The
processor P1;1 is twice as fast as the processor P1;2, hence, it is assigned
twice as many blocks within each panel.

Fig. 7. Allocating 4� 3 panels on a 2� 2 grid of processors of respective

cycle-time t1;1 � 1, t1;2 � 2, t2;1 � 3, and t2;2 � 6. There are a total of

10� 10 matrix blocks.



To have a perfect load balance, we have to fulfill the

following equations:

r1 � t11 � c1 � r1 � t12 � c2 � r2 � t21 � c1 � r2 � t22 � c2

that is r1c1 � 2r1c2 � 3r2c1 � 5r2c2:

We derive c1 � 2c2, then r1 � 3r2 � 5
2 r2, hence, a contra-

diction. Note that we have not taken into account the

additional condition �r1 � r2� � �c1 � c2� � 12, stating that

there are 12 blocks within a block panel: It is impossible to

perfectly load-balance the work, whatever the size of the

panel.
If we relax the constraints on the communication pattern,

we can achieve a perfect load-balance as follows: First, we

balance the load in each processor column independently

(using the unidimensional scheme); next, we balance the

load between columns (using the unidimensional scheme

again, weighting each column by the inverse of the

harmonic mean of the processors cycle-times within the

column, see below). This is the ªheterogeneous block cyclic

distributionº of Kalinov and Lastovetsky [28], which leads

to the solution of Fig. 8. Because processor P2;2 has two west

neighbors instead of one, at each step of the algorithm, it is

involved in two horizontal broadcasts instead of one.

We use the example to explain, with further detail, how

the heterogeneous block cyclic distribution of Kalinov and

Lastovetsky [28] works. First, they balance the load in each

processor column independently, using the unidimensional

scheme. In the example, there are two processors in the first

grid column with cycle-times t11 � 1 and t21 � 3, so P11

should receive three times more matrix rows than P21.

Similarly, for the second grid column, P12 (cycle-time

t12 � 2) should receive five out of every seven matrix rows,

while P22 (cycle-time t22 � 5) should receive the remaining

two rows. Next, how to distribute matrix columns? The first

grid column operates as a single processor of cycle-time

2 1
1�1

3

� 3
2 . The second grid column operates as a single

processor of cycle-time 2 1
1
2�1

5

� 20
7 . So, out of every 61 matrix

columns. we assign 40 to the first processor column and 21

to the second processor column.
Because we do not want to rebuild ScaLAPACK from

scratch, we do not want the number of horizontal and
vertical communications to depend upon the data distribu-
tion. For large grids, the number of horizontal neighbors of
a given processor cannot be bounded a priori if we use
Kalinov and Lastovetsky's approach. We enforce the grid
communication pattern (each processor only communi-
cates with its four direct neighbors) to minimize commu-
nication overhead. The price to pay is that we have to
solve a difficult optimization problem to load-balance the
work as efficiently as possible and that our algorithm
may not lead to perfect load balancing because of the
topology constraint. Solving this optimization problem is
the objective of Section 4.3. In [5], more general data
distribution strategies are proposed which lead to perfect
load balancing while minimizing communication over-
head. Those schemes nevertheless require writing com-
pletely new routines for linear algebra kernels and cannot
rely on top of ScaLAPACK.

4.2 The LU and QR Decompositions

We first recall the ScaLAPACK algorithm for the LU or QR
decompositions on a homogeneous 2D-grid. We discuss
next how to implement them on a heterogeneous 2D-grid.

4.2.1 Homogeneous Grids

In this section, we briefly review the direct parallelization of
the right-looking variant of the LU decomposition. We
assume that the matrix A is distributed onto a two-
dimensional grid of (virtual) homogeneous processors. We
use a CYCLIC(b) decomposition in both dimensions. The
right-looking variant is naturally suited to parallelization
and can be briefly described as follows: Consider a matrix A
of order n �M � b and assume that the LU factorization of
the k� b first columns has been proceeded with
0 � k �M ÿ 1. During the next step, the algorithm factors
the next panel of b columns, pivoting if necessary. Next, the
pivots are applied to the remainder of the matrix. The lower
trapezoid factor just computed is broadcast to the other
process columns of the grid using an increasing-ring
topology so that the upper trapezoid factor can be updated
via a triangular solve. This factor is then broadcast to the
other process rows using a minimum spanning tree
topology so that the remainder of the matrix can be
updated by a rank-b update. This process continues
recursively with the updated matrix. In other words, at
each step, the current panel of columns is factored into L
and the trailing submatrix �A is updated. The key computa-
tion is this latter rank-b update, �A �Aÿ LU , which can be
implemented as follows:

1. The column processor that owns L broadcasts it
horizontally (so there is a broadcast in each
processor row).

2. The row processor that owns U broadcasts it
vertically (so there is a broadcast in each processor
column).

3. Each processor locally computes its portion of the
update.
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Fig. 8. The distribution of Kalinov and Lastovetsky. Two consecutive

columns are represented here. Processor have two west neighbors

instead of one.



The communication volume is thus reduced to the
broadcast of the two row and column panels and matrix
�A is updated in place (this is known as an outer-product
parallelization). Load balance is very good. The simplicity
of this parallelization, as well as its expected good
performance, explains why the right-looking variants
have been chosen in ScaLAPACK [10]. See [18], [10], [7]
for a detailed performance analysis of the right-looking
variants, which demonstrates their good scalability
property. The parallelization of the QR decomposition is
analogous [12], [11].

4.2.2 Heterogeneous Grids

For the implementation of the LU and QR decomposition
algorithms on a heterogeneous 2D grid, we modify the
ScaLAPACK CYCLIC(b) distribution very similarly as for
the matrix multiplication problem. The intuitive reason is
the following: As pointed out before, the core of the LU and
QR decompositions is a rank-b update, hence, the load-
balancing techniques for the outer-product matrix algo-
rithm naturally apply. However, periodic distributions
must be used to take into account the shrinking of the
matrix during the elimination.

We still use block panels made up of several b� b matrix
blocks. The block panels are distributed cyclically along
both dimensions of the grid. The only modification is that
the order of the blocks within a block panel becomes
important. Consider the previous example with four
processors laid along a 2� 2 grid as follows:

T � t11 t12

t21 t22

� �
� 1 2

3 5

� �
:

Say we use a panel with Bp � 8 and Bq � 6, i.e., a panel

composed of 48 blocks. Using the methods described

below (see Section 4.3), we assign the blocks as follows,

corresponding to the approximation of T by a rank-1

matrix � 1 2

3 6
�:

. Within each panel column, the first processor row
receives six blocks and the second processor rows
receives two blocks (�r1; r2� � �6; 2�).

. Out of the six panel columns, the first grid column
receives four and the second grid column receives
two of them (�c1; c2� � �4; 2�).

This allocation is represented in Fig. 9. We need to explain
how we have allocated the six panel columns. For the

matrix multiplication problem, the ordering of the blocks

within the panel was not important because all of the

processors execute the same number of (independent)

computations at each step of the algorithm. For the LU

and QR decomposition algorithms, the ordering of columns

and rows is quite important. In the example, the first

processor column operates like six processors of cycle-time 1

and two processors of cycle-time 3, which is equivalent to

a single processor P�;1 of cycle-time 3
20 ; the second

processor column operates like six processors of cycle-

time 2 and two processors of cycle-time 5, which is

equivalent to a single processor P�;2 of cycle-time 5
17 . The

unidimensional algorithm allocates the six panel columns

as �P�;1P�;2P�;1P�;1P�;2P�;1�. Identically, the vertical alloca-

tion pattern is �P1;�P2;�P1;�P1;�P1;�P2;�P1;�P1;�� and we

retrieve the allocation of Fig. 9.
To conclude this section, we have a difficult load-

balancing problem to solve. First, we do not know which

is the best layout of the processors, i.e., how to arrange them

to build an efficient 2D grid. In some cases (rank-1 matrices),

we are able to load-balance the work perfectly, but, in most

cases, this is not possible. Next, once the grid is built, we

have to determine the number of blocks that are assigned to

each processor within a block panel. Again, this must be

done so as to load-balance the work because processors

have different speeds. Finally, the panels are cyclically

distributed along both grid dimensions. The rest of the

paper is devoted to a solution to this difficult load-

balancing problem.

4.3 The 2D Heterogeneous Grid Allocation Problem

4.3.1 Problem Statement and Formulation

Consider n processors P1; P2; . . . ; Pn of respective cycle-

times t1; t2; . . . ; tn. The problem is to arrange these proces-

sors along a two-dimensional grid of size p� q � n in order

to compute the product C � AB of two N �N matrices as

fast as possible. We need some notations to formally state

this objective.
Consider a given arrangement of p� q � n processors

along a two-dimensional grid of size p� q. Let us re-

number the processors as Pij, with cycle-time tij (with 1 �
i � p and 1 � j � q). Assume that processor Pij is assigned a

block of ri rows and cj columns of data elements, meaning

that it is responsible for computing ri � cj elements of the C

matrix: see Fig. 10 for an example.
There are two (equivalent) ways to compute the

efficiency of the grid:

. Processor Pij is scheduled to evaluate rectangular
data block ri � cj of the matrix C, which it will
process within ri � cj � tij units of time. The total
execution time texe is taken over all processors:

texe � max
i;j
fri � tij � cjg:

texe must be normalized to the average time tave
needed to process a single data element: Since there

are a total of N2 elements to compute, we enforce

that
Pp

i�1 ri � N and that
Pq

j�1 cj � N . We get
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Fig. 9. Allocation of the blocks within a block panel with Bp � 8 and

Bq � 6 for a grid of processors of respective cycle-time t1;1 � 1, t1;2 � 2,

t2;1 � 3, and t2;2 � 5.



tave � maxi;jfri � tij � cjgPp
i�1 ri

ÿ �� Pq
j�1 cj

� � :
We are looking for the minimum of this quantity

over all possible integer values ri and cj. We can

simplify the expression for tave by searching for

(nonnegative) rational values ri and cj which sum up

to 1 (instead of N):

Objective Obj1 : min
�
P

i
ri�1;

P
j
cj�1�

max
i;j
fri � tij � cjg:

Given the rational values ri and cj returned by the

solution of the optimization problem Obj1, we scale

them by the factor N to get the final solution. We

may have to round up some values, but we do so

while preserving the relation
Pp

i�1 ri �
Pq

j�1 cj � N .

Stating the problem as Obj1 renders its solution

generic, i.e., independent of the parameter N .
. Another way to tackle the problem is the following:

What is the largest number of data elements that can

be computed within one time unit? Assume again

that each processor Pij of the p� q grid is assigned a

block of ri rows and cj columns of data elements. We

need to have ri � tij � cj � 1 to ensure that Pij can

process its block within one cycle. Since the total

number of data elements being processed is

�Pp
i�1 ri� � �

Pq
j�1 cj�, we get the (equivalent) opti-

mization problem:

Objective Obj2 : max
ri�tij�cj�1

X
i

ri

 !
�

X
j

cj

 !( )
:

Again, the rational values ri and cj returned by the

solution of the optimization problem Obj2 can be

scaled and rounded to get the final solution.
Although there are p� q variables ri and cj,

there are only p� q ÿ 1 degrees of freedom: If we

multiply all ris by the same factor � and divide all

cj by �, nothing changes in Obj2. In other words,

we can impose r1 � 1, for instance, without loss of

generality.
We can further manipulate Obj2 as follows:

max
ri�tij�cj�1

Xp
i�1

ri

 !
�

Xq
j�1

cj

 !( )

� max
ri

max
cj with ri�tij�cj�1

Xp
i�1

ri

 !
�

Xq
j�1

cj

 !( )( )

� max
ri

Xp
i�1

ri

 !
� max

cjwith ri�tij�cj�1

Xq
j�1

cj

 !( )( )

� max
ri

Xp
i�1

ri

 !
� max
8i; cj� 1

ri�tij

Xq
j�1

cj

 !( )( )

� max
ri

Xp
i�1

ri

 !
�

Xq
j�1

min
i

1

ri � tij

� � !( )

� max
ri

Xp
i�1

ri

 !
�

Xq
j�1

1

maxifri � tijg

 !( )
:

We obtain an expression with only p variables (and

pÿ 1 degrees of freedom). This last expression does

not look very friendly, though. Solving this optimi-

zation problem, optimally or through a heuristic, is

the main objective of the following sections.

The 2D Load-Balancing Problem. In the next section, we

give a solution to the 2D load-balancing problem which can

be stated as follows: Given n � p� q processors, how do we

arrange them along a 2D grid of size p� q so as to optimally

load-balance the work of the processors for the matrix

multiplication problem? Note that solving this problem

will, in fact, lead to the solution of many linear algebra

problems, including dense linear system solvers.
The problem is even more difficult to tackle than the

optimization problem stated above because we do not

assume the processors arrangement as given. We search

among all possible arrangements (layouts) of the p� q
processors as a p� q grid and, for each arrangement, we

must solve the optimization problem Obj1 or Obj2.

4.3.2 NP-Completeness

In this section, we formally state the previous optimization

problem and prove its NP-completeness. In the presenta-

tion, processor speeds come in more handy than cycle-

times: If processor Pi has (relative) cycle-time ti, we use its

speed si � 1=ti rather than ti. We start with the definition of

the 2D load-balancing problem, where the mapping f

represents the processor arrangement along the grid and

the ri and cj are the variables used in Obj1:

Definition 1. MAX-GRID(s): Given p2 real positive numbers

s1; . . . ; sp2 , find

r1; . . . ; rp; c1; . . . ; cp;

and a one-to-one mapping f from �1; p� � �1; p� to �1; p2� so

that

8�i; j� 2 �1; p� � �1; p�; ricj � sf�i;j�
and �Pp

i�1 ri��
Pp

j�1 cj� is maximal.

The decision problem associated to the optimization

problem MAX-GRID is the following:
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Definition 2. MAX-GRID(s, K): Given p2 real positive numbers

s1; . . . ; sp2 and a real positive number K, does there exist

r1; . . . ; rp; c1; . . . ; cp;

and a one-to-one mapping f from �1; p� � �1; p� to �1; p2� so

that

8�i; j� 2 �1; p� � �1; p�; ricj � sf�i;j�
and

Xp
i�1

ri

 ! Xp
j�1

cj

 !
� K:

Theorem 1. MAX-GRID(s, K) is NP-complete.

Proof. The proof is lengthy and technical. We use several

lemmas. First, we select the following NP-complete

problem for the reduction:

Lemma 1.

2P -eq �P MAX-GRID;

where 2P-eq is defined as follows:

Definition 3. 2-Partition-Equal (2P-eq). Given a set of p

integers, A � fa1; . . . ; apg, is there a partition of f1; . . . ; pg
into two subsets A1 and A2 such thatX

i2A1

ai �
X
i2A2

ai and card�A1� � card�A2� ?

Since 2P-eq is known to be NP-Complete [22],
Lemma 1 will complete the proof of Theorem 1.

(a) Reduction: 2PP -eeq �P MAX-�s;K�. Here, we con-
sider an arbitrary instance of the 2-Partition-Equal
problem, i.e., a set A � fa1; . . . ; a2ng of 2n integers. We
have to polynomially transform this instance into an
instance of the MAX-GRID problem which has a solution
iff the original instance of 2-Partition-Equal has one
solution.

D e f i n e fb1; . . . ; b2ng a s 8i; bi � �ai � 2nmaxk ak�.
Thus, 2nmax ai � bi � �2n� 1�max ai. We build the

instance of the MAX-GRID problem (denoted by

MAX-GRID�b1; . . . ; b2n;K�), where

K � �4nmax ai�2 �
P2n

i�1 bi �
�
P2n

i�1
bi�2

4�4nmax ai�2 ;

s1 � �4nmax ai�2;
si�1 � bi; 8i; 1 � i � 2n;
si � 1; 8i; 2n� 2 � i � �n� 1�2:

8>>>><>>>>:
In what follows, we show that a solution is necessarily

as depicted in Fig. 11, where the restriction of f to ��2; n�
1�; 1�S�1; �2; n� 1�� defines a one-to-one mapping with

�2; 2n� 1� and

r1c1 � �4nmax ai�2;
8i; 2 � i � n� 1; ri � b��i;1�

c1
;

8j; 2 � j � n� 1; cj � b��1;j�
r1
;

8><>:

Thus, we can check that

Xp
i�1

ri

 ! Xp
j�1

cj

 !
� K()

Xn�1

2

bf�i;1� �
Xn�1

2

bf�1;j�:

The intuitive reason is the following: Since s1 is much
larger than other areas, the best choice is r1 and c1 so that
r1c1 � s1. Similarly, because bi � 1, it would be better to
put the bis on the same row or the same column as s1.
Otherwise, one of the bis would be in the middle of the
grid and the area assigned to the corresponding
processor would be much smaller than the one it is able
to process. Finally, the area of the grid will be maximal
when the grid is balanced, i.e., if the bis satisfy 2P-eq. All
these points will be made clear in the proof below.

Lemma 2. If �Pp
i�1 ri��

Pp
j�1 cj� � K, then the area assigned to

the processor of speed s1 is at least 11n2max ai
2.

Proof. Up to a permutation, suppose that fÿ1�1� � �1; 1�,
i.e., that the area assigned to the processor of speed s1 is

r1c1. Since
P

i�2 si � 5n2max ai
2 and because

Xp
i�1

ri

 ! Xp
j�1

cj

 !
� r1c1 �

X
i�2

si;

we have

r1c1 � 11n2max ai
2:

tu

Lemma 3. Let f be any one-to-one mapping from �1; n� 1� �
�1; n� 1� to �1; �n� 1�2� s.t. f�1; 1� � 1. Moreover, let us

suppose that r1c1 � 11n2max ai
2 (Lemma 2). Then,

�Pp
i�1 ri��

Pp
j�1 cj� is maximal if and only if
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8i � 2; ric1 � s��i;1�;
8j � 2; cjr1 � s��1;j�:

�
Proof. By definition,

8i � 2; ric1 � s��i;1�
8j � 2; cjr1 � s��1;j�;

�
and �Pp

i�1 ri��
Pp

j�1 cj� is maximal when each ri and cj is

maximal.
Moreover, if

8i � 2; ric1 � s��i;1�
8j � 2; cjr1 � s��1;j�;

�
then all other conditions ricj � sf�i;j� are automatically

fulfilled. Indeed,

8�i; j� 6� �1; 1�; 1 � sf�i;j� � �2n� 1�max ai

and, thus,

ricj �
sf�i;1�sf�1;j�

x1y1
;

� �2n� 1�2max ai
2

11n2max ai2

� 1

� sf�i;j�:
tu

Therefore, f being given, the maximal value for
�Pp

i�1 ri��
Pp

j�1 cj� is

S�f� � r1 �
Pn�1

2 sf�i;1�
c1

 !
c1 �

Pn�1
2 sf�1;j�
r1

 !
:

Let us set

p � r1c1; S1 �
Xn�1

2

sf�i;1� and S2 �
Xn�1

2

sf�1;j�:

Thus,

S�f� � p� �S1 � S2� � S1S2

p
:

Lemma 4.

S�f� � K()�p � �4nmax ai�2� and S1 � S2 �
P
bi

2

� �
and, therefore, S�f� � K if and only if there exists a solution

to the original instance of the 2P-eq problem.

Proof. By construction, S1 � S2 �
P
bi and, therefore,

S1S2 � �
P

bi�2
4 . Moreover, S1S2 � �

P
bi�2

4 if and only if

S1 � S2 �
P
bi. Thus,

S�f� � p�
X

bi � �
P
bi�2

4p
:

Let us consider the function g defined by

g�p� � p� �
P
bi�2

4p
:

This function is a decreasing rather than increasing

function of p and reaches the minimum value for

p �
P

bi
2 . SinceP

bi
2
� 11n2max ai

2 � p � �4nmax ai�2;

g is maximal for p � �4nmax ai�2: In other words,

S��� � �4nmax ai�2 �
P
bi � �

P
bi�2

4�4nmax ai�2 � K
S��� � K if and only if �p � �4nmax ai�2�
and �S1 � S2 �

P
bi

2 �:

8>>><>>>:
tu

Thus, MAX-GRID�b1; . . . ; b2n;K� has a solution iff
2P -eq�b1; . . . ; b2n� has a solution and, therefore, iff the
original instance of 2P -eq�a1; . . . ; a2n� has a solution.

(b) Conciseness of the Transformation. The last
element of the proof is to prove that our instance of the
MAX-GRID problem has a size polynomial in the size of
the original instance of the 2P-eq problem.

Lemma 5. Define MAX � maxk ak as above and let c�a� and

c�b� denote, respectively, the encoding of the data a and b.

Then,

Length�c�b�� � O�Length�c�a��2�:

Proof.

Length�c�a�� �
X
k

log�ak� � log�MAX� � �nÿ 1� log�min
k
ak�

� �nÿ 1� log 2� log MAX:

Length�c�b�� �
X
k

log�bk� �
X
k

log 2n MAX 1� ak
nMAX

� �� �
� 1� n�logn� log 2� � n log MAX:

Therefore,

Length�c�b�� � O�Length�c�a��2�:
tu

This achieves the proof of the NP-completeness of
MAX-GRID. tu

4.3.3 Searching for the Optimal Solution

For small grid sizes, we may want to search for the optimal

solution even though the previous result shows that an

exponential cost is unavoidable (unless P = NP). We start

with a useful result to reduce the number of arrangements

to be searched. Next, we derive an algorithm to solve the

optimization problem Obj1 or Obj2 for a fixed (given)

arrangement. Despite the reduction, we still have an

exponential number of arrangements to search for. Even

worse, for a fixed arrangement, our algorithm exhibits an
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exponential cost. Therefore, we shall introduce a heuristic in

the next section, in order to give a fast but suboptimal

solution to the 2D load-balancing problem.
Reduction to Nondecreasing Arrangements. In this

section, we show that we do not have to consider all the

possible arrangements; instead, we reduce the search to

ªnondecreasing arrangementsº. A nondecreasing arrange-

ment on a p� q grid is defined as follows: In every grid row,

the cycle-times are increasing: tij � ti;j�1 for all

1 � j � q ÿ 1. Similarly, in every grid column, the cycle-

times are increasing: For all 1 � i � pÿ 1, tij � ti�1;j.

Proposition 3. There exists a nonincreasing arrangement which

is optimal.

Proof. The proof works as follows:

1. Let the pq cycle-times be denoted as t1; t2; . . . ; tpq.
2. Consider an optimal arrangement on the grid of

size p� q. Note that there is no reason that the
optimal arrangement must be a nondecreasing
arrangement.

3. Show that some well-chosen ªcorrectº transposi-
tions can be applied to the arrangement while
preserving the optimality of the solution. The
correct transpositions will make the arrangement
ªcloserº to a nondecreasing arrangement.

4. Show that the number of steps to reach a
nondecreasing arrangement is finite.

We need a few definitions:

Definition 4.

. (Arrangement) An arrangement is a one-to-one
mapping

� :
�1; pq� 7! �1; p� � �1; q�
k ! ��k� � �i; j�

� �
which assigns a position to each processor in the grid.

. (Nondecreasing arrangement) An arrangement � is
n o n d e c r e a s i n g i f t�ÿ1�i;j� � t�ÿ1�i0;j0� f o r a l l
�1; 1� � �i; j� � �i0; j0� � �p; q�.

. (Correct transposition) Let � be an arrangement. If
��k� < ��l� and tk > tl, the transposition ��k; l�
which transposes the values of ��k� and ��l� is said
to be correct.

Given any arrangement �, there exists a suite of
correct transpositions that modifies � into a nondecreas-
ing arrangement. To prove this, we use a weight function
W that quantifies the distance to the ªnondecreasing-
ness.º We will show that a correct transposition will
decrease the weight of the arrangement it is applied to.
We choose

W��� �
X
i;j

t�ÿ1�i;j� � �p� q ÿ iÿ j�:

Let us check that, for each correct transposition � ,

W������ < W���. Let � be an arrangement such that

�i; j� � �i0; j0� and t�ÿ1�i;j� > t�ÿ1�i0;j0�. Let k � �ÿ1�i; j� and

l � �ÿ1�i0; j0�: By hypothesis, the transposition � � ��k; l�
is correct. Let �0 � � � �. We have

W ��0� �W��� � �t�ÿ1�i0;j0� ÿ t�ÿ1�i;j���p� q ÿ iÿ j�
� �t�ÿ1�i;j� ÿ t�ÿ1�i0;j0���p� q ÿ i0 ÿ j0�

�W��� ÿ ��i0 ÿ i� � �j0 ÿ j���t�ÿ1�i;j� ÿ t�ÿ1�i0;j0��
< W���:

Consider an optimal arrangement � and let r1; . . . ; rp
and c1; . . . ; cq be the solution to the optimization problem
Obj1. Since an equivalent solution is obtained by transpos-
ing two columns or two rows of the arrangement, we can
assume that r1 � r2 � . . . rp and c1 � c2 � . . . cq. If � is
nondecreasing, we are done. Otherwise, there exists
�1; 1� � ��; �� < �p; q� such that either t�ÿ1���1;�� < t�ÿ1��;��
or t�ÿ1��;��1� < t�ÿ1��;��. The proof is the same in both cases,
hence, assume that t�ÿ1���1;�� < t�ÿ1��;��. Let k � �ÿ1��; ��
and l � �ÿ1��� 1; ��: By hypothesis, the transposition
� � ��k; l� is correct. Let �0 � � � �. We want to show that
�0 is as good as � (in the sense of Obj2), so we need to
show that, for all i and j, ricjt�0ÿ1�i;j� � 1.

Indeed, we have r� � r��1 and t�ÿ1���1;�� < t�ÿ1��;��,
hence,

r�c�t�����ÿ1��;�� � r�c�t�ÿ1���1;�� � r�c�t�ÿ1��;�� � 1
r��1c�t�����ÿ1���1;�� � r��1c�t�ÿ1��;�� � r�c�t�ÿ1��;�� � 1:

�
Therefore, �0 is optimal, too, and W��0� < W ���. If �0 is

not nondecreasing, we repeat the process, which
converges in a finite number of steps, because there is
a finite number of weight values. tu

Spanning Trees for a Given Arrangement. In this
section, we show how to solve the optimization problem
Obj1 or Obj2 for a given arrangement. For small size
problems, all the possible nondecreasing arrangements can
be generated, hence, we have an exponential but feasible
solution to the 2D load balancing problem. Let � be a given
arrangement on a p� q grid and let �r1; . . . ; rp; c1; . . . ; cq� be
the solution to the optimization problem Obj1.

Consider the optimization problem Obj1. We have to

maximize the quadratic expression �P1�i�p ri��
P

1�j�q cj�
under p� q inequalities ritijcj � 1. We have p� q ÿ 1

degrees of freedom. The objective of this section is to show

that, for at least p� q ÿ 1, inequalities are in fact equalities.

We use a graph-oriented approach to this purpose.
We consider the following complete bipartite graph

G � �V; E�, composed on one side of p vertices labeled with
ri and the other side by q vertices labeled with cj. The
weight of the edge �ri; cj� is tij. Given a spanning tree T �
�V; E0� of the graph G, if we start from r1 � 1, we can
(uniquely) determine all the values of the ri and cj by
following the edges of T , enforcing the equalities

8�ri; cj� 2 E0; riti;jcj � 1:

The spanning tree T is said to be acceptable if and

only if all the remaining inequalities are satisfied:

8�ri; cj� 2 E; riti;jcj � 1. The value of an acceptable span-

ning tree is �P ri��
P
cj�. We claim that the solution of Obj1

is obtained with the acceptable spanning tree of maximal

value.
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This leads to the following algorithm:

. We generate recursively all the spanning trees of G of
root r1.

. Iteratively, we add vertices to the tree and, by
enforcing the condition ritijcj � 1, we evaluate the
corresponding labels.

. Let us define an acceptable subtree as a subgraph of an
acceptable tree. Then, during the recursive process,
it might be possible to detect that a subtree is not
acceptable so that all the trees are not built.

Finally, we select the acceptable tree that maximizesP
1�i�p ri

P
1�j�q cj.

Correctness of the Algorithm. To justify the previous

algorithm, consider an optimal solution to Obj1 and draw

the bipartite graph U � �V; E0� corresponding to the equal-

ities: U has p� q vertices labeled with ri and cj. There is an

edge between vertices ri and cj (�ri; cj� 2 E0) if and only if

ricjti;j � 1. Let us show that this graph is connected, so

suppose it is not.
Suppose (without any loss of generality) that V0 �

fr1; . . . ; rp0 ; c1; . . . ; cq0 g is a connected component of U and

that p0 < p.

First, suppose that q0 � q. It means that, for all 1 � j � q,
rp0�1cjtp0�1;j < 1. Then, rp0�1 can be increased by a factor of �,

with � � min1�j�q 1
rp0�1cjtp0�1;j

, and the so-built solution is

strictly better (since the product
P

1�i�p ri
P

1�j�q cj is

increased), which contradicts the optimality of the initial

solution.
Consequently, q0 < q and p0 < p. It means that, for all

�p0 � 1; 1� � �i; j� � �p; q0�
and for all

�1; q0 � 1� � �i; j� � �p0; q�; ricjti;j < 1:

Let

�r � min�i>p0 and j�q0� 1
ricjti;j

�c � min�i�p0 and j>q0� 1
ricjti;j

:

(
We also introduce the notations

Ra � P
i�p0 ri

Rb � P
i>p0 ri

Ca � P
j�q0 cj

Cb � P
j>q0 cj:

8>><>>:
Now, we have two possibilities to increase the con-

nectivity of the graph: Either increase the elements

corresponding to Rb by a factor of �r (but decrease the

elements corresponding to Cb so as to maintain the

acceptable solution) or increase the elements corresponding

to Cb by a factor of �c (but decrease the element

corresponding to Rb by a factor 1
�c

). As we will see, at least

one of these solutions does increase the productP
1�i�p ri

P
1�j�q cj � �Ra �Rb��Ca � Cb�, which contradicts

the optimality hypothesis of the initial solution.

Indeed, consider the function f defined by f��� �
��Rb �Ra��Cb� � Ca� Note that f 0�1� � RbCa ÿRaCb. More-
over, f is a continuous function that is first strictly
decreasing to a minimum and then strictly increasing.
Therefore:

. If f 0�1� � 0, then, for all � � 1, f��� > f�1�. In
particular, f��r� > f�1�.

. If f 0�1� � 0, then, for all � � 1, f��� > f�1�. In
particular, f� 1

�c
� > f�1�.

One of the previous two solutions will indeed increase the

connectivity of U while preserving the objective functionP
1�i�p ri

P
1�j�q cj. We conclude that there does exist an

acceptable spanning tree whose value is the optimal

solution.
In summary, given an arrangement, we are able to

compute the solution to the optimization problem. The cost
is exponential because there is an exponential number of
spanning trees to check for acceptability. Still, our method is
constructive and can be used for problems of limited size.

Case of a 2� 2 Grid. For small size grids, we can find

analytical solutions to the optimization problem. As an

example, we explicitly show the solution for a 2� 2 grid. In

that case, we want to maximize (see the definition of Obj2)

the quantity �r1 � r2�� 1
max�r1t11 ;r2t21� � 1

max�r1t12;r2t22��. We nor-

malize our problem by letting r1 � 1 and r2 � r. We have to

maximize

�1� r� 1

max�t11; rt21� �
1

max�t12; rt22�
� �

:

There are three cases to study:

. First case 0 � r � min�t11

t21
; t12

t22
�: In this interval, the

value of the expression varies as an increasing
function of r. So, the maximum on this interval is
obtained for r � min�t11

t21
; t12

t22
�.

. Second case max�t11

t21
; t12

t22
� � r � �1: In this interval,

the expression varies as a decreasing function of r.
So, the maximum is obtained for r � max�t11

t21
; t12

t22
�.

. Third case min�t11

t21
; t12

t22
� � r � max�t11

t21
; t12

t22
�: By symme-

try, we can suppose that t11

t21
� t12

t22
. So, our expression

is now �1� r�� 1
rt21
� 1

t12
�. This function is first decreas-

ing and then increasing. Hence, the maximum is

obtained on the bounds of the interval, i.e., for r � t11

t21

or r � t12

t22
.

In conclusion, there are two possible values for the
maximum, namely r � t11

t21
or r � t12

t22
. For the objective

function, we obtain the value

max 1� t11

t21

� �
1

t11
� 1

max�t12;
t11t22

t21
�

 ! 
;

1� t12

t22

� �
1

max�t11;
t12t21

t22
� �

1

t12

 !!
:

Rank-1 Matrices. If the matrix �tij�1�i�p;1�j�q is a rank-1
matrix, then the optimal arrangement for the 2D load-
balancing problem is easy to determine. Assume without
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loss of generality that t11 � 1. We let r1 � c1 � 1, ri � 1
ti1

for
2 � i � p and cj � 1

t1j
for 2 � i � q. All the p� q inequalities

ritijcj are equalities, which means that all processors are
fully utilized:

ritijcj � 1

ti1
tij � 1

t1j
� 1;

because the 2� 2 determinant

t11 t1j
ti1 tij

���� ����
is zero (with t11 � 1). No idle time occurs with such a
solution; the load-balancing is perfect.

Unfortunately, given p� q integers, it is very difficult to
know whether they can be arranged into a rank-1 matrix of
size p� q. If such an arrangement does not exist, we can
intuitively say that the optimal arrangement is the ªclosest
oneº to a rank-1 matrix.

4.3.4 Heuristic Solution

In this section, we study a heuristic solution to find an
arrangement of the processors and a solution to the
corresponding optimization problem that leads to good
load-balancing. As pointed out above, if the processors
cycle-times can be arranged into a rank-1 matrix, it is easy to
compute the ris and the cjs so that no idle time occurs. In
general, this is not possible. Nevertheless, basic linear
algebra techniques enable us to find both a reasonable
arrangement (close to a rank-one matrix) and reasonable
values for the ris and the cjs (so that the idle time is low).

The heuristic works as follows: First, it determines a
reasonable (nondecreasing) arrangement matrix for proces-
sor cycle-times. Then, it computes approximate values for
the ris and the cjs corresponding to this arrangement
matrix. Finally, an iterative refinement of the arrangement
matrix is proposed which computes a new arrangement
matrix which better fits with the values of the ris and the cjs
computed during the second step.

Initial Arrangement of the Processors. We are given the
processors cycle-times as input to the heuristic. Our aim is
to find an arrangement so that the resulting matrix is close
to a rank-one matrix. We arrange the processors cycle-times
in the matrix T as follows:

8i; 81 � j < q; ti;j � ti;j�1

81 � i < p; ti;q � ti�1;1:

�
For instance, if we consider the case of nine processors with
cycle-times �1; 2; . . . ; 9�, the arrangement matrix T that we
obtain is

T �
1 2 3
4 5 6
7 8 9

0@ 1A:
This arrangement is not optimal, but it is nondecreasing.
We will refine it using SVD techniques [23] in order to
obtain a better arrangement.

Computing the ris and the cjs. As noticed above, the
computation of the ris and the cjs is obvious when T is a
rank-1 matrix. The SVD decomposition provides the best

approximation (in the sense of the 2-norm) of a given matrix

by a rank-one matrix. It is therefore natural to use it to find

the best approximation of the arrangement matrix defined

above and then to compute the ris and the cjs correspond-

ing to this approximation.

Let us denote by U�V t � S the singular value decom-

position of S, where S � � 1
ti;j
�i;j. The best approximation of S

by a rank-1 matrix is given by sabt, where a and b are,

respectively, the left and right singular vectors associated

with s, the largest singular value of S. Thus, if we set

8i; ri � sai
8j; cj � bj;

�
we can expect that

8i; j; riti;jcj ' 1:

We consider T inv rather than T since the approximation by

the rank-1 matrix is usually better on the largest compo-

nents. This way, we better approximate the components of

T corresponding to processors with low time cycle.
In order to ensure that the inequalities riti;jcj � 1 are

fulfilled, we divide each cj by the largest component of the

jth column of the matrix riti;jcj. Then, in order to avoid idle

time, we divide each ri by the largest component of the ith

row of the matrix riti;jcj. Thus, we obtain two vectors r and

c satisfying 8i; j; riti;jcj � 1 and such that

8i; 9j riti;jcj � 1
8j;9i riti;jcj � 1:

�
Consider again the matrix

T �
1 2 3
4 5 6
7 8 9

0@ 1A:
We obtain

r �
1:1661
0:3675
0:2100

0@ 1A; c � 0:6803
0:4288
0:2859

0@ 1A;
and

Texe � �riti;jcj�i;j �
0:7933 1 1

1 0:7879 0:6303
1 0:7203 0:5402

0@ 1A:
The value of the objective function �P ri��

P
cj� is 2:4322.

Note that this allocation can easily be improved by using

the process described in ªCorrectness of the algorithmº of

Section 4.3.3.
Iterative Refinement. In this section, we propose an

iterative refinement in order to obtain a better arrangement

of the processors (and a better solution to the corresponding

optimization problem). In order to determine the new

arrangement matrix, we compute the matrix Topt � � 1
ri cj
�i;j.

Topt is a rank-1 matrix whose components are the processor

cycle-times that are optimal with respect to the vectors r

and c computed above. In the case of our example, we

obtain
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Topt �
1:2606 2:0000 3:0000
4:0000 6:3464 9:5195
7:0000 11:1061 16:6592

0@ 1A:
This suggests the choice of another arrangement matrix T

for the processors' cycle-times that better fits to the matrix

Topt. More precisely, we derive the new matrix T from the

following conditions:

8i; j; k; l; ti;j � tk;l()topti;j � toptk;l :

Then, we compute the ris and the cjs as shown in the

previous paragraph and we restart the process. We consider

that the process has converged when no modification

occurs in the matrix T . In our example, after the second

step, the arrangement matrix T becomes

T �
1 2 3
4 5 7
6 8 9

0@ 1A
and the value of the objective function �P ri��

P
cj� is 2:5065

(instead of 2:4322). Convergence is obtained after three

steps. The value of the objective function �P ri��
P
cj� is

then 2:5889 and the corresponding arrangement matrix is

T �
1 2 3
4 6 8
5 7 9

0@ 1A:
Simulation Results. In this section, we present the

results of our algorithm for processors with random cycle-

times in �0; 1�. We consider the arrangement of n2 processors

into an n� n grid. Fig. 12 displays the evolution with n of

the objective function

bC�r1; r2; . . . ; rp; c1; . . . ; cq� �
�Pp

i�1 ri��
Pq

j�1 cj�P
i;j

1
tij

:

Indeed, during one unit of time:

. The amount of work done using this allocationbC�r1; r2; . . . ; rp; c1; . . . ; cq� is �Pp
i�1 ri��

Pq
j�1 cj�.

. The maximal amount of work that each processor Pij
could do (not necessarily reachable) is 1

tij
.

Fig. 13 displays the evolution with n of the ratio

� � ��
P
ri��
P
cj��after convergence

��P ri��
P
cj��after the first step

ÿ 1:

Finally, Fig. 14 displays the evolution with n of the average
number of steps necessary to reach convergence.

Concluding Remarks on the Heuristic Solution. The
heuristic solution gives satisfying results. Nevertheless, the
algorithm does not converge to an optimal solution with
respect to the optimization problem. Moreover, it seems
that the number of steps of the iterative process grows with
n and, therefore, involves more than O�n3� flops to arrange
n2 processors into an n� n grid. Nevertheless, one usually
obtains satisfying results after only a few steps.

5 MPI EXPERIMENTS

5.1 Estimating Processor Speed

There are too many parameters to accurately predict the
actual speed of a machine for a given program, even
assuming that the machine load will remain the same
throughout the computation. Cycle-times must be under-
stood as normalized cycle-times [13], i.e., application-depen-
dent elemental computation times, which are to be
computed via small-scale experiments (repeated several
times, with an averaging of the results).

We ranked the computers to be used with respect to
performance by measuring the time necessary to multiply
two matrices of order 500 in double precision arithmetic.
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This sorting criterion is certainly adequate for parallel dense

linear algebra such as the LU and QR decompositions

studied in this paper. On the Intel Pentium processor-based

computers, we used the ATLAS [37] software, which

automatically generates an efficient BLAS implementation

for this architecture in particular. For example, on a

500 Mhz Pentium III computer, ATLAS 3.0 achieves a

performance of 362 Mflops for multiplying two matrices

of order 500. The higher level of cache was flushed

between every timing measure and we used the operating

system wallclock timer. On the Sun Sparc workstations,

we used the BLAS library supplied by the vendor

(sunperf) and we similarly measured their performance.

Table 3 lists the computers we used in our experiments,

their peak performance, and the performance they

achieved with respect to our ranking test.

5.2 Numerical Results

In this section, we compare the classical block cyclic

distribution of ScaLAPACK with the heterogeneous 2D

distribution that we propose. The tests have been per-

formed both on matrix multiplication and QR decomposi-

tion, using the nine processors listed in Table 3. The speed

of the slowest processor is 128, while the speed of the fastest

processor is 362. The ratio 362
128 � 2:8 shows that the processor

set is reasonably heterogeneous: In fact, it mixes machines

that are two years older than others.

For the largest experiment with nine processors, the

heuristic of Section 4.3.4 leads to the distribution depicted in

Fig. 15. This distribution theoretically enables us to update

�Pi ri� � �
P

j cj� � 2318:44 elements at each time step. With

the classical homogeneous distribution, the whole process is

slowed down to the pace of the slowest processor and,

therefore, we can only expect to update 9� 128 � 1; 152

elements at each time step. The theoretical improvement is

therefore 2318:44
1152 � 2:01.

We display in Figs. 16 and 17 the time of matrix
multiplication and QR decomposition for different problem
sizes. There are three experimental plots in each figure,
corresponding to our unidimensional heterogeneous dis-
tribution, our two-dimensional heterogeneous distribution,
and the ScaLAPACK two-dimensional block-cyclic distri-
bution. We also report the theoretical execution time
expected for the two-dimensional heterogeneous distribu-
tion (if communication costs could be neglected). For each
kernel, the heterogeneous strategy on a 2D grid is better
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Specifications of the Nine Heterogeneous Processors

Fig. 15. Heterogeneous distribution. Bold entries represent the actual

work allocated to the processors.

Fig. 16. Comparison of different allocations for matrix multiplication

using nine processors.

Fig. 17. Comparison of different allocations for QR decomposition using

nine processors.



than the heterogeneous strategy for a unidimensional grid,
which in turn is better than with the block-cyclic distribu-
tion on a 2D grid.

Of course, the results displayed in Figs. 16 and 17 show
that this theoretical speedup is not reached. This is due to
the communications involved in the algorithms. All the
computations have been performed with a slow network
(100-base Ethernet) and the cost of communications is
important, especially when involved matrices are small.
Nevertheless, we can observe in Fig. 18 that the largest the
involved matrices, the closer the actual speedup to the
theoretical improvement.

6 CONCLUSION

In this paper, we have discussed data allocation strategies
to implement matrix products and dense linear system
solvers on heterogeneous computing platforms. Such plat-
forms are likely to play an important role in the future. We
have shown both theoretically and experimentally (through
MPI experiments) that our data allocation algorithms were
quite satisfactory. They form the basis for a successful
extension of the ScaLAPACK library to heterogeneous
platforms.

We point out that extending the standard ScaLAPACK
block-cyclic distribution to heterogeneous 2D grids has
turned out to be surprisingly difficult. In most cases, a
perfect balancing of the load between all processors cannot
be achieved and deciding how to arrange the processors
along the 2D grid is a challenging NP-complete problem.
But, we have formally stated the optimization problem to be
solved and we have presented both an exact solution (with
exponential cost) and a heuristic solution.

We believe that the original motivation for this work,
namely the extension of ScaLAPACK, will prove very
important in the (much larger) context of metacomputing:
Dense linear algebra algorithms are the prototype of tightly
coupled kernels that need to be implemented efficiently on
collections of distributed and heterogeneous platforms: We
view them as a perfect testbed before experimenting on
more challenging computational problems on the grid.
Future work will indeed be related to using collections of
heterogeneous clusters rather than a single one. Implement-

ing linear algebra kernels on several collections of work-
stations or parallel servers, scattered all around the world
and connected through fast but nondedicated links, would
give rise to a ªComputational Grid ScaLAPACK.º Our
results constitute a first step toward achieving this
ambitious goal.
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