
Intro Checkpointing ABFT Silent Errors Conclusion

Fault-Tolerant Techniques for HPC

Yves Robert

Laboratoire LIP, ENS Lyon
Institut Universitaire de France
University Tennessee Knoxville

Yves.Robert@inria.fr

http://graal.ens-lyon.fr/~yrobert/htdc-flaine.pdf

HTDC Winter School 2015 – Flaine

Yves.Robert@inria.fr Fault-tolerance for HPC 1/ 129

Yves.Robert@inria.fr
http://graal.ens-lyon.fr/~yrobert/htdc-flaine.pdf

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction

2 Checkpointing

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 2/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Checkpointing

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 3/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Checkpointing

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 4/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture
with a cap of $200M and 20MW
 Systems 2011

K computer
2019 Difference

Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s O(100)

Power 12.7 MW ~20 MW

System memory 1.6 PB 32 - 64 PB O(10)

Node performance 128 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 64 GB/s 2 - 4TB/s O(100)

Node concurrency 8 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10)

System size (nodes) 88,124 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 705,024 O(billion) O(1,000)

MTTI days O(1 day) - O(10)

Yves.Robert@inria.fr Fault-tolerance for HPC 5/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Exascale platforms (courtesy C. Engelmann & S. Scott)

Yves.Robert@inria.fr Fault-tolerance for HPC 6/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Yves.Robert@inria.fr Fault-tolerance for HPC 7/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Exascale

6= Petascale ×1000

Yves.Robert@inria.fr Fault-tolerance for HPC 7/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Even for today’s platforms (courtesy F. Cappello)

Yves.Robert@inria.fr Fault-tolerance for HPC 8/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Even for today’s platforms (courtesy F. Cappello)

Yves.Robert@inria.fr Fault-tolerance for HPC 9/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Checkpointing

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 10/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Error sources (courtesy Franck Cappello)

•  Analysis of error and failure logs

•  In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

•  In 2007 (Garth Gibson, ICPP Keynote):

•  In 2008 (Oliner and J. Stearley, DSN Conf.):
50%

Hardware

Conclusion: Both Hardware and Software failures have to be considered

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.

Hardware errors, Disks, processors, memory, network

Yves.Robert@inria.fr Fault-tolerance for HPC 11/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Silent errors (SDC) addressed later in the presentation

Yves.Robert@inria.fr Fault-tolerance for HPC 12/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Failure distributions: (1) Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)

Exp(λ): Exponential distribution law of parameter λ:

Pdf: f (t) = λe−λtdt for t ≥ 0

Cdf: F (t) = 1− e−λt

Mean = 1
λ

Yves.Robert@inria.fr Fault-tolerance for HPC 13/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Failure distributions: (1) Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)

X random variable for Exp(λ) failure inter-arrival times:

P (X ≤ t) = 1− e−λtdt (by definition)

Memoryless property: P (X ≥ t + s |X ≥ s) = P (X ≥ t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

Mean Time Between Failures (MTBF) µ = E (X) = 1
λ

Yves.Robert@inria.fr Fault-tolerance for HPC 13/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Failure distributions: (2) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

Weibull(k, λ): Weibull distribution law of shape parameter k and
scale parameter λ:

Pdf: f (t) = kλ(tλ)k−1e−(λt)kdt for t ≥ 0

Cdf: F (t) = 1− e−(λt)k

Mean = 1
λΓ(1 + 1

k)

Yves.Robert@inria.fr Fault-tolerance for HPC 14/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Failure distributions: (2) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

X random variable for Weibull(k , λ) failure inter-arrival times:

If k < 1: failure rate decreases with time
”infant mortality”: defective items fail early

If k = 1: Weibull(1, λ) = Exp(λ) constant failure time

Yves.Robert@inria.fr Fault-tolerance for HPC 14/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Failure distributions: with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µ with one processor,
what is its value with p processors?

Well, it depends /

Yves.Robert@inria.fr Fault-tolerance for HPC 15/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Failure distributions: with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µ with one processor,
what is its value with p processors?

Well, it depends /

Yves.Robert@inria.fr Fault-tolerance for HPC 15/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

With rejuvenation

Rebooting all p processors after a failure

Platform failure distribution
⇒ minimum of p IID processor distributions

With p distributions Exp(λ):

min
(
Exp(λ1),Exp(λ2)

)
= Exp(λ1 + λ2)

µ =
1

λ
⇒ µp =

µ

p

With p distributions Weibull(k, λ):

min
1..p

(
Weibull(k , λ)

)
= Weibull(k , p1/kλ)

µ =
1

λ
Γ(1 +

1

k
)⇒ µp =

µ

p1/k

Yves.Robert@inria.fr Fault-tolerance for HPC 16/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Without rejuvenation (= real life)

Rebooting only faulty processor

Platform failure distribution
⇒ superposition of p IID processor distributions
⇒ IID only for Exponential

Define µp by

lim
F→+∞

n(F)

F
=

1

µp

n(F) = number of platform failures until time F is exceeded

Theorem: µp =
µ

p
for arbitrary distributions

Yves.Robert@inria.fr Fault-tolerance for HPC 17/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Intuition

Time

p1

p2

p3

t

If three processors have around 20 faults during a time t (µ = t
20)...

Time

p

t

...during the same time, the platform has around 60 faults (µp = t
60)

Yves.Robert@inria.fr Fault-tolerance for HPC 18/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

MTBF with p processors (1/2)

Theorem: µp = µ
p for arbitrary distributions

With one processor:

n(F) = number of failures until time F is exceeded

Xi iid random variables for inter-arrival times, with E (Xi) = µ∑n(F)−1
i=1 Xi ≤ F ≤

∑n(F)
i=1 Xi

Wald’s equation: (E (n(F))− 1)µ ≤ F ≤ E (n(F))µ

limF→+∞
E(n(F))

F = 1
µ

Yves.Robert@inria.fr Fault-tolerance for HPC 19/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

MTBF with p processors (2/2)

Theorem: µp = µ
p for arbitrary distributions

With p processors:

n(F) = number of platform failures until time F is exceeded

nq(F) = number of those failures that strike processor q

nq(F) + 1 = number of failures on processor q until time F is
exceeded (except for processor with last-failure)

limF→+∞
nq(F)
F = 1

µ as above

limF→+∞
n(F)
F = 1

µp
by definition

Hence µp = µ
p because n(F) =

∑p
q=1 nq(F)

Yves.Robert@inria.fr Fault-tolerance for HPC 20/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

A little digression for afficionados

Xi IID random variables for processor inter-arrival times

Assume Xi continuous, with E (Xi) = µ

Yi random variables for platform inter-arrival times

Definition: µp
def
= limn→+∞

∑n
i E(Yi)
n

Limits always exists (superposition of renewal processes)

Theorem: µp = µ
p

Yves.Robert@inria.fr Fault-tolerance for HPC 21/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Values from the literature

MTBF of one processor: between 1 and 125 years

Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)

Yves.Robert@inria.fr Fault-tolerance for HPC 22/ 129

http://fta.inria.fr
http://institutes.lanl.gov/data/fdata

Intro Checkpointing ABFT Silent Errors Conclusion

Does it matter?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0h 3h 6h 9h 12h 15h 18h 21h 24h

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (hours)

Parallel machine (10
6
 nodes)

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

After infant mortality and before aging,
instantaneous failure rate of computer platforms is almost constant

Yves.Robert@inria.fr Fault-tolerance for HPC 23/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction

2 Checkpointing
Coordinated checkpointing
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 24/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction

2 Checkpointing
Coordinated checkpointing
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 25/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Maintaining redundant information

Goal

General Purpose Fault Tolerance Techniques: work despite the
application behavior

Two adversaries: Failures & Application

Use automatically computed redundant information

At given instants: checkpoints
At any instant: replication
Or anything in between: checkpoint + message logging

Yves.Robert@inria.fr Fault-tolerance for HPC 26/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Process checkpointing

Goal

Save the current state of the process

FT Protocols save a possible state of the parallel application

Techniques

User-level checkpointing

System-level checkpointing

Blocking call

Asynchronous call

Yves.Robert@inria.fr Fault-tolerance for HPC 27/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

System-level checkpointing

Blocking checkpointing

Relatively intuitive: checkpoint(filename)

Cost: no process activity during whole checkpoint operation

Different implementations: OS syscall; dynamic library;
compiler assisted

Create a serial file that can be loaded in a process image.
Usually on same architecture / OS / software environment

Entirely transparent

Preemptive (often needed for library-level checkpointing)

Lack of portability

Large size of checkpoint (≈ memory footprint)

Yves.Robert@inria.fr Fault-tolerance for HPC 28/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Storage

Remote reliable storage

Intuitive. I/O intensive. Disk usage.

Memory hierarchy

local memory

local disk (SSD, HDD)

remote disk

Scalable Checkpoint Restart Library
http://scalablecr.sourceforge.net

Checkpoint is valid when finished on reliable storage

Distributed memory storage

In-memory checkpointing

Disk-less checkpointing

Yves.Robert@inria.fr Fault-tolerance for HPC 29/ 129

http://scalablecr.sourceforge.net

Intro Checkpointing ABFT Silent Errors Conclusion

Coordinated checkpointing

orphan

orphan

missing

Definition (Missing Message)

A message is missing if in the current configuration, the sender
sent it, while the receiver did not receive it

Yves.Robert@inria.fr Fault-tolerance for HPC 30/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Coordinated checkpointing

orphan

orphan

missing

Definition (Orphan Message)

A message is orphan if in the current configuration, the receiver
received it, while the sender did not send it

Yves.Robert@inria.fr Fault-tolerance for HPC 31/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Coordinated checkpointing

Create a consistent view of the application (no orphan messages)

Messages belong to a checkpoint wave or another

All communication channels must be flushed (all2all)

Yves.Robert@inria.fr Fault-tolerance for HPC 32/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Coordinated checkpointing

App. Message Marker Message

Silences the network during checkpoint

Missing messages recorded

Yves.Robert@inria.fr Fault-tolerance for HPC 33/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction

2 Checkpointing
Coordinated checkpointing
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 34/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Periodic checkpointing

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed

Yves.Robert@inria.fr Fault-tolerance for HPC 35/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors and MTBF µ = µind

p

coordinated checkpointing
tightly-coupled application
progress ⇔ all processors available

⇒ platform = single (powerful, unreliable) processor ,

Waste: fraction of time not spent for useful computations

Yves.Robert@inria.fr Fault-tolerance for HPC 36/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste in fault-free execution

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFF = Timebase + #checkpoints × C

#checkpoints =

⌈
Timebase

T − C

⌉
≈ Timebase

T − C
(valid for large jobs)

Waste[FF] =
TimeFF −Timebase

TimeFF
=

C

T

Yves.Robert@inria.fr Fault-tolerance for HPC 37/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost per failure

Nfaults =
Timefinal

µ

Tlost?

Yves.Robert@inria.fr Fault-tolerance for HPC 38/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost per failure

Nfaults =
Timefinal

µ

Tlost?

Yves.Robert@inria.fr Fault-tolerance for HPC 38/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Computing Tlost

T

CT − CRDTlost

P1

P0

P3

P2

Time spent working Time spent checkpointing

Recovery timeDowntime Time

Tlost = D + R +
T

2

Rationale
⇒ Instants when periods begin and failures strike are independent
⇒ Approximation used for all distribution laws
⇒ Exact for Exponential and uniform distributions

Yves.Robert@inria.fr Fault-tolerance for HPC 39/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste due to failures

Timefinal = TimeFF + Nfaults × Tlost

Waste[fail] =
Timefinal −TimeFF

Timefinal
=

1

µ

(
D + R +

T

2

)

Yves.Robert@inria.fr Fault-tolerance for HPC 40/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Total waste

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

Waste =
Timefinal −Timebase

Timefinal

1−Waste = (1−Waste[FF])(1−Waste[fail])

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)

Yves.Robert@inria.fr Fault-tolerance for HPC 41/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste minimization

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
Waste =

u

T
+ v + wT

u = C
(
1− D + R

µ

)
v =

D + R − C/2

µ
w =

1

2µ

Waste minimized for T =
√

u
w

T =
√

2(µ− (D + R))C

Yves.Robert@inria.fr Fault-tolerance for HPC 42/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Comparison with Young/Daly

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

(
1−Waste[fail]

)
Timefinal = TimeFF

⇒ T =
√

2(µ− (D + R))C

Daly: Timefinal =
(
1 + Waste[fail]

)
TimeFF

⇒ T =
√

2(µ+ (D + R))C + C

Young: Timefinal =
(
1 + Waste[fail]

)
TimeFF and D = R = 0

⇒ T =
√

2µC + C

Yves.Robert@inria.fr Fault-tolerance for HPC 43/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Validity of the approach (1/3)

Technicalities

E (Nfaults) = Timefinal
µ and E (Tlost) = D + R + T

2
but expectation of product is not product of expectations
(not independent RVs here)

Enforce C ≤ T to get Waste[FF] ≤ 1

Enforce D + R ≤ µ and bound T to get Waste[fail] ≤ 1
but µ = µind

p too small for large p, regardless of µind

Yves.Robert@inria.fr Fault-tolerance for HPC 44/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Validity of the approach (2/3)

Several failures within same period?

Waste[fail] accurate only when two or more faults do not
take place within same period

Cap period: T ≤ γµ, where γ is some tuning parameter

Poisson process of parameter θ = T
µ

Probability of having k ≥ 0 failures : P(X = k) = θk

k! e
−θ

Probability of having two or more failures:
π = P(X ≥ 2) = 1− (P(X = 0) +P(X = 1)) = 1− (1 +θ)e−θ

γ = 0.27 ⇒ π ≤ 0.03
⇒ overlapping faults for only 3% of checkpointing segments

Yves.Robert@inria.fr Fault-tolerance for HPC 45/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Validity of the approach (3/3)

Enforce T ≤ γµ, C ≤ γµ, and D + R ≤ γµ

Optimal period
√

2(µ− (D + R))C may not belong to
admissible interval [C , γµ]

Waste is then minimized for one of the bounds of this
admissible interval (by convexity)

Yves.Robert@inria.fr Fault-tolerance for HPC 46/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Wrap up

Capping periods, and enforcing a lower bound on MTBF
⇒ mandatory for mathematical rigor /

Not needed for practical purposes ,
• actual job execution uses optimal value
• account for multiple faults by re-executing work until success

Approach surprisingly robust ,

Yves.Robert@inria.fr Fault-tolerance for HPC 47/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Waste[opt] ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Waste[opt] = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Waste[opt] = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Waste[opt] = 100%

Yves.Robert@inria.fr Fault-tolerance for HPC 48/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Waste[opt] ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Waste[opt] = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Waste[opt] = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Waste[opt] = 100%

Exascale 6= Petascale ×1000
Need more reliable components

Need to checkpoint faster

Yves.Robert@inria.fr Fault-tolerance for HPC 48/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Waste[opt] ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Waste[opt] = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Waste[opt] = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Waste[opt] = 100%

Silent errors:

detection latency ⇒ additional problems

Yves.Robert@inria.fr Fault-tolerance for HPC 48/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction

2 Checkpointing
Coordinated checkpointing
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 49/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Exponential failure distribution

1 Expected execution time for a single chunk

2 Expected execution time for a sequential job

3 Expected execution time for a parallel job

Yves.Robert@inria.fr Fault-tolerance for HPC 50/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

E(T (W)) =

Yves.Robert@inria.fr Fault-tolerance for HPC 51/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

of success

Probability

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@inria.fr Fault-tolerance for HPC 51/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach
Time needed

the work W and

to compute

checkpoint it

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@inria.fr Fault-tolerance for HPC 51/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Probability of failure

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

+

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@inria.fr Fault-tolerance for HPC 51/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time elapsed

before failure

stroke

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@inria.fr Fault-tolerance for HPC 51/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time needed

to perform

downtime

and recovery

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@inria.fr Fault-tolerance for HPC 51/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time needed

to compute W

anew

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@inria.fr Fault-tolerance for HPC 51/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Computation of E(T (W ,C ,D,R , λ))

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

Psuc(W + C) = e−λ(W+C)

E(Tlost(W + C)) =
∫∞

0
xP(X = x |X <W + C)dx = 1

λ −
W+C

eλ(W+C)−1

E(Trec) = e−λR(D+R)+(1−e−λR)(D+E(Tlost(R))+E(Trec))

E(T (W ,C ,D,R, λ)) = eλR
(

1
λ + D

)
(eλ(W+C) − 1)

Yves.Robert@inria.fr Fault-tolerance for HPC 52/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Checkpointing a sequential job

E(T (W)) = eλR
(

1
λ + D

) (∑K
i=1 e

λ(Wi+C) − 1)

Optimal strategy uses same-size chunks (convexity)

K0 = λW
1+L(−e−λC−1)

where L(z)eL(z) = z (Lambert function)

Optimal number of chunks K ∗ is max(1, bK0c) or dK0e

Eopt(T (W)) = K ∗
(
eλR

(
1

λ
+ D

))(
eλ(W

K∗ +C)−1
)

Can also use Daly’s second-order approximation

Yves.Robert@inria.fr Fault-tolerance for HPC 53/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Checkpointing a parallel job

p processors ⇒ distribution Exp(λp), where λp = pλ

Use W (p), C (p), R(p) in Eopt(T (W)) for a distribution
Exp(λp = pλ)

Job types

Perfectly parallel jobs: W (p) = W /p.
Generic parallel jobs: W (p) = W /p + δW
Numerical kernels: W (p) = W /p + δW 2/3/

√
p

Checkpoint overhead

Proportional overhead: C (p) = R(p) = δV /p = C/p
(bandwidth of processor network card/link is I/O bottleneck)
Constant overhead: C (p) = R(p) = δV = C
(bandwidth to/from resilient storage system is I/O bottleneck)

Yves.Robert@inria.fr Fault-tolerance for HPC 54/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Weibull failure distribution

No optimality result known

Heuristic: maximize expected work before next failure

Dynamic programming algorithms
- Use a time quantum
- Trim history of previous failures

Yves.Robert@inria.fr Fault-tolerance for HPC 55/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction

2 Checkpointing
Coordinated checkpointing
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 56/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Hierarchical checkpointing

Clusters of processes

Coordinated checkpointing
protocol within clusters

Message logging protocols
between clusters

Only processors from failed group
need to roll back

P0

P1

P2

P3

m1

m2

m3

m4

m5

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Faster re-execution with logged messages

Yves.Robert@inria.fr Fault-tolerance for HPC 57/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Which checkpointing protocol to use?

Coordinated checkpointing

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

/ Rumor: May not scale to very large platforms

Hierarchical checkpointing

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Only processors from failed group need to roll back

, Faster re-execution with logged messages

, Rumor: Should scale to very large platforms

Yves.Robert@inria.fr Fault-tolerance for HPC 58/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Blocking vs. non-blocking

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: checkpointing blocks all computations

Yves.Robert@inria.fr Fault-tolerance for HPC 59/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Blocking vs. non-blocking

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

Non-blocking model: checkpointing has no impact on
computations (e.g., first copy state to RAM, then copy RAM to
disk)

Yves.Robert@inria.fr Fault-tolerance for HPC 59/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Blocking vs. non-blocking

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: checkpointing slows computations down: during
a checkpoint of duration C , the same amount of computation is
done as during a time αC without checkpointing (0 ≤ α ≤ 1)

Yves.Robert@inria.fr Fault-tolerance for HPC 59/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste in fault-free execution

T

CT − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Time elapsed since last checkpoint: T

Amount of computations executed: Work = (T − C) + αC

Waste[FF] = T−Work
T

Yves.Robert@inria.fr Fault-tolerance for HPC 60/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste due to failures

P0

P3

P2

P1

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Failure can happen

1 During computation phase

2 During checkpointing phase

Yves.Robert@inria.fr Fault-tolerance for HPC 60/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste due to failures

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Yves.Robert@inria.fr Fault-tolerance for HPC 60/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste due to failures

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Yves.Robert@inria.fr Fault-tolerance for HPC 60/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste due to failures

Tlost

P1

P3

P0

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Coordinated checkpointing protocol: when one processor is victim
of a failure, all processors lose their work and must roll back to last
checkpoint

Yves.Robert@inria.fr Fault-tolerance for HPC 60/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste due to failures in computation phase

D

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Downtime Time

Yves.Robert@inria.fr Fault-tolerance for HPC 60/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste due to failures in computation phase

R

P2

P1

P3

P0

Time spent checkpointingTime spent working Time spent working with slowdown

Recovery timeDowntime Time

Coordinated checkpointing protocol: all processors must recover
from last checkpoint

Yves.Robert@inria.fr Fault-tolerance for HPC 60/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste due to failures in computation phase

C αC

P3

P2

P1

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-execution is
faster than the original computation

Yves.Robert@inria.fr Fault-tolerance for HPC 60/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste due to failures in computation phase

T − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Re-execute the computation phase

Yves.Robert@inria.fr Fault-tolerance for HPC 60/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Waste due to failures in computation phase

C

P3

P2

P1

P0

Time spent checkpointingTime spent working Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Finally, the checkpointing phase is executed

Yves.Robert@inria.fr Fault-tolerance for HPC 60/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Total waste

∆

αC CT − CRDTlost

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime

T

Time

Waste[fail] =
1

µ

(
D + R + αC +

T

2

)
Optimal period Topt =

√
2(1− α)(µ− (D + R + αC))C

Yves.Robert@inria.fr Fault-tolerance for HPC 60/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Hierarchical checkpointing

T

α(G−g+1)C

RD G .C

T−G .C−Tlost

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Processors partitioned into G groups

Each group includes q processors

Inside each group: coordinated checkpointing in time C (q)

Inter-group messages are logged

Yves.Robert@inria.fr Fault-tolerance for HPC 61/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Accounting for message logging: Impact on work

/ Logging messages slows down execution:
⇒ Work becomes λWork, where 0 < λ < 1
Typical value: λ ≈ 0.98

, Re-execution after a failure is faster:
⇒ Re-Exec becomes Re-Exec

ρ , where ρ ∈ [1..2]
Typical value: ρ ≈ 1.5

Waste[FF] =
T − λWork

T

Waste[fail] =
1

µ

(
D(q) + R(q) +

Re-Exec

ρ

)

Yves.Robert@inria.fr Fault-tolerance for HPC 62/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Accounting for message logging: Impact on checkpoint size

Inter-groups messages logged continuously

Checkpoint size increases with amount of work executed
before a checkpoint /
C0(q): Checkpoint size of a group without message logging

C (q) = C0(q)(1 + βWork)⇔ β =
C (q)− C0(q)

C0(q)Work

Work = λ(T − (1− α)GC (q))

C (q) =
C0(q)(1 + βλT)

1 + GC0(q)βλ(1− α)

Yves.Robert@inria.fr Fault-tolerance for HPC 63/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Three case studies

Coord-IO
Coordinated approach: C = CMem = Mem

bio

where Mem is the memory footprint of the application

Hierarch-IO
Several (large) groups, I/O-saturated
⇒ groups checkpoint sequentially

C0(q) =
CMem

G
=

Mem

Gbio

Hierarch-Port
Very large number of smaller groups, port-saturated
⇒ some groups checkpoint in parallel
Groups of qmin processors, where qminbport ≥ bio

Yves.Robert@inria.fr Fault-tolerance for HPC 64/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Three applications

1 2D-stencil

2 Matrix product
3 3D-Stencil

Plane
Line

Yves.Robert@inria.fr Fault-tolerance for HPC 65/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Computing β for 2D-Stencil

C (q) = C0(q) + Logged Msg = C0(q)(1 + βWork)

Real n × n matrix and p × p grid
Work = 9b2

sp
, b = n/p

Each process sends a block to its 4 neighbors

Hierarch-IO:

1 group = 1 grid row

2 out of the 4 messages are logged

β = Logged Msg
C0(q)Work = 2pb

pb2(9b2/sp)
=

2sp
9b3

Hierarch-Port:

β doubles

Yves.Robert@inria.fr Fault-tolerance for HPC 66/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Four platforms: basic characteristics

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth (bport)
cores processors ptotal per processor per processor Read Write Read/Write per processor

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s

Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s

Name Scenario G (C (q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407

Yves.Robert@inria.fr Fault-tolerance for HPC 67/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Checkpoint time

Name C

K-Computer 14,688s

Exascale-Slim 64,000

Exascale-Fat 64,000

Large time to dump the memory

Using 1%C

Comparing with 0.1%C for exascale platforms

α = 0.3, λ = 0.98 and ρ = 1.5

Yves.Robert@inria.fr Fault-tolerance for HPC 68/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Plotting formulas – Platform: Titan

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind

Yves.Robert@inria.fr Fault-tolerance for HPC 69/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind

Yves.Robert@inria.fr Fault-tolerance for HPC 70/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Yves.Robert@inria.fr Fault-tolerance for HPC 71/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Goodbye Exascale?!

Yves.Robert@inria.fr Fault-tolerance for HPC 71/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Plotting formulas – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µind , C = 1, 000

Yves.Robert@inria.fr Fault-tolerance for HPC 72/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Plotting formulas – Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µind , C = 100

Yves.Robert@inria.fr Fault-tolerance for HPC 73/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Simulations – Platform: Titan

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100
M

ak
es

p
an

 (
d
ay

s)
MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k
e
s
p
a
n

(
d
a
y
s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k
e
s
p
a
n

(
d
a
y
s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind

Yves.Robert@inria.fr Fault-tolerance for HPC 74/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Simulations – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d

ay
s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
S

lim

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
F

at

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind , C = 1, 000

Yves.Robert@inria.fr Fault-tolerance for HPC 75/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Simulations – Platform: Exascale with C = 100

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d

ay
s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
S

lim

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
F

at

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated Daly
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind , C = 100

Yves.Robert@inria.fr Fault-tolerance for HPC 76/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction

2 Checkpointing
Coordinated checkpointing
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 77/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Motivation

Checkpoint transfer and storage
⇒ critical issues of rollback/recovery protocols

Stable storage: high cost

Distributed in-memory storage:

Store checkpoints in local memory ⇒ no centralized storage
, Much better scalability
Replicate checkpoints ⇒ application survives single failure
/ Still, risk of fatal failure in some (unlikely) scenarios

Yves.Robert@inria.fr Fault-tolerance for HPC 78/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Double checkpoint algorithm (Kale et al., UIUC)

1

1

d q s

f

f

P

Local checkpoint
done

Remote checkpoint
done

Period
done

Node p

Node p'

Platform nodes partitioned into pairs

Each node in a pair exchanges its checkpoint with its buddy

Each node saves two checkpoints:
- one locally: storing its own data
- one remotely: receiving and storing its buddy’s data

Yves.Robert@inria.fr Fault-tolerance for HPC 79/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Best trade-off between performance and risk?

Yves.Robert@inria.fr Fault-tolerance for HPC 80/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Application at risk until complete reception of both messages

Best trade-off between performance and risk?

Yves.Robert@inria.fr Fault-tolerance for HPC 80/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction

2 Checkpointing
Coordinated checkpointing
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 81/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Framework

Predictor

Exact prediction dates (at least C seconds in advance)

Recall r : fraction of faults that are predicted

Precision p: fraction of fault predictions that are correct

Events

true positive: predicted faults

false positive: fault predictions that did not materialize as
actual faults

false negative: unpredicted faults

Yves.Robert@inria.fr Fault-tolerance for HPC 82/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Fault rates

µ: mean time between failures (MTBF)

µP mean time between predicted events (both true positive
and false positive)

µNP mean time between unpredicted faults (false negative).

µe : mean time between events (including three event types)

r =
TrueP

TrueP + FalseN
and p =

TrueP
TrueP + FalseP

(1− r)

µ
=

1

µNP
and

r

µ
=

p

µP

1

µe
=

1

µP
+

1

µNP

Yves.Robert@inria.fr Fault-tolerance for HPC 83/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Example

fault fault fault fault fault

pred. pred. pred. pred. pred. pred.

Time

F+P F+P
pred.

F+P
pred.

F+P
fault

t

Actual faults:

Predictor:

Overlap:

Predictor predicts six faults in time t

Five actual faults. One fault not predicted

µ = t
5 , µP = t

6 , and µNP = t

Recall r = 4
5 (green arrows over red arrows)

Precision p = 4
6 (green arrows over blue arrows)

Yves.Robert@inria.fr Fault-tolerance for HPC 84/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Algorithm

1 While no fault prediction is available:
• checkpoints taken periodically with period T

2 When a fault is predicted at time t:
• take a checkpoint ALAP (completion right at time t)
• after the checkpoint, complete the execution of the period

Yves.Robert@inria.fr Fault-tolerance for HPC 85/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Computing the waste

1 Fault-free execution: Waste[FF] = C
T

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

2 Unpredicted faults: 1
µNP

[
D + R + T

2

]
TimeT -C T -C Tlost T -C

fault

C C C D R C

Yves.Robert@inria.fr Fault-tolerance for HPC 86/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Computing the waste

3 Predictions: 1
µP

[p(C + D + R) + (1− p)C]

TimeT -C Wreg

fault Predicted fault

T -Wreg -C T -C

C C Cp D R C C

with actual fault (true positive)

TimeT -C Wreg

Predicted fault

T -Wreg -C T -C T -C

C C Cp C C C

no actual fault (false negative)

Waste[fail] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r

Yves.Robert@inria.fr Fault-tolerance for HPC 86/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Refinements

Use different value Cp for proactive checkpoints

Avoid checkpointing too frequently for false negatives
⇒ Only trust predictions with some fixed probability q
⇒ Ignore predictions with probability 1− q
Conclusion: trust predictor always or never (q = 0 or q = 1)

Trust prediction depending upon position in current period
⇒ Increase q when progressing
⇒ Break-even point

Cp

p

Yves.Robert@inria.fr Fault-tolerance for HPC 87/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

With prediction windows

TimeTR-C TR-C Tlost TR-C

fault
(Regular mode)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TP-Cp TR-C
-Wreg

(Prediction without failure)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TR-C
-Wreg

fault
(Prediction with failure)

C C C D R C

C C Cp Cp Cp Cp C

C C Cp Cp Cp D R C

Gets too complicated! /

Yves.Robert@inria.fr Fault-tolerance for HPC 88/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction

2 Checkpointing
Coordinated checkpointing
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 89/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Replication

Systematic replication: efficiency < 50%

Can replication+checkpointing be more efficient than
checkpointing alone?

Study by Ferreira et al. [SC’2011]: yes

Yves.Robert@inria.fr Fault-tolerance for HPC 90/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Model by Ferreira et al. [SC’ 2011]

Parallel application comprising N processes

Platform with ptotal = 2N processors

Each process replicated → N replica-groups

When a replica is hit by a failure, it is not restarted

Application fails when both replicas in one replica-group have
been hit by failures

Yves.Robert@inria.fr Fault-tolerance for HPC 91/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Example

p1

p2

p1

p2

p1

p2

p1

p2

Time

Pair1

Pair2

Pair3

Pair4

Yves.Robert@inria.fr Fault-tolerance for HPC 92/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

The birthday problem

Classical formulation
What is the probability, in a set of m people, that two of them
have same birthday ?

Relevant formulation
What is the average number of people required to find a pair with
same birthday?

Birthday(m) = 1 +
∫ +∞

0 e−x(1 + x/m)m−1dx = 2
3 +

√
πm
2 +

√
π

288m −
4

135m + . . .

The analogy

Two people with same birthday
≡

Two failures hitting same replica-group

Yves.Robert@inria.fr Fault-tolerance for HPC 93/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure

Yves.Robert@inria.fr Fault-tolerance for HPC 94/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure

Yves.Robert@inria.fr Fault-tolerance for HPC 94/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure: can failed PE be hit?

Yves.Robert@inria.fr Fault-tolerance for HPC 94/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

Yves.Robert@inria.fr Fault-tolerance for HPC 94/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

Yves.Robert@inria.fr Fault-tolerance for HPC 94/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

Yves.Robert@inria.fr Fault-tolerance for HPC 94/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

Yves.Robert@inria.fr Fault-tolerance for HPC 94/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

Yves.Robert@inria.fr Fault-tolerance for HPC 94/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

Yves.Robert@inria.fr Fault-tolerance for HPC 94/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

Suppose failure hits replica-group i
If failure hits failed PE: application survives
If failure hits running PE: application killed
Not all failures hitting the same replica-group are equal:
this is not the birthday problem

Yves.Robert@inria.fr Fault-tolerance for HPC 94/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

Suppose failure hits replica-group i
If failure hits failed PE: application survives
If failure hits running PE: application killed
Not all failures hitting the same replica-group are equal:
this is not the birthday problem

Yves.Robert@inria.fr Fault-tolerance for HPC 94/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

Suppose failure hits replica-group i
If failure hits failed PE: application survives
If failure hits running PE: application killed
Not all failures hitting the same replica-group are equal:
this is not the birthday problem

Yves.Robert@inria.fr Fault-tolerance for HPC 94/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Correct analogy

� � � � . . . �
1 2 3 4 . . . n

⇑
• • • • • • • • • • • . . .

N = nrg bins, red and blue balls

Mean Number of Failures to Interruption (bring down application)
MNFTI = expected number of balls to throw

until one bin gets one ball of each color

Yves.Robert@inria.fr Fault-tolerance for HPC 95/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Number of failures to bring down application

MNFTI ah Count each failure hitting any of the initial
processors, including those already hit by a failure

MNFTI rp Count failures that hit running processors, and thus
effectively kill replicas.

MNFTI ah = 1 + MNFTI rp

Yves.Robert@inria.fr Fault-tolerance for HPC 96/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Number of failures to bring down application

MNFTI ah Count each failure hitting any of the initial
processors, including those already hit by a failure

MNFTI rp Count failures that hit running processors, and thus
effectively kill replicas.

MNFTI ah = 1 + MNFTI rp

Yves.Robert@inria.fr Fault-tolerance for HPC 96/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Exponential failures

Theorem MNFTI ah = E(NFTI ah|0) where

E(NFTI ah|nf) =

{
2 if nf = nrg ,

2nrg
2nrg−nf +

2nrg−2nf
2nrg−nf E

(
NFTI ah|nf + 1

)
otherwise.

E(NFTI ah|nf): expectation of number of failures to kill
application, knowing that
• application is still running
• failures have already hit nf different replica-groups

Yves.Robert@inria.fr Fault-tolerance for HPC 97/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Exponential failures (cont’d)

Proof

E
(
NFTI ah |nrg

)
=

1

2
× 1 +

1

2
×
(

1 + E
(
NFTI ah |nrg

))
.

E
(
NFTI ah|nf

)
=

2nrg − 2nf
2nrg

×
(

1 + E
(
NFTI ah|nf + 1

))
+

2nf
2nrg

×
(

1

2
× 1 +

1

2

(
1 + E

(
NFTI ah|nf

)))
.

MTTI = systemMTBF (2nrg)× MNFTI ah

Yves.Robert@inria.fr Fault-tolerance for HPC 98/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Exponential failures (cont’d)

Proof

E
(
NFTI ah |nrg

)
=

1

2
× 1 +

1

2
×
(

1 + E
(
NFTI ah |nrg

))
.

E
(
NFTI ah|nf

)
=

2nrg − 2nf
2nrg

×
(

1 + E
(
NFTI ah|nf + 1

))
+

2nf
2nrg

×
(

1

2
× 1 +

1

2

(
1 + E

(
NFTI ah|nf

)))
.

MTTI = systemMTBF (2nrg)× MNFTI ah

Yves.Robert@inria.fr Fault-tolerance for HPC 98/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Exponential failures (cont’d)

Proof

E
(
NFTI ah |nrg

)
=

1

2
× 1 +

1

2
×
(

1 + E
(
NFTI ah |nrg

))
.

E
(
NFTI ah|nf

)
=

2nrg − 2nf
2nrg

×
(

1 + E
(
NFTI ah|nf + 1

))
+

2nf
2nrg

×
(

1

2
× 1 +

1

2

(
1 + E

(
NFTI ah|nf

)))
.

MTTI = systemMTBF (2nrg)× MNFTI ah

Yves.Robert@inria.fr Fault-tolerance for HPC 98/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Comparison

2N processors, no replication

ThroughputStd = 2N(1−Waste) = 2N
(

1−
√

2C
µ2N

)
N replica-pairs

ThroughputRep = N
(

1−
√

2C
µrep

)
µrep = MNFTI × µ2N = MNFTI × µ

2N

Platform with 2N = 220 processors ⇒ MNFTI = 1284.4
µ = 10 years ⇒ better if C shorter than 6 minutes

Yves.Robert@inria.fr Fault-tolerance for HPC 99/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Failure distribution

221218 219216 217 220215

number of processors

0

50

100

150

200

av
er

ag
e

m
ak

es
pa

n
(i

n
da

ys
)

BestPeriod-g = 2
BestPeriod-g = 1
Daly-g = 2
Daly-g = 1

(a) Exponential

221218 219216 217 220215

number of processors

0

50

100

150

200

av
er

ag
e

m
ak

es
pa

n
(i

n
da

ys
)

BestPeriod-g = 2
BestPeriod-g = 1
Daly-g = 2
Daly-g = 1

(b) Weibull, k = 0.7

Crossover point for replication when µind = 125 years

Yves.Robert@inria.fr Fault-tolerance for HPC 100/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Weibull distribution with k = 0.7

Dashed line: Ferreira et al. Solid line: Correct analogy

101 100

Processor MTBF (in years)

0

200000

400000

600000

800000

1000000
N

um
b

er
of

pr
o

ce
ss

or
s

C = 300

C = 2400
C = 1200
C = 900
C = 600

C = 150

Study by Ferrreira et al. favors replication

Replication beneficial if small µ + large C + big ptotal

Yves.Robert@inria.fr Fault-tolerance for HPC 101/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction

2 Checkpointing

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 102/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Forward-Recovery

Backward Recovery

Rollback / Backward Recovery: returns in the history to
recover from failures.

Spends time to re-execute computations

Rebuilds states already reached

Typical: checkpointing techniques

Yves.Robert@inria.fr Fault-tolerance for HPC 103/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Forward-Recovery

Forward Recovery

Forward Recovery: proceeds without returning.

Pays additional costs during (failure-free) computation to
maintain consistent redundancy

Or pays additional computations when failures happen

General technique: Replication

Application-Specific techniques: Iterative algorithms with
fixed point convergence, ABFT, ...

Yves.Robert@inria.fr Fault-tolerance for HPC 103/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Tiled LU factorization

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2
1 3
0 2
1 3
0 2
1 3
0 2
1 3

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2
1 3
0 2
1 3
0 2
1 3
0 2
1 3

Failure of rank 2

2D Block Cyclic Distribution (here 2× 3)

A single failure ⇒ many data lost

Yves.Robert@inria.fr Fault-tolerance for HPC 104/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Algorithm Based Fault Tolerant LU decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

GETF2 GEMM

TRSM

Checksum: invertible operation on row/column data

Key idea of ABFT: applying the operation on data and
checksum preserves the checksum properties

Yves.Robert@inria.fr Fault-tolerance for HPC 105/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Performance

As supercomputers grow ever larger in scale, the Mean Time to Failure becomes shorter and shorter, making the complete and
successful execution of complex applications more and more difficult. FT-LA delivers a new approach, utilizing Algorithm-Based
Fault Tolerance (ABFT), to help factorization algorithms survive fail-stop failures. The FT-LA software package extends
ScaLAPACK with ABFT routines, and in sharp contrast with legacy checkpoint-based approaches, ABFT does not incur I/O overhead,
and promises a much more scalable protection scheme.

ABFT THE IDEA

Cost of ABFT comes only from
extra flops (to update checksums)
and extra storage

Cost decreases with machine
scale (divided by Q when using
PxQ processes)

PROTECTION

Matrix protected by block row checksum

The algorithm updates both the
trailing matrix AND the checksums

RECOVERY

Missing blocks reconstructed by inverting
the checksum operation

FUNCTIONALITY COVERAGE

Linear Systems of Equations

Least Squares

Cholesky, LU

QR (with protection of the upper and lower factors)

FEATURES

WORK IN PROGRESS

Covering four precisions: double complex, single complex, double real, single real (ZCDS)

Deploys on MPI FT draft (ULFM), or with “Checkpoint-on-failure”

Allows toleration of permanent crashes

Hessenber Reduction, Soft (silent) Errors

Process grid: p x q
F: simultaneous failures tolerated

Protection against 2 faults on
192x192 processes => 1% overhead

Usually F << q;
Overheads in F/q

Protection cost is inversely
proportional to machine scale!

Computation

Memory

Flops for the checksum update

Matrix is extended with
2F columns every q columns

FIND OUT MORE AT http://icl.cs.utk.edu/ft-la

 0

 7

 14

 21

 28

 35

6x6; 20k
12x12; 40k

24x24; 80k
48x48; 160k

96x96; 320k
192x192; 640k 0

 10

 20

 30

 40

 50

Re
la

tiv
e

Ov
er

he
ad

 (%
)

Pe
rfo

rm
an

ce
 (T

Fl
op

/s
)

#Processors (PxQ grid); Matrix size (N)

ScaLAPACK PDGETRF
FT-PDGETRF (no error)

FT-PDGETRF (w/1 recovery)
Overhead: FT-PDGETRF (no error)

Overhead: FT-PDGETRF (w/1 recovery)

U

L

C’

GETF2 GEMM

TRSM

A’

L

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

C

PERFORMANCE ON KRAKEN

MPI-Next ULFM Performance

Open MPI with ULFM; Kraken supercomputer;

Yves.Robert@inria.fr Fault-tolerance for HPC 106/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction

2 Checkpointing

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 107/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Definitions

Instantaneous error detection ⇒ fail-stop failures,
e.g. resource crash

Silent errors (data corruption) ⇒ detection latency

Silent error detected only when the corrupt data is activated

Includes some software faults, some hardware errors (soft
errors in L1 cache), double bit flip

Cannot always be corrected by ECC memory

Yves.Robert@inria.fr Fault-tolerance for HPC 108/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Quotes

Soft Error: An unintended change in the state of an electronic
device that alters the information that it stores without
destroying its functionality, e.g. a bit flip caused by a
cosmic-ray-induced neutron. (Hengartner et al., 2008)

SDC occurs when incorrect data is delivered by a computing
system to the user without any error being logged (Cristian
Constantinescu, AMD)

Silent errors are the black swan of errors (Marc Snir)

Yves.Robert@inria.fr Fault-tolerance for HPC 109/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Should we be afraid? (courtesy Al Geist)

Yves.Robert@inria.fr Fault-tolerance for HPC 110/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Probability distributions for silent errors

?
Theorem: µp =

µind

p
for arbitrary distributions

Yves.Robert@inria.fr Fault-tolerance for HPC 111/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Probability distributions for silent errors

?
Theorem: µp =

µind

p
for arbitrary distributions

Yves.Robert@inria.fr Fault-tolerance for HPC 111/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

General-purpose approach

TimeXe Xd

fault Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Saving k checkpoints (Lu, Zheng and Chien):

¬ Critical failure when all live checkpoints are invalid
­ Which checkpoint to roll back to?

Yves.Robert@inria.fr Fault-tolerance for HPC 112/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

General-purpose approach

TimeXe Xd

fault Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Saving k checkpoints (Lu, Zheng and Chien):

¬ Critical failure when all live checkpoints are invalid
Assume unlimited storage resources

­ Which checkpoint to roll back to?
Assume verification mechanism

Yves.Robert@inria.fr Fault-tolerance for HPC 112/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Limitation of the model

It is not clear how to detect when the error has occurred
(hence to identify the last valid checkpoint) / / /

Need a verification mechanism to check the correctness of the
checkpoints. This has an additional cost!

Yves.Robert@inria.fr Fault-tolerance for HPC 113/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Coupling checkpointing and verification

Verification mechanism of cost V

Silent errors detected only when verification is executed

Approach agnostic of the nature of verification mechanism
(checksum, error correcting code, coherence tests, etc)

Fully general-purpose
(application-specific information, if available, can always be
used to decrease V)

Yves.Robert@inria.fr Fault-tolerance for HPC 114/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

On-line ABFT scheme for PCG

Zizhong Chen, PPoPP’13

Iterate PCG
Cost: SpMV, preconditioner
solve, 5 linear kernels

Detect soft errors by checking
orthogonality and residual

Verification every d iterations
Cost: scalar product+SpMV

Checkpoint every c iterations
Cost: three vectors, or two
vectors + SpMV at recovery

Experimental method to
choose c and d

Yves.Robert@inria.fr Fault-tolerance for HPC 115/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Base pattern (and revisiting Young/Daly)

TimeW W

fault
Detection

V C V C V C

Fail-stop (classical) Silent errors

Pattern T = W + C S = W + V + C

Waste[FF] C
T

V+C
S

Waste[fail] 1
µ(D + R + W

2) 1
µ(R + W + V)

Optimal Topt =
√

2Cµ Sopt =
√

(C + V)µ

Waste[opt]
√

2C
µ 2

√
C+V
µ

Yves.Robert@inria.fr Fault-tolerance for HPC 116/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

With p = 1 checkpoint and q = 3 verifications

Timew w w w w w

fault
Detection

V C V V V C V V V C

Base Pattern p = 1, q = 1 Waste[opt] = 2
√

C+V
µ

New Pattern p = 1, q = 3 Waste[opt] = 2
√

4(C+3V)
6µ

Yves.Robert@inria.fr Fault-tolerance for HPC 117/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

BalancedAlgorithm

Time2w 2w w w 2w 2w

V C V V C V V V C

p checkpoints and q verifications, p ≤ q

p = 2, q = 5, S = 2C + 5V + W

W = 10w , six chunks of size w or 2w

May store invalid checkpoint (error during third chunk)

After successful verification in fourth chunk, preceding
checkpoint is valid

Keep only two checkpoints in memory and avoid any fatal
failure

Yves.Robert@inria.fr Fault-tolerance for HPC 118/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

BalancedAlgorithm

Time2w 2w w w 2w 2w

V C V V C V V V C

¬ (proba 2w/W) Tlost = R + 2w + V

­ (proba 2w/W) Tlost = R + 4w + 2V

® (proba w/W) Tlost = 2R + 6w + C + 4V

¯ (proba w/W) Tlost = R + w + 2V

° (proba 2w/W) Tlost = R + 3w + 2V

± (proba 2w/W) Tlost = R + 5w + 3V

Waste[opt] ≈ 2

√
7(2C + 5V)

20µ

Yves.Robert@inria.fr Fault-tolerance for HPC 119/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Results

Time2w 2w w w 2w 2w

V C V V C V V V C

BalancedAlgorithm optimal when C ,R,V � µ

Keep only 2 checkpoints in memory/storage

Closed-form formula for Waste[opt]

Given C and V , choose optimal pattern

Gain of up to 20% over base pattern

Yves.Robert@inria.fr Fault-tolerance for HPC 120/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Application-specific methods

ABFT: dense matrices / fail-stop, extended to sparse / silent.
Limited to one error detection and/or correction in practice

Asynchronous (chaotic) iterative methods (old work)

Partial differential equations: use lower-order scheme as
verification mechanism (detection only, Benson, Schmit and
Schreiber)

FT-GMRES: inner-outer iterations (Hoemmen and Heroux)

PCG: orthogonalization check every k iterations,
re-orthogonalization if problem detected (Sao and Vuduc)

. . . Many others

Yves.Robert@inria.fr Fault-tolerance for HPC 121/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Dynamic programming for linear chains of tasks

{T1,T2, . . . ,Tn} : linear chain of n tasks

Each task Ti fully parametrized:

wi computational weight
Ci ,Ri ,Vi : checkpoint, recovery, verification

Error rates:

λF rate of fail-stop errors
λS rate of silent errors

Yves.Robert@inria.fr Fault-tolerance for HPC 122/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

VC-only

1 i j

TimerecC (i , k − 1) TC (i + 1, j)

VC VC

min
0≤k<n

TimerecC (n, k)

TimerecC (j , k) = min
k≤i<j

{TimerecC (i , k − 1) + T SF
C (i + 1, j)}

T SF
C (i , j) = pFi ,j

(
Tlost i,j + Ri−1 + T SF

C (i , j)
)

+
(

1− pFi ,j

)(∑j
`=i w` + Vj + pSi ,j

(
Ri−1 + T SF

C (i , j)
)

+
(

1− pSi ,j

)
Cj

)

Yves.Robert@inria.fr Fault-tolerance for HPC 123/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Extensions

VC-only and VC+V

Different speeds with DVFS, different error rates

Different execution modes

Optimize for time or for energy consumption

Current research

Use verification to correct some errors (ABFT)

Imprecise verifications (a.k.a. recall and precision)

Yves.Robert@inria.fr Fault-tolerance for HPC 124/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Outline

1 Introduction

2 Checkpointing

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion

Yves.Robert@inria.fr Fault-tolerance for HPC 125/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

A few questions

Silent errors

Error rate? MTBE?

Selective reliability?

New algorithms beyond iterative? matrix-product, FFT, ...

Resilient research on resilience

Models needed to assess techniques at scale
without bias ,

Yves.Robert@inria.fr Fault-tolerance for HPC 126/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Conclusion

General Purpose Fault Tolerance

Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

Need combine all these approaches!

Several challenging algorithmic/scheduling problems ,

Extended version of this talk: see SC’14 tutorial. Available at
http://graal.ens-lyon.fr/~yrobert/

Yves.Robert@inria.fr Fault-tolerance for HPC 127/ 129

http://graal.ens-lyon.fr/~yrobert/

Intro Checkpointing ABFT Silent Errors Conclusion

Bibliography

Exascale
• Toward Exascale Resilience, Cappello F. et al., IJHPCA 23, 4 (2009)
• The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al.,
IJHPCA 25, 1 (2011)

ABFT Algorithm-based fault tolerance applied to high performance computing,
Bosilca G. et al., JPDC 69, 4 (2009)

Coordinated Checkpointing Distributed snapshots: determining global states of
distributed systems, Chandy K.M., Lamport L., ACM Trans. Comput. Syst. 3, 1
(1985)

Message Logging A survey of rollback-recovery protocols in message-passing systems,
Elnozahy E.N. et al., ACM Comput. Surveys 34, 3 (2002)

Replication Evaluating the viability of process replication reliability for exascale
systems, Ferreira K. et al, SC’2011

Models
• Checkpointing strategies for parallel jobs, Bougeret M. et al., SC’2011
• Unified model for assessing checkpointing protocols at extreme-scale, Bosilca G et
al., INRIA RR-7950, 2012

Yves.Robert@inria.fr Fault-tolerance for HPC 128/ 129

Intro Checkpointing ABFT Silent Errors Conclusion

Thanks

INRIA & ENS Lyon

Anne Benoit & Frédéric Vivien

PhD students (Guillaume Aupy, Aurélien Cavelan,
Hongyang Sun, Dounia Zaidouni)

Univ. Tennessee Knoxville

George Bosilca, Aurélien Bouteiller & Thomas Hérault
(joint tutorial at SC’14)

Jack Dongarra

Elsewhere

Franck Cappello & Marc Snir, Argonne National Lab.

Henri Casanova, Univ. Hawai‘i

Saurabh K. Raina, Jaypee IIT, Noida, India

Yves.Robert@inria.fr Fault-tolerance for HPC 129/ 129

	Introduction
	Large-scale computing platforms
	Faults and failures

	Checkpointing
	Coordinated checkpointing
	Young/Daly's approximation
	Exponential distributions
	Assessing protocols at scale
	In-memory checkpointing
	Failure Prediction
	Replication

	ABFT for dense linear algebra kernels
	Silent errors
	Conclusion

