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Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture 
with a cap of $200M and 20MW  
 Systems 2011 

K computer 
2019  Difference 

Today & 2019 

System peak 10.5 Pflop/s 1 Eflop/s O(100) 

Power 12.7 MW ~20 MW 

System memory 1.6 PB 32 - 64 PB O(10) 

Node performance 128 GF 1,2  or 15TF O(10) – O(100) 

Node memory BW 64 GB/s 2 - 4TB/s O(100) 

Node concurrency 8 O(1k) or 10k O(100) – O(1000) 

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10) 

System size (nodes) 88,124 O(100,000) or O(1M) O(10) – O(100) 

Total concurrency 705,024 O(billion) O(1,000) 

MTTI days O(1 day) - O(10) 
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Exascale platforms (courtesy C. Engelmann & S. Scott)
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Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)
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Even for today’s platforms (courtesy F. Cappello)
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Error sources (courtesy Franck Cappello)

•  Analysis of error and failure logs 

•  In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of 
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware 
problems, albeit rarer, need 6.3-100.7 hours to solve.” 

•  In 2007 (Garth Gibson, ICPP Keynote): 

•  In 2008 (Oliner and J. Stearley, DSN Conf.): 
50% 

Hardware 

Conclusion: Both Hardware and Software failures have to be considered 

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other. 

Hardware errors, Disks, processors, memory, network   
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A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Silent errors (SDC) addressed later in the presentation
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Failure distributions: (1) Exponential
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Exp(λ): Exponential distribution law of parameter λ:

Pdf: f (t) = λe−λtdt for t ≥ 0

Cdf: F (t) = 1− e−λt

Mean = 1
λ
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X random variable for Exp(λ) failure inter-arrival times:

P (X ≤ t) = 1− e−λtdt (by definition)

Memoryless property: P (X ≥ t + s |X ≥ s ) = P (X ≥ t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

Mean Time Between Failures (MTBF) µ = E (X ) = 1
λ
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Failure distributions: (2) Weibull
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Weibull(k, λ): Weibull distribution law of shape parameter k and
scale parameter λ:

Pdf: f (t) = kλ(tλ)k−1e−(λt)kdt for t ≥ 0

Cdf: F (t) = 1− e−(λt)k

Mean = 1
λΓ(1 + 1

k )
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Failure distributions: (2) Weibull
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X random variable for Weibull(k , λ) failure inter-arrival times:

If k < 1: failure rate decreases with time
”infant mortality”: defective items fail early

If k = 1: Weibull(1, λ) = Exp(λ) constant failure time
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Failure distributions: with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µ with one processor,
what is its value with p processors?

Well, it depends /
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With rejuvenation

Rebooting all p processors after a failure

Platform failure distribution
⇒ minimum of p IID processor distributions

With p distributions Exp(λ):

min
(
Exp(λ1),Exp(λ2)

)
= Exp(λ1 + λ2)

µ =
1

λ
⇒ µp =

µ

p

With p distributions Weibull(k, λ):

min
1..p

(
Weibull(k , λ)

)
= Weibull(k , p1/kλ)

µ =
1

λ
Γ(1 +

1

k
)⇒ µp =

µ

p1/k
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Without rejuvenation (= real life)

Rebooting only faulty processor

Platform failure distribution
⇒ superposition of p IID processor distributions
⇒ IID only for Exponential

Define µp by

lim
F→+∞

n(F )

F
=

1

µp

n(F ) = number of platform failures until time F is exceeded

Theorem: µp =
µ

p
for arbitrary distributions
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Intuition

Time

p1

p2

p3

t

If three processors have around 20 faults during a time t (µ = t
20 )...

Time

p

t

...during the same time, the platform has around 60 faults (µp = t
60 )
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MTBF with p processors (1/2)

Theorem: µp = µ
p for arbitrary distributions

With one processor:

n(F ) = number of failures until time F is exceeded

Xi iid random variables for inter-arrival times, with E (Xi ) = µ∑n(F )−1
i=1 Xi ≤ F ≤

∑n(F )
i=1 Xi

Wald’s equation: (E (n(F ))− 1)µ ≤ F ≤ E (n(F ))µ

limF→+∞
E(n(F ))

F = 1
µ
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MTBF with p processors (2/2)

Theorem: µp = µ
p for arbitrary distributions

With p processors:

n(F ) = number of platform failures until time F is exceeded

nq(F ) = number of those failures that strike processor q

nq(F ) + 1 = number of failures on processor q until time F is
exceeded (except for processor with last-failure)

limF→+∞
nq(F )
F = 1

µ as above

limF→+∞
n(F )
F = 1

µp
by definition

Hence µp = µ
p because n(F ) =

∑p
q=1 nq(F )
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A little digression for afficionados

Xi IID random variables for processor inter-arrival times

Assume Xi continuous, with E (Xi ) = µ

Yi random variables for platform inter-arrival times

Definition: µp
def
= limn→+∞

∑n
i E(Yi )
n

Limits always exists (superposition of renewal processes)

Theorem: µp = µ
p
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Values from the literature

MTBF of one processor: between 1 and 125 years

Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)
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Does it matter?
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After infant mortality and before aging,
instantaneous failure rate of computer platforms is almost constant
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Maintaining redundant information

Goal

General Purpose Fault Tolerance Techniques: work despite the
application behavior

Two adversaries: Failures & Application

Use automatically computed redundant information

At given instants: checkpoints
At any instant: replication
Or anything in between: checkpoint + message logging
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Process checkpointing

Goal

Save the current state of the process

FT Protocols save a possible state of the parallel application

Techniques

User-level checkpointing

System-level checkpointing

Blocking call

Asynchronous call
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System-level checkpointing

Blocking checkpointing

Relatively intuitive: checkpoint(filename)

Cost: no process activity during whole checkpoint operation

Different implementations: OS syscall; dynamic library;
compiler assisted

Create a serial file that can be loaded in a process image.
Usually on same architecture / OS / software environment

Entirely transparent

Preemptive (often needed for library-level checkpointing)

Lack of portability

Large size of checkpoint (≈ memory footprint)
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Storage

Remote reliable storage

Intuitive. I/O intensive. Disk usage.

Memory hierarchy

local memory

local disk (SSD, HDD)

remote disk

Scalable Checkpoint Restart Library
http://scalablecr.sourceforge.net

Checkpoint is valid when finished on reliable storage

Distributed memory storage

In-memory checkpointing

Disk-less checkpointing
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http://scalablecr.sourceforge.net


Intro Checkpointing ABFT Silent Errors Conclusion

Coordinated checkpointing

orphan

orphan

missing

Definition (Missing Message)

A message is missing if in the current configuration, the sender
sent it, while the receiver did not receive it
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Coordinated checkpointing

orphan

orphan

missing

Definition (Orphan Message)

A message is orphan if in the current configuration, the receiver
received it, while the sender did not send it
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Coordinated checkpointing

Create a consistent view of the application (no orphan messages)

Messages belong to a checkpoint wave or another

All communication channels must be flushed (all2all)
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Coordinated checkpointing

App. Message Marker Message

Silences the network during checkpoint

Missing messages recorded
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Periodic checkpointing

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed
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Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors and MTBF µ = µind

p

coordinated checkpointing
tightly-coupled application
progress ⇔ all processors available

⇒ platform = single (powerful, unreliable) processor ,

Waste: fraction of time not spent for useful computations
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Waste in fault-free execution

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFF = Timebase + #checkpoints × C

#checkpoints =

⌈
Timebase

T − C

⌉
≈ Timebase

T − C
(valid for large jobs)

Waste[FF ] =
TimeFF −Timebase

TimeFF
=

C

T
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Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost per failure

Nfaults =
Timefinal

µ

Tlost?
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Computing Tlost

T

CT − CRDTlost

P1

P0

P3

P2

Time spent working Time spent checkpointing

Recovery timeDowntime Time

Tlost = D + R +
T

2

Rationale
⇒ Instants when periods begin and failures strike are independent
⇒ Approximation used for all distribution laws
⇒ Exact for Exponential and uniform distributions
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Waste due to failures

Timefinal = TimeFF + Nfaults × Tlost

Waste[fail ] =
Timefinal −TimeFF

Timefinal
=

1

µ

(
D + R +

T

2

)
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Total waste

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail ]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

Waste =
Timefinal −Timebase

Timefinal

1−Waste = (1−Waste[FF ])(1−Waste[fail ])

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
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Waste minimization

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
Waste =

u

T
+ v + wT

u = C
(
1− D + R

µ

)
v =

D + R − C/2

µ
w =

1

2µ

Waste minimized for T =
√

u
w

T =
√

2(µ− (D + R))C
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Comparison with Young/Daly

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail ]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

(
1−Waste[fail ]

)
Timefinal = TimeFF

⇒ T =
√

2(µ− (D + R))C

Daly: Timefinal =
(
1 + Waste[fail ]

)
TimeFF

⇒ T =
√

2(µ+ (D + R))C + C

Young: Timefinal =
(
1 + Waste[fail ]

)
TimeFF and D = R = 0

⇒ T =
√

2µC + C
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Validity of the approach (1/3)

Technicalities

E (Nfaults) = Timefinal
µ and E (Tlost) = D + R + T

2
but expectation of product is not product of expectations
(not independent RVs here)

Enforce C ≤ T to get Waste[FF ] ≤ 1

Enforce D + R ≤ µ and bound T to get Waste[fail ] ≤ 1
but µ = µind

p too small for large p, regardless of µind
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Validity of the approach (2/3)

Several failures within same period?

Waste[fail] accurate only when two or more faults do not
take place within same period

Cap period: T ≤ γµ, where γ is some tuning parameter

Poisson process of parameter θ = T
µ

Probability of having k ≥ 0 failures : P(X = k) = θk

k! e
−θ

Probability of having two or more failures:
π = P(X ≥ 2) = 1− (P(X = 0) +P(X = 1)) = 1− (1 +θ)e−θ

γ = 0.27 ⇒ π ≤ 0.03
⇒ overlapping faults for only 3% of checkpointing segments
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Validity of the approach (3/3)

Enforce T ≤ γµ, C ≤ γµ, and D + R ≤ γµ

Optimal period
√

2(µ− (D + R))C may not belong to
admissible interval [C , γµ]

Waste is then minimized for one of the bounds of this
admissible interval (by convexity)
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Wrap up

Capping periods, and enforcing a lower bound on MTBF
⇒ mandatory for mathematical rigor /

Not needed for practical purposes ,
• actual job execution uses optimal value
• account for multiple faults by re-executing work until success

Approach surprisingly robust ,
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Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Waste[opt] ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Waste[opt] = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Waste[opt] = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Waste[opt] = 100%
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• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Waste[opt] ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Waste[opt] = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Waste[opt] = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Waste[opt] = 100%

Exascale 6= Petascale ×1000
Need more reliable components

Need to checkpoint faster
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Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Waste[opt] ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Waste[opt] = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Waste[opt] = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Waste[opt] = 100%

Silent errors:

detection latency ⇒ additional problems
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Exponential failure distribution

1 Expected execution time for a single chunk

2 Expected execution time for a sequential job

3 Expected execution time for a parallel job
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

of success

Probability

Psucc(W + C ) (W + C )

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach
Time needed

the work W and

to compute

checkpoint it

Psucc(W + C ) (W + C )

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Probability of failure

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W )))

+

Psucc(W + C ) (W + C )

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time elapsed

before failure

stroke

+

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W )))

Psucc(W + C ) (W + C )

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time needed

to perform

downtime

and recovery

+

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W )))

Psucc(W + C ) (W + C )

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time needed

to compute W

anew

+

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W )))

Psucc(W + C ) (W + C )

E(T (W )) =
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Computation of E(T (W ,C ,D,R , λ))

+

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W )))

Psucc(W + C ) (W + C )

E(T (W )) =

Psuc(W + C ) = e−λ(W+C)

E(Tlost(W + C )) =
∫∞

0
xP(X = x |X <W + C )dx = 1

λ −
W+C

eλ(W+C)−1

E(Trec) = e−λR(D+R)+(1−e−λR)(D+E(Tlost(R))+E(Trec))

E(T (W ,C ,D,R, λ)) = eλR
(

1
λ + D

)
(eλ(W+C) − 1)

Yves.Robert@inria.fr Fault-tolerance for HPC 52/ 129



Intro Checkpointing ABFT Silent Errors Conclusion

Checkpointing a sequential job

E(T (W )) = eλR
(

1
λ + D

) (∑K
i=1 e

λ(Wi+C) − 1)

Optimal strategy uses same-size chunks (convexity)

K0 = λW
1+L(−e−λC−1)

where L(z)eL(z) = z (Lambert function)

Optimal number of chunks K ∗ is max(1, bK0c) or dK0e

Eopt(T (W )) = K ∗
(
eλR

(
1

λ
+ D

))(
eλ( W

K∗ +C)−1
)

Can also use Daly’s second-order approximation
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Checkpointing a parallel job

p processors ⇒ distribution Exp(λp), where λp = pλ

Use W (p), C (p), R(p) in Eopt(T (W )) for a distribution
Exp(λp = pλ)

Job types

Perfectly parallel jobs: W (p) = W /p.
Generic parallel jobs: W (p) = W /p + δW
Numerical kernels: W (p) = W /p + δW 2/3/

√
p

Checkpoint overhead

Proportional overhead: C (p) = R(p) = δV /p = C/p
(bandwidth of processor network card/link is I/O bottleneck)
Constant overhead: C (p) = R(p) = δV = C
(bandwidth to/from resilient storage system is I/O bottleneck)
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Weibull failure distribution

No optimality result known

Heuristic: maximize expected work before next failure

Dynamic programming algorithms
- Use a time quantum
- Trim history of previous failures
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Outline

1 Introduction

2 Checkpointing
Coordinated checkpointing
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion
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Hierarchical checkpointing

Clusters of processes

Coordinated checkpointing
protocol within clusters

Message logging protocols
between clusters

Only processors from failed group
need to roll back

P0

P1

P2

P3

m1

m2

m3

m4

m5

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Faster re-execution with logged messages
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Which checkpointing protocol to use?

Coordinated checkpointing

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

/ Rumor: May not scale to very large platforms

Hierarchical checkpointing

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Only processors from failed group need to roll back

, Faster re-execution with logged messages

, Rumor: Should scale to very large platforms
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Blocking vs. non-blocking

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: checkpointing blocks all computations
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Blocking vs. non-blocking

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

Non-blocking model: checkpointing has no impact on
computations (e.g., first copy state to RAM, then copy RAM to
disk)
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Blocking vs. non-blocking

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: checkpointing slows computations down: during
a checkpoint of duration C , the same amount of computation is
done as during a time αC without checkpointing (0 ≤ α ≤ 1)
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Waste in fault-free execution

T

CT − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Time elapsed since last checkpoint: T

Amount of computations executed: Work = (T − C ) + αC

Waste[FF ] = T−Work
T
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Waste due to failures

P0

P3

P2

P1

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Failure can happen

1 During computation phase

2 During checkpointing phase
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Waste due to failures

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time
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Waste due to failures

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time
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Waste due to failures

Tlost

P1

P3

P0

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Coordinated checkpointing protocol: when one processor is victim
of a failure, all processors lose their work and must roll back to last
checkpoint
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Waste due to failures in computation phase

D

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Downtime Time
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Waste due to failures in computation phase

R

P2

P1

P3

P0

Time spent checkpointingTime spent working Time spent working with slowdown

Recovery timeDowntime Time

Coordinated checkpointing protocol: all processors must recover
from last checkpoint
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Waste due to failures in computation phase

C αC

P3

P2

P1

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-execution is
faster than the original computation
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Waste due to failures in computation phase

T − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Re-execute the computation phase
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Waste due to failures in computation phase

C

P3

P2

P1

P0

Time spent checkpointingTime spent working Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Finally, the checkpointing phase is executed
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Total waste

∆

αC CT − CRDTlost

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime

T

Time

Waste[fail ] =
1

µ

(
D + R + αC +

T

2

)
Optimal period Topt =

√
2(1− α)(µ− (D + R + αC ))C
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Hierarchical checkpointing

T

α(G−g+1)C

RD G .C

T−G .C−Tlost

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Processors partitioned into G groups

Each group includes q processors

Inside each group: coordinated checkpointing in time C (q)

Inter-group messages are logged
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Accounting for message logging: Impact on work

/ Logging messages slows down execution:
⇒ Work becomes λWork, where 0 < λ < 1
Typical value: λ ≈ 0.98

, Re-execution after a failure is faster:
⇒ Re-Exec becomes Re-Exec

ρ , where ρ ∈ [1..2]
Typical value: ρ ≈ 1.5

Waste[FF ] =
T − λWork

T

Waste[fail ] =
1

µ

(
D(q) + R(q) +

Re-Exec

ρ

)
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Accounting for message logging: Impact on checkpoint size

Inter-groups messages logged continuously

Checkpoint size increases with amount of work executed
before a checkpoint /
C0(q): Checkpoint size of a group without message logging

C (q) = C0(q)(1 + βWork)⇔ β =
C (q)− C0(q)

C0(q)Work

Work = λ(T − (1− α)GC (q))

C (q) =
C0(q)(1 + βλT )

1 + GC0(q)βλ(1− α)
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Three case studies

Coord-IO
Coordinated approach: C = CMem = Mem

bio

where Mem is the memory footprint of the application

Hierarch-IO
Several (large) groups, I/O-saturated
⇒ groups checkpoint sequentially

C0(q) =
CMem

G
=

Mem

Gbio

Hierarch-Port
Very large number of smaller groups, port-saturated
⇒ some groups checkpoint in parallel
Groups of qmin processors, where qminbport ≥ bio
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Three applications

1 2D-stencil

2 Matrix product
3 3D-Stencil

Plane
Line
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Computing β for 2D-Stencil

C (q) = C0(q) + Logged Msg = C0(q)(1 + βWork)

Real n × n matrix and p × p grid
Work = 9b2

sp
, b = n/p

Each process sends a block to its 4 neighbors

Hierarch-IO:

1 group = 1 grid row

2 out of the 4 messages are logged

β = Logged Msg
C0(q)Work = 2pb

pb2(9b2/sp)
=

2sp
9b3

Hierarch-Port:

β doubles
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Four platforms: basic characteristics

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth (bport)
cores processors ptotal per processor per processor Read Write Read/Write per processor

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s

Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s

Name Scenario G (C (q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407
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Checkpoint time

Name C

K-Computer 14,688s

Exascale-Slim 64,000

Exascale-Fat 64,000

Large time to dump the memory

Using 1%C

Comparing with 0.1%C for exascale platforms

α = 0.3, λ = 0.98 and ρ = 1.5
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Plotting formulas – Platform: Titan

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind
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Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind
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Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!
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Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Goodbye Exascale?!
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Plotting formulas – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
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e-
F

at

Waste as a function of processor MTBF µind , C = 1, 000
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Plotting formulas – Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µind , C = 100
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Simulations – Platform: Titan

Stencil 2D Matrix product
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Simulations – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product
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Simulations – Platform: Exascale with C = 100

Stencil 2D Matrix product
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Motivation

Checkpoint transfer and storage
⇒ critical issues of rollback/recovery protocols

Stable storage: high cost

Distributed in-memory storage:

Store checkpoints in local memory ⇒ no centralized storage
, Much better scalability
Replicate checkpoints ⇒ application survives single failure
/ Still, risk of fatal failure in some (unlikely) scenarios

Yves.Robert@inria.fr Fault-tolerance for HPC 78/ 129



Intro Checkpointing ABFT Silent Errors Conclusion

Double checkpoint algorithm (Kale et al., UIUC)

1

1

d q s

f

f

P

Local checkpoint
done

Remote checkpoint
done

Period
done

Node p

Node p'

Platform nodes partitioned into pairs

Each node in a pair exchanges its checkpoint with its buddy

Each node saves two checkpoints:
- one locally: storing its own data
- one remotely: receiving and storing its buddy’s data
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Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Best trade-off between performance and risk?
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Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Application at risk until complete reception of both messages

Best trade-off between performance and risk?
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Framework

Predictor

Exact prediction dates (at least C seconds in advance)

Recall r : fraction of faults that are predicted

Precision p: fraction of fault predictions that are correct

Events

true positive: predicted faults

false positive: fault predictions that did not materialize as
actual faults

false negative: unpredicted faults
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Fault rates

µ: mean time between failures (MTBF)

µP mean time between predicted events (both true positive
and false positive)

µNP mean time between unpredicted faults (false negative).

µe : mean time between events (including three event types)

r =
TrueP

TrueP + FalseN
and p =

TrueP
TrueP + FalseP

(1− r)

µ
=

1

µNP
and

r

µ
=

p

µP

1

µe
=

1

µP
+

1

µNP
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Example

fault fault fault fault fault

pred. pred. pred. pred. pred. pred.

Time

F+P F+P
pred.

F+P
pred.

F+P
fault

t

Actual faults:

Predictor:

Overlap:

Predictor predicts six faults in time t

Five actual faults. One fault not predicted

µ = t
5 , µP = t

6 , and µNP = t

Recall r = 4
5 (green arrows over red arrows)

Precision p = 4
6 (green arrows over blue arrows)
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Algorithm

1 While no fault prediction is available:
• checkpoints taken periodically with period T

2 When a fault is predicted at time t:
• take a checkpoint ALAP (completion right at time t)
• after the checkpoint, complete the execution of the period
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Computing the waste

1 Fault-free execution: Waste[FF ] = C
T

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

2 Unpredicted faults: 1
µNP

[
D + R + T

2

]
TimeT -C T -C Tlost T -C

fault

C C C D R C
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Computing the waste

3 Predictions: 1
µP

[p(C + D + R) + (1− p)C ]

TimeT -C Wreg

fault Predicted fault

T -Wreg -C T -C

C C Cp D R C C

with actual fault (true positive)

TimeT -C Wreg

Predicted fault

T -Wreg -C T -C T -C

C C Cp C C C

no actual fault (false negative)

Waste[fail ] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r
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Refinements

Use different value Cp for proactive checkpoints

Avoid checkpointing too frequently for false negatives
⇒ Only trust predictions with some fixed probability q
⇒ Ignore predictions with probability 1− q
Conclusion: trust predictor always or never (q = 0 or q = 1)

Trust prediction depending upon position in current period
⇒ Increase q when progressing
⇒ Break-even point

Cp

p
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With prediction windows

TimeTR-C TR-C Tlost TR-C

fault
(Regular mode)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TP-Cp TR-C
-Wreg

(Prediction without failure)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TR-C
-Wreg

fault
(Prediction with failure)

C C C D R C

C C Cp Cp Cp Cp C

C C Cp Cp Cp D R C

Gets too complicated! /
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Replication

Systematic replication: efficiency < 50%

Can replication+checkpointing be more efficient than
checkpointing alone?

Study by Ferreira et al. [SC’2011]: yes
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Model by Ferreira et al. [SC’ 2011]

Parallel application comprising N processes

Platform with ptotal = 2N processors

Each process replicated → N replica-groups

When a replica is hit by a failure, it is not restarted

Application fails when both replicas in one replica-group have
been hit by failures
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Example

p1

p2

p1

p2

p1

p2

p1

p2

Time

Pair1

Pair2

Pair3

Pair4
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The birthday problem

Classical formulation
What is the probability, in a set of m people, that two of them
have same birthday ?

Relevant formulation
What is the average number of people required to find a pair with
same birthday?

Birthday(m) = 1 +
∫ +∞

0 e−x(1 + x/m)m−1dx = 2
3 +

√
πm
2 +

√
π

288m −
4

135m + . . .

The analogy

Two people with same birthday
≡

Two failures hitting same replica-group
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Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure
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Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure: can failed PE be hit?
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Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem
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Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE
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Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

Suppose failure hits replica-group i
If failure hits failed PE: application survives
If failure hits running PE: application killed
Not all failures hitting the same replica-group are equal:
this is not the birthday problem
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Correct analogy

� � � � . . . �
1 2 3 4 . . . n

⇑
• • • • • • • • • • • . . .

N = nrg bins, red and blue balls

Mean Number of Failures to Interruption (bring down application)
MNFTI = expected number of balls to throw

until one bin gets one ball of each color
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Number of failures to bring down application

MNFTI ah Count each failure hitting any of the initial
processors, including those already hit by a failure

MNFTI rp Count failures that hit running processors, and thus
effectively kill replicas.

MNFTI ah = 1 + MNFTI rp
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Exponential failures

Theorem MNFTI ah = E(NFTI ah|0) where

E(NFTI ah|nf ) =

{
2 if nf = nrg ,

2nrg
2nrg−nf +

2nrg−2nf
2nrg−nf E

(
NFTI ah|nf + 1

)
otherwise.

E(NFTI ah|nf ): expectation of number of failures to kill
application, knowing that
• application is still running
• failures have already hit nf different replica-groups
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Exponential failures (cont’d)

Proof

E
(
NFTI ah |nrg

)
=

1

2
× 1 +

1

2
×
(

1 + E
(
NFTI ah |nrg

))
.

E
(
NFTI ah|nf

)
=

2nrg − 2nf
2nrg

×
(

1 + E
(
NFTI ah|nf + 1

))
+

2nf
2nrg

×
(

1

2
× 1 +

1

2

(
1 + E

(
NFTI ah|nf

)))
.

MTTI = systemMTBF (2nrg)× MNFTI ah
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Exponential failures (cont’d)
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Exponential failures (cont’d)
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Comparison

2N processors, no replication

ThroughputStd = 2N(1−Waste) = 2N
(

1−
√

2C
µ2N

)
N replica-pairs

ThroughputRep = N
(

1−
√

2C
µrep

)
µrep = MNFTI × µ2N = MNFTI × µ

2N

Platform with 2N = 220 processors ⇒ MNFTI = 1284.4
µ = 10 years ⇒ better if C shorter than 6 minutes
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Failure distribution
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(a) Exponential
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(b) Weibull, k = 0.7

Crossover point for replication when µind = 125 years
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Weibull distribution with k = 0.7

Dashed line: Ferreira et al. Solid line: Correct analogy
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Study by Ferrreira et al. favors replication

Replication beneficial if small µ + large C + big ptotal
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1 Introduction
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4 Silent errors

5 Conclusion
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Forward-Recovery

Backward Recovery

Rollback / Backward Recovery: returns in the history to
recover from failures.

Spends time to re-execute computations

Rebuilds states already reached

Typical: checkpointing techniques
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Forward-Recovery

Forward Recovery

Forward Recovery: proceeds without returning.

Pays additional costs during (failure-free) computation to
maintain consistent redundancy

Or pays additional computations when failures happen

General technique: Replication

Application-Specific techniques: Iterative algorithms with
fixed point convergence, ABFT, ...
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Tiled LU factorization

0 2 4
1 3 5
0 2 4
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0 2
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0 2
1 3
0 2
1 3
0 2
1 3

Failure of rank 2

2D Block Cyclic Distribution (here 2× 3)

A single failure ⇒ many data lost
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Algorithm Based Fault Tolerant LU decomposition
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GETF2 GEMM

TRSM

Checksum: invertible operation on row/column data

Key idea of ABFT: applying the operation on data and
checksum preserves the checksum properties
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Performance

As supercomputers grow ever larger in scale, the Mean Time to Failure becomes shorter and shorter, making the complete and 
successful execution of complex applications more and more difficult. FT-LA delivers a new approach, utilizing Algorithm-Based 
Fault Tolerance (ABFT), to help factorization algorithms survive fail-stop failures. The FT-LA software package extends 
ScaLAPACK with ABFT routines, and in sharp contrast with legacy checkpoint-based approaches, ABFT does not incur I/O overhead, 
and promises a much more scalable protection scheme.

ABFT THE IDEA

Cost of ABFT comes only from 
extra flops (to update checksums) 
and extra storage

Cost decreases with machine 
scale (divided by Q when using 
PxQ processes)

PROTECTION

Matrix protected by block row checksum

The algorithm updates both the 
trailing matrix AND the checksums

RECOVERY

Missing blocks reconstructed by inverting 
the checksum operation

FUNCTIONALITY COVERAGE

Linear Systems of Equations

Least Squares

Cholesky, LU 

QR (with protection of the upper and lower factors)

FEATURES

WORK IN PROGRESS

Covering four precisions: double complex, single complex, double real, single real (ZCDS)

Deploys on MPI FT draft (ULFM), or with “Checkpoint-on-failure”

Allows toleration of permanent crashes

Hessenber Reduction, Soft (silent) Errors

Process grid: p x q
F: simultaneous failures tolerated

 

Protection against 2 faults on 
192x192 processes => 1% overhead

Usually F << q; 
Overheads in F/q

Protection cost is inversely 
proportional to machine scale!

Computation

Memory

Flops for the checksum update

Matrix is extended with 
2F columns every q columns 

FIND OUT MORE AT http://icl.cs.utk.edu/ft-la
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C

PERFORMANCE ON KRAKEN

MPI-Next ULFM Performance

Open MPI with ULFM; Kraken supercomputer;
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Outline

1 Introduction

2 Checkpointing

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion
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Definitions

Instantaneous error detection ⇒ fail-stop failures,
e.g. resource crash

Silent errors (data corruption) ⇒ detection latency

Silent error detected only when the corrupt data is activated

Includes some software faults, some hardware errors (soft
errors in L1 cache), double bit flip

Cannot always be corrected by ECC memory
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Quotes

Soft Error: An unintended change in the state of an electronic
device that alters the information that it stores without
destroying its functionality, e.g. a bit flip caused by a
cosmic-ray-induced neutron. (Hengartner et al., 2008)

SDC occurs when incorrect data is delivered by a computing
system to the user without any error being logged (Cristian
Constantinescu, AMD)

Silent errors are the black swan of errors (Marc Snir)
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Should we be afraid? (courtesy Al Geist)
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Probability distributions for silent errors

?
Theorem: µp =

µind

p
for arbitrary distributions
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Probability distributions for silent errors

?
Theorem: µp =

µind

p
for arbitrary distributions
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General-purpose approach

TimeXe Xd

fault Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Saving k checkpoints (Lu, Zheng and Chien):

¬ Critical failure when all live checkpoints are invalid
­ Which checkpoint to roll back to?
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General-purpose approach

TimeXe Xd

fault Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Saving k checkpoints (Lu, Zheng and Chien):

¬ Critical failure when all live checkpoints are invalid
Assume unlimited storage resources

­ Which checkpoint to roll back to?
Assume verification mechanism
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Limitation of the model

It is not clear how to detect when the error has occurred
(hence to identify the last valid checkpoint) / / /

Need a verification mechanism to check the correctness of the
checkpoints. This has an additional cost!
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Coupling checkpointing and verification

Verification mechanism of cost V

Silent errors detected only when verification is executed

Approach agnostic of the nature of verification mechanism
(checksum, error correcting code, coherence tests, etc)

Fully general-purpose
(application-specific information, if available, can always be
used to decrease V )
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On-line ABFT scheme for PCG

Zizhong Chen, PPoPP’13

Iterate PCG
Cost: SpMV, preconditioner
solve, 5 linear kernels

Detect soft errors by checking
orthogonality and residual

Verification every d iterations
Cost: scalar product+SpMV

Checkpoint every c iterations
Cost: three vectors, or two
vectors + SpMV at recovery

Experimental method to
choose c and d
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Base pattern (and revisiting Young/Daly)

TimeW W

fault
Detection

V C V C V C

Fail-stop (classical) Silent errors

Pattern T = W + C S = W + V + C

Waste[FF ] C
T

V+C
S

Waste[fail ] 1
µ(D + R + W

2 ) 1
µ(R + W + V )

Optimal Topt =
√

2Cµ Sopt =
√

(C + V )µ

Waste[opt]
√

2C
µ 2

√
C+V
µ
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With p = 1 checkpoint and q = 3 verifications

Timew w w w w w

fault
Detection

V C V V V C V V V C

Base Pattern p = 1, q = 1 Waste[opt] = 2
√

C+V
µ

New Pattern p = 1, q = 3 Waste[opt] = 2
√

4(C+3V )
6µ
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BalancedAlgorithm

Time2w 2w w w 2w 2w

V C V V C V V V C

p checkpoints and q verifications, p ≤ q

p = 2, q = 5, S = 2C + 5V + W

W = 10w , six chunks of size w or 2w

May store invalid checkpoint (error during third chunk)

After successful verification in fourth chunk, preceding
checkpoint is valid

Keep only two checkpoints in memory and avoid any fatal
failure
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BalancedAlgorithm

Time2w 2w w w 2w 2w

V C V V C V V V C

¬ ( proba 2w/W ) Tlost = R + 2w + V

­ ( proba 2w/W ) Tlost = R + 4w + 2V

® ( proba w/W ) Tlost = 2R + 6w + C + 4V

¯ ( proba w/W ) Tlost = R + w + 2V

° ( proba 2w/W ) Tlost = R + 3w + 2V

± ( proba 2w/W ) Tlost = R + 5w + 3V

Waste[opt] ≈ 2

√
7(2C + 5V )

20µ
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Results

Time2w 2w w w 2w 2w

V C V V C V V V C

BalancedAlgorithm optimal when C ,R,V � µ

Keep only 2 checkpoints in memory/storage

Closed-form formula for Waste[opt]

Given C and V , choose optimal pattern

Gain of up to 20% over base pattern
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Application-specific methods

ABFT: dense matrices / fail-stop, extended to sparse / silent.
Limited to one error detection and/or correction in practice

Asynchronous (chaotic) iterative methods (old work)

Partial differential equations: use lower-order scheme as
verification mechanism (detection only, Benson, Schmit and
Schreiber)

FT-GMRES: inner-outer iterations (Hoemmen and Heroux)

PCG: orthogonalization check every k iterations,
re-orthogonalization if problem detected (Sao and Vuduc)

. . . Many others
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Dynamic programming for linear chains of tasks

{T1,T2, . . . ,Tn} : linear chain of n tasks

Each task Ti fully parametrized:

wi computational weight
Ci ,Ri ,Vi : checkpoint, recovery, verification

Error rates:

λF rate of fail-stop errors
λS rate of silent errors
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VC-only

1 i j

TimerecC (i , k − 1) TC (i + 1, j)

VC VC

min
0≤k<n

TimerecC (n, k)

TimerecC (j , k) = min
k≤i<j

{TimerecC (i , k − 1) + T SF
C (i + 1, j)}

T SF
C (i , j) = pFi ,j

(
Tlost i,j + Ri−1 + T SF

C (i , j)
)

+
(

1− pFi ,j

)(∑j
`=i w` + Vj + pSi ,j

(
Ri−1 + T SF

C (i , j)
)

+
(

1− pSi ,j

)
Cj

)
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Extensions

VC-only and VC+V

Different speeds with DVFS, different error rates

Different execution modes

Optimize for time or for energy consumption

Current research

Use verification to correct some errors (ABFT)

Imprecise verifications (a.k.a. recall and precision)
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Outline

1 Introduction

2 Checkpointing

3 ABFT for dense linear algebra kernels

4 Silent errors

5 Conclusion
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A few questions

Silent errors

Error rate? MTBE?

Selective reliability?

New algorithms beyond iterative? matrix-product, FFT, ...

Resilient research on resilience

Models needed to assess techniques at scale
without bias ,
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Conclusion

General Purpose Fault Tolerance

Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

Need combine all these approaches!

Several challenging algorithmic/scheduling problems ,

Extended version of this talk: see SC’14 tutorial. Available at
http://graal.ens-lyon.fr/~yrobert/
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