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Utilisation conjointe de la réplication et de la
prise de points de sauvegarde pour la résilience

sur plates-formes exascales
Résumé : Les pannes de processeurs seront des évènements courants dans
les environnements post-petascale. La solution traditionnelle de tolérance aux
pannes, la prise de points de sauvegarde et la ré-exécution, limite fortement
l’efficacité des applications parallèles. Pour lever cette limitation, une solution
est de répliquer les processus de l’application pour qu’une panne sur un proces-
seur n’entrâıne pas automatiquement une panne de l’application. Ferreira et al.
ont récemment préconisé de combiner la réplication de processus avec la prise de
points de sauvegarde. Nous commenCcons par identifier une analogie incorrecte
de ce travail — analogie entre la réplication de processus et le problème des dates
de naissance — et nous établissons des formules correctes pour le Nombre Moyen
de Pannes avant l’Échec, et le Temps Moyen avant l’Échec, pour une distribution
exponentielle des pannes. Nous étendons ensuite ces résultats à n’importe quel
type de distribution, avec notamment des formes closes pour les distributions
suivant des lois de Weibull. Finalement, nous évaluons la réplication de pro-
cessus en utilisant des traces synthétiques et des traces réelles. Nos principales
conclusions sont: (i) la réplication est moins intéressante que Ferreira et al. le
prétendent; (ii) bien que le choix de la période de prise des points de sauvegarde
peut avoir un fort impact sur la durée d’exécution des applications quand il n’y
a pas de réplication, avec la réplication des processus le choix de la période n’est
plus important.
Mots-clés : Tolérance aux pannes, checkpoint, réplication, exascale
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1 Introduction
As plans are made for deploying post-petascale high performance computing
(HPC) systems [1, 2], solutions need to be developed to ensure that applica-
tions on such systems are resilient to faults. Resilience is particularly critical
for applications that enroll large numbers of processors, including those applica-
tions that are pushing the limit of current computational capabilities and that
could benefit from enrolling all available processors. For such applications, pro-
cessor failure is the common case rather than the exception. For instance, the
45,208-processor Jaguar platform is reported to experience on the order of 1
failure per day [3, 4], and its scale is modest compared to upcoming platforms.
Failures occur because not all faults can be automatically detected and corrected
in hardware [5, 6, 7]. To tolerate failures rollback-recovery is used to resume
job execution from a previously saved fault-free execution state, or checkpoint.
Frequent checkpointing leads to higher overhead during fault-free execution, but
less frequent checkpointing leads to a larger loss when a failure occurs. A large
literature is devoted to rollback-recovery, including both theoretical and practi-
cal efforts. The former typically rely on assumptions regarding the probability
distributions of times to failure of the processors (e.g., Exponential, Weibull),
while the latter rely on simulations driven by failure datasets obtained on real-
world platforms. We have, ourselves, made several contributions in this context,
including optimal checkpointing strategies for Exponential failures and dynamic
programming solutions for Weibull failures [8].

Unfortunately, even assuming an optimal checkpointing strategy, at large
scale, processors end up spending as much or even more time saving state than
computing state, leading to poor parallel efficiency [5, 6, 7]. Consequently,
additional mechanisms must be used. In this work we focus on replication:
several processors perform the same computation synchronously, so that a failure
on one of these processors does not lead to an application failure. Replication
is an age-old fault-tolerance technique, but it has gained traction in the HPC
context only relatively recently. While replication wastes compute resources in
fault-free executions, it can alleviate the poor scalability of rollback-recovery.
With process replication, a single instance of an application is executed but
each application process is (transparently) replicated. For instance, instead of
executing the application with 2n distinct processes on a 2n-processor platform,
one executes the application with n processes so that there are two replicas of
each process, each running on a distinct physical processor. The advantage of
this approach is that the mean time to failure of a group of two replicas is larger
than that of a single processor, meaning that the checkpointing frequency can
be lowered in order to improve parallel efficiency. Process replication has been
proposed and studied by Ferreira et al. at the SC’2011 conference [9]. In this
paper we revisit and extend the results in their work. More specifically, our
contributions are:

• We identify an incorrect analogy between process replication and the birth-
day problem in [9]. As a result, not only are the MNFTI (Mean Number
of Failures To Interruption) and the MTTI (Mean Time To Interruption)
values in [9] erroneous, but computing them correctly is more challenging
than anticipated. Nevertheless, we are able to derive correct values for
Exponential failures.

RR n° 7951
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• Following a different approach we then extend our results to arbitrary fail-
ure distributions, including closed-form solutions for Weibull distributions
(the results in [9] were limited to Exponential failures).

• We present simulation results, based on both synthetic and real-world
failure traces, to compare executions with and without process replication.
We find that the choice of a good checkpointing period is no longer critical
when process replication is used.

• We revisit the “break-even point” results in [9] and obtain results less
favorable for process replication. These results, unlike those in [9], are not
biased by the choice of a particular checkpointing period.

The remainder of this paper is organized as follows. Section 2 discusses
related work. Section 3 defines the theoretical framework and states key as-
sumptions. Section 4 presents the bulk of our theoretical contribution. Sec-
tion 5 presents our simulation methodology. Sections 6 presents our simulation
results. Finally, Section 7 concludes the paper with a summary of our findings.

2 Related work
Checkpointing policies have been widely studied in the literature. In [10], Daly
studies periodic checkpointing policies for Exponentially distributed failures,
generalizing the well-known bound obtained by Young [11]. Daly extended his
work in [12] to study the impact of sub-optimal checkpointing periods. In [13],
the authors develop an “optimal” checkpointing policy, based on the popular
assumption that optimal checkpointing must be periodic. In [14], Bouguerra et
al. prove that the optimal checkpointing policy is periodic when checkpointing
and recovery overheads are constant, for either Exponential or Weibull failures.
But their results rely on the unstated assumption that all processors are reju-
venated after each failure and after each checkpoint. In our recent work [8],
we have shown that this assumption is unreasonable for Weibull failures. We
have developed optimal solutions for Exponential failures and dynamic program-
ming solutions for Weibull failures, demonstrating performance improvements
over checkpointing approaches proposed in the literature in the case of Weibull
failures. Note that the Weibull distribution is recognized as a reasonable ap-
proximation of failures in real-world systems [15, 16, 17, 18]. The work in this
paper relates to checkpointing policies in the sense that we study a replication
mechanism that is complementary to checkpointing.

In spite of all the above advances, several studies have questioned the feasi-
bility of pure rollback-recovery for large-scale systems [5, 6, 7]. Replication has
long been used as a fault-tolerance mechanism in distributed systems [19], and
more recently in the context of volunteer computing [20]. The idea to use repli-
cation together with checkpoint-recovery has been studied in the context of grid
computing [21]. One concern about replication in HPC is the induced resource
waste. However, given the scalability limitations of pure rollback-recovery, repli-
cation has recently received more attention in the HPC literature [22, 23, 24].
Most recently, the work by Ferreira et al. [9] has studied the use of process
replication for MPI applications. They provide a theoretical analysis of parallel
efficiency, an implementation of MPI that supports transparent process repli-
cation (including failure detection, consistent message ordering among replicas,

RR n° 7951



Combining Process Replication and Checkpointing for Resilience 5

etc.), and a set of convincing experimental and simulation results. The work
in [9] only considers 2 replicas per application process. The theoretical analysis,
admittedly not the primary objective of the authors, is not developed in details.
In this work we focus on the theoretical analysis of the problem, both correcting
and extending the results in [9], as detailed in Section 4.

3 Framework
We consider the execution of a tightly-coupled parallel application, or job, on
a large-scale platform composed of p processors. We use the term processor
to indicate any individually scheduled compute resource (a core, a multi-core
processor, a cluster node) so that our work is agnostic to the granularity of the
platform. We assume that a standard checkpointing and roll-back recovery is
performed at the system level. One application process (replica) runs on one
processor, and thus we use the terms processor and process interchangeably.

The job must complete W units of (divisible) work, which can be split ar-
bitrarily into separate chunks. The job can execute on any number q ≤ p
processors. Letting W(q) be the time required for a failure-free execution on q
processor, we use three models:

• Perfectly parallel jobs: W(q) =W/q.
• Generic parallel jobs: W(q) =W/q+γW. As in Amdahl’s law [25], γ < 1

is the fraction of the work that is inherently sequential.
• Numerical kernels: W(q) = W/q + γW2/3/

√
q. This is representative of

a matrix product or a LU/QR factorization of size N on a 2D-processor
grid, where W = O(N3). In the algorithm in [26], q = r2 and each
processor receives 2r blocks of size N2/r2 during the execution. Here γ is
the communication-to-computation ratio of the platform.

Each participating processor is subject to failures. A failure causes a down-
time period of the failing processor, of duration D. When a processor fails,
the whole execution is stopped, and all processors must recover from the pre-
vious checkpointed state. We let C(q) denote the time needed to perform a
checkpoint, and R(q) the time to perform a recovery. The downtime accounts
for software rejuvenation (i.e., rebooting [27, 28]) or for the replacement of the
failed processor by a spare. Regardless, we assume that after a downtime the
processor is fault-free and begins a new lifetime at the beginning of the recovery
period. This recovery period corresponds to the time needed to restore the last
checkpoint. Assuming that the application’s memory footprint is V bytes, with
each processor holding V/q bytes, we consider two scenarios:

• Proportional overhead: C(q) = R(q) = αV/q = C/q for some constant
α. This is representative of cases where the bandwidth of the network
card/link at each processor is the I/O bottleneck.

• Constant overhead: C(q) = R(q) = αV = C, which is representative of
cases where the bandwidth to/from the resilient storage system is the I/O
bottleneck.

We assume coordinated checkpointing [29] so that no message logging/replay is
needed for recovery. We also assume that failures can happen during recovery
or checkpointing, but not during a downtime (otherwise, the downtime could
be considered part of the recovery).

Since we consider tightly coupled parallel jobs, all q processors operate syn-
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chronously. These processors execute the same amount of workW(q) in parallel,
chunk by chunk. The total time (on one processor) to execute a chunk of size ω,
and then checkpointing it, is ω + C(q). Finally, we assume that failure arrivals
at all processors are independent and identically distributed (i.i.d).

4 Process Replication
A parallel application consists of several application processes, each process run-
ning on a distinct processor. Process replication was recently studied in [9], in
which the authors propose to replicate each application process transparently
on two processors. Only when both these processors fail must the job recover
from the previous checkpoint. One replica performs redundant (thus wasteful)
computations, but the probability that both replicas fail is much smaller than
that of a single replica, thereby allowing for a drastic reduction of checkpoint
frequency. The results in [9] show large performance improvements due to pro-
cess replication. Our objective in this section is to provide a full theoretical
analysis of process replication.

We consider the general case where each application process is replicated
g ≥ 2 times. We call replica-group the set of all the replicas of a given process,
and we denote by nrg the number of replica-groups. Altogether, if there are p
available processors, there are nrg × g ≤ p processes running on the platform.
Following [9], we assume that when one of the g replicas of a replica-group fails,
it is not restarted, and the execution of the application proceeds as long as
there is still at least one running replica in each of the replica-groups. In other
words, for the whole application to fail, there must exist a replica-group whose
g replicas have all been “hit” by a failure. One could envision a scenario where
a failed replica is restarted based on the current state of the remaining replicas
in its replica-group. This would increase application resiliency but would also
be time-consuming. A certain amount of time would indeed be needed to copy
the state of one of the remaining replicas. Because all replicas of a same process
must have a coherent state, the execution of the still running replicas would have
to be paused during this copying. In a tightly coupled application, the copying-
time would be a time during which the execution of the whole application must
be paused. Consequently, restarting a failed replica would only be beneficial if
the restarting cost were very small, when taking in consideration the frequency
of failures, and the checkpoint and restart costs. The benefit of such an approach
is doubtful and we do not consider it (it was also ignored in [9]).

Two important quantities for evaluating the quality of an application execu-
tion when replication is used is the Mean Number of Failures To Interruption
(MNFTI ), i.e., the mean number of processor failures until application failure
occurs, and the Mean Time To Interruption (MTTI ), i.e., the mean time elapsed
until application failure occurs. In the next two sections, we compute these two
quantities, contrasting our work with that in [9], and providing a quantitative
comparison in Section 4.3.

4.1 Computing MNFTI
Ferreira et al. [9] consider the case g = 2, and observe that the generalized
birthday problem is related to the problem of determining the number of process
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failures needed to induce an application failure. The generalized birthday prob-
lem asks the following question: what is the expected number of balls NF (m)
to randomly put into m (originally empty) bins, so that there are two balls in
a bin? In the context of process replication the bins are replica groups and the
balls are processor failures, so that m = nrg is the number of replica-groups and
NF (m) denotes the number of failures. In [9] it is stated that

NF(nrg) = 1 +
nrg∑
k=1

nrg!
(nrg−k)! · nkrg

≈
√
πnrg

2 + 2
3 . (1)

Unfortunately, the processor replication problem is not identical to the gener-
alized birthday problem and Equation (1) does not apply. To illustrate the
differences we can simply consider the case g = 2. There are two possible
approaches to counting failures:

1. One counts each failure that hits any of the g · nrg initial processors,
including the processors already hit by a failure. This is the approach
followed in [9]. With this approach the target problem is not identical
to the generalized birthday problem because the second failure to hit a
given replica-group does not necessarily induce an application interrup-
tion. Indeed, if the failure hits an already hit processor, whose replica
had already been killed by the first failure, the application is not affected.
If, on the contrary, the failure hits the other processor, both replicas of a
same process are killed and the whole application fails.

2. One only counts failures that hit running processors, and thus effectively
kill replicas. This approach may seem more natural as the running pro-
cessors are the only ones that are important for the application execu-
tion. With this method, the problem is still not identical to the gen-
eralized birthday problem. Let us consider the situation right after the
first failure occurred. In the generalized birthday problem one assumes
that all integers in the range are uniformly distributed. In our problem,
the replica-group that suffered from the first failure only contains a single
running replica after that failure, while all the other replica-groups still
contain two running replicas. Therefore, if the probability of failures is
uniformly distributed among processors that are still running1 (which is
usually assumed), then the replica-group hit by the first failure has half
the probability of being hit by the second failure as that of the other
replica-groups, simply because it contains half as many running replicas!
Since the distribution of failure is no longer uniform, the birthday problem
is not relevant.

Now that we no longer can use the analogy to the birthday problem, computing
the MNFTI turns out to be more challenging. To cover all cases we consider
both options above. We use MNFTI ah to denote the MNFTI (Mean Number of
Failures To Interruption) with the first option (“ah” stands for “already hit”),
and MNFTI rp to denote the MNFTI with the second option (“rp” stands for
“running processors”). The following theorem gives a recursive expression for
MNFTI ah:

1Note that if the failure probability is uniformly distributed among the g · nrg initial
processors, including the processors already hit by a failure, then the probability of failure is
uniformly distributed among still running processors!

RR n° 7951
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Theorem 1. If the failure inter-arrival times on the different processors are
i.i.d. and independent from the failure history, then using process replication
with g = 2, MNFTI ah = E(NFTI ah|0) where E(NFTI ah|nf ) ={

2 if nf = nrg,
2nrg

2nrg−nf + 2nrg−2nf
2nrg−nf E

(
NFTI ah|nf + 1

)
otherwise.

Proof. Let E(NFTI ah|nf ) be the expectation of the number of failures needed
for the whole application to fail, knowing that the application is still running
and that failures have already hit nf different replica-groups. Because each
process initially has 2 replicas, this means that nf different processes are no
longer replicated, and that nrg − nf are still replicated. Overall, there are
nf + 2(nrg − nf ) = 2nrg − nf processors still running.

The case nf = nrg is the simplest. A new failure will hit an already stricken
replica-group, that is, a replica-group where one of the two initial replicas is
still running. Two cases are then possible:

1. The failure hits the running processor. This leads to an application failure,
and in this case E(NFTI ah|nrg) = 1.

2. The failure hits the processor that has already been hit. Then the failure
has no impact on the application. The MNFTI ah of this case is then:
E(NFTI ah|nrg) = 1 + E

(
NFTI ah |nrg

)
.

The probability of failure is uniformly distributed between the two replicas, and
thus between the two previous cases. Weighting the values by their probabilities
of occurrence yields:

E
(

NFTI ah |nrg
)

=
1
2 × 1 + 1

2 ×
(

1 + E
(

NFTI ah |nrg
))

= 2.

For the general case 0 ≤ nf ≤ nrg − 1, either the next failure hits a new
replica-group, that is one with 2 processors still running, or it hits a replica-
group that has already been hit. The latter case leads to the same sub-cases as
the nf = nrg case studied above. As we have assumed that the failure inter-
arrival times on the different processors are i.i.d. and independent from the
processor failure history the failure probability is uniformly distributed among
the 2nrg processors, including the ones already hit. Hence the probability that
the next failure hits a new replica-group is 2nrg−2nf

2nrg . In this case, the expected
number of failures needed for the whole application to fail is one (the considered
failure) plus E

(
NFTI ah|nf + 1

)
. Altogether we have:

E
(

NFTI ah|nf
)

=
2nrg − 2nf

2nrg
×
(

1 + E
(

NFTI ah|nf + 1
))

+ 2nf
2nrg

×
(

1
2 × 1 + 1

2

(
1 + E

(
NFTI ah|nf

)))
.
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Therefore,

E
(

NFTI ah|nf
)

=
2nrg

2nrg − nf
+ 2nrg − 2nf

2nrg − nf
E
(

NFTI ah|nf + 1
)
.

Theorem 2. If the failure inter-arrival times on the different processors are
i.i.d. then using process replication with g = 2, MNFTI rp = E(NFTI rp|0)
where E(NFTI rp|nf ) ={

1 if nf = nrg,

1 + 2nrg−2nf
2nrg−nf E(NFTI rp|nf + 1) otherwise.

Proof. Let E(NFTI rp|nf ) be the expectation of the number of failures needed
for the whole application to fail knowing that the application is still running
and that failures have already hit nf different replica-groups. Because each
process initially has 2 replicas, this means that nf different processes are no
longer replicated, and that nrg − nf are still replicated. Overall, there are
nf + 2(nrg − nf ) = 2nrg − nf processors still running.

The case nf = nrg is the simplest: a new failure will hit an already hit
replica-group and hence leads to an application failure, hence

E (NFTI rp |nrg ) = 1.

For the general case 0 ≤ nf ≤ nrg − 1, either the next failure hits a new
replica-group with 2 still running replicas, or it hits a replica-group that had
already been hit. The latter case leads to an application failure; in that case,
after nf failures, the expected number of failures needed for the whole appli-
cation to fail is exactly one. The failure probability is uniformly distributed
among the 2nrg − nf running processors, hence the probability that the next
failure hits a new replica-group is 2nrg−2nf

2nrg−nf . In this case, the expected number
of failures needed for the whole application to fail is one (the considered failure)
plus E (NFTI rp|nf + 1). Altogether we have derived that:

E (NFTI rp|nf ) =
2nrg − 2nf
2nrg − nf

× (1 + E (NFTI rp|nf + 1))

+ nf
2nrg − nf

× 1.

Therefore,

E (NFTI rp|nf ) = 1 + 2nrg−2nf
2nrg−nf

E (NFTI rp|nf + 1) .
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Note that Theorem 2 does not make any assumption on the failure distribu-
tion; it only assumes that failures are i.i.d. However, to establish Theorem 1, an
additional assumption is that the probability of failures of a node is not affected
by the fact that it may have already been hit. This assumption seems to restrict
this theorem to failures following Exponential (i.e., memoryless) distributions.

It turns out that both failure counting options lead to very similar results:

Proposition 1. If the failure inter-arrival times on the different processors are
i.i.d. and independent from the processor failure history, then

MNFTI ah = 1 + MNFTI rp.

Proof. We prove by induction that E(NFTI ah|nf ) = 1 + E(NFTI rp|nf ), for
any nf ∈ [0, nrg]. The base case is for nf = nrg and the induction uses non-
increasing values of nf .

For the base case, we have E(NFTI rp|nrg) = 1 and E(NFTI ah|nrg) = 2.
Hence the property is true for nf = nrg. Consider a value nf < nrg, and
assume to have proven that E(NFTI ah|i) = 1 + E(NFTI rp|i), for any value of
i ∈ [1 + nf , nrg]. We now prove the equation for nf . According to Theorem 1,
we have:

E(NFTI ah|nf ) =
2nrg

2nrg − nf
+ 2nrg − 2nf

2nrg − nf
E
(

NFTI ah|nf + 1
)
.

Therefore, using the induction hypothesis, we have:

E(NFTI ah|nf )
= 2nrg

2nrg−nf + 2nrg−2nf
2nrg−nf (1 + E (NFTI rp|nf + 1))

= 2 + 2nrg−2nf
2nrg−nf E (NFTI rp|nf + 1)

= 1 + E (NFTI rp|nf )

the last equality being established using Theorem 2. Therefore, we have proved
by induction that E(NFTI ah|0) = 1 + E(NFTI rp|0). To conclude, we remark
that E(NFTI ah|0) = MNFTI ah and E(NFTI rp|0) = MNFTI rp.

We now show that Theorems 1 and 2 can be generalized to g > 2. Because
the proofs are very similar, we only give the one for the MNFTI rp account-
ing approach (failures on running processors only), as it does not make any
assumption on failures besides the i.i.d. assumption.

Proposition 2. If the failure inter-arrival times on the different processors are

i.i.d. then using process replication for g ≥ 2, MNFTI rp = E

NFTI rp| 0, ..., 0︸ ︷︷ ︸
g−1 zeros
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where:

E
(

NFTI rp|n(1)
f , ..., n

(g−1)
f

)
= 1

+
g ·
(
nrg −

∑g−1
i=1 n

(i)
f

)
g · nrg −

∑g−1
i=1 i · n

(i)
f

·E
(

NFTI rp|n(1)
f , n

(2)
f , ..., n

(g−1)
f

)
+
g−2∑
i=1

(g − i) · n(i)
f

g · nrg −
∑g−1
i=1 i · n

(i)
f

·E
(

NFTI rp|n(1)
f , ..., n

(i−1)
f , n

(i)
f −1,

n
(i+1)
f +1, n(i+2)

f , ..., n
(g−1)
f

)
(2)

Proof. Let E
(

NFTI rp|n(1)
f , ..., n

(g−1)
f

)
be the expectation of the number of fail-

ures needed for the whole application to fail, knowing that the application is
still running and that, for i ∈ [1..g − 1], there are n(i)

f replica-groups that have
already been hit by exactly i failures. Note that a replica-group hit by i failures
still contains exactly g − i running replicas. Therefore, in a system where n(i)

f

replica-groups have been hit by exactly i failures, there are still overall exactly
g · nrg −

∑g−1
i=1 i · n

(i)
f running replicas, g ·

(
nrg −

∑g−1
i=1 n

(i)
f

)
of which are in

replica-groups that have not yet been hit by any failure. Now, consider the next
failure to hit the system. There are three cases to consider.

1. The failure hits a replica-group that has not been hit by any failure so far.
This happens with probability:

g ·
(
nrg −

∑g−1
i=1 n

(i)
f

)
g · nrg −

∑g−1
i=1 i · n

(i)
f

and, in that case, the expected number of failures needed for the whole ap-
plication to fail is one (the studied failure) plus E

(
NFTI rp|1 + n

(1)
f , n

(2)
f , ..., n

(g−1)
f

)
.

Remark that we should have conditioned the above expectation with the
statement “if nrg >

∑g−1
i=1 n

(i)
f ”. In order to keep Equation (2) as simple

as possible we rather do not explicitly state the condition and use the
following abusive notation:

g ·
(
nrg −

∑g−1
i=1 n

(i)
f

)
g · nrg −

∑g−1
i=1 i · n

(i)
f

·
(

1 + E
(

NFTI rp|1 + n
(1)
f , n

(2)
f , ..., n

(g−1)
f

))
considering than when nrg =

∑g−1
i=1 n

(i)
f the first term is null and thus that

it does not matter that the second term is not defined.

2. The failure hits a replica-group that has already been hit by g−1 failures.
Such a failure leads to a failure of the whole application. As there are
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n
(g−1)
f such groups, each containing exactly one running replica, this event

happens with probability:

n
(g−1)
f

g · nrg −
∑g−1
i=1 i · n

(i)
f

.

In this case, the expected number of failures needed for the whole appli-
cation to fail is exactly equal to one (the considered failure).

3. The failure hits a replica-group that had already been hit by at least one
failure, and by at most g − 2 failures. Let i be any value in [1..g − 2].
The probability that the failure hits a group that had previously been the
victim of exactly i failures is equal to:

(g − i) · n(i)
f

g · nrg −
∑g−1
i=1 i · n

(i)
f

as there are n(i)
f such replica-groups and that each contains exactly g −

i still running replicas. In this case, the expected number of failures
needed for the whole application to fail is one (the studied failure) plus
E
(

NFTI rp|n(1)
f , ..., n

(i−1)
f , n

(i)
f − 1, n(i+1)

f + 1, n
(i+2)
f , ..., n

(g−1)
f

)
as there

is one less replica-group hit by exactly i failures and one more hit by
exactly i+ 1 failures.

We aggregate all the cases to obtain:

E
(

NFTI rp|n(1)
f , ..., n

(g−1)
f

)
=

g ·
(
nrg −

∑g−1
i=1 n

(i)
f

)
g · nrg −

∑g−1
i=1 i · n

(i)
f

·
(

1 + E
(

NFTI rp|1 + n
(1)
f , n

(2)
f , ..., n

(g−1)
f

))
+
g−2∑
i=1

(g − i) · n(i)
f

g · nrg −
∑g−1
i=1 i · n

(i)
f

·
(

1 + E
(

NFTI rp|n(1)
f , ..., n

(i−1)
f , n

(i)
f − 1,

n
(i+1)
f + 1, n(i+2)

f , ..., n
(g−1)
f

))
+

n
(g−1)
f

g · nrg −
∑g−1
i=1 i · n

(i)
f

· 1

which can be rewritten as Equation (2).

4.2 Computing MTTI
In [9], for the case g = 2, the Mean Time To application Interruption, with the
“already hit” assumption, is computed as

MTTI = systemMTBF(2nrg)×NF(nrg), (3)
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where the value of NF(nrg) is given by Equation (1). systemMTBF(n) denotes
the mean time between failures of a platform with n processors. This expression
assumes that the failures follow an Exponential distribution and becomes correct
when replacing NF(nrg) by MNFTI ah as given by Theorem 1. A recursive
expression for MTTI can also be obtained directly.

While the MTTI value should not depend on the way to count failures,
it would be interesting for compute it with the “running processor” assump-
tion as a sanity check. It turns out that there is no equivalent to Equa-
tion (3) for linking MTTI and MNFTI rp. The reason is straightforward. While
systemMTBF(2nrg) is the expectation of the date at which the first failure will
happen, it is not the expectation of the inter-arrival time of the first and sec-
ond failures when only considering failures on processors still running. Indeed,
after the first failure, there only remain 2nrg − 1 running processors. There-
fore, the inter-arrival time of the first and second failures has an expectation of
systemMTBF(2nrg − 1). We can, however, use a reasoning similar to that in
the proof of Theorem 2 and obtain a recursive expression for MTTI :

Theorem 3. If the failure inter-arrival times on the different processors follow
an Exponential distribution of parameter λ then, when using process replication
with g = 2, MTTI = E(TTI |0) where E(TTI |nf ) ={ 1

nrg
1
λ if nf = nrg

1
(2nrg−nf )

1
λ + 2nrg−2nf

2nrg−nf E(TTI |nf+1) otherwise

Proof. We denote by E(TTI |nf ) the expectation of the time an application will
run before failing, knowing that the application is still running and that failures
have already hit nf different replica-groups. Since each process initially has 2
replicas, this means that nf different processes are no longer replicated and that
nrg − nf are still replicated. Overall, there are thus still nf + 2(nrg − nf ) =
2nrg − nf running processors.

The case nf = nrg is the simplest: a new failure will hit an already stricken
replica-group and hence leads to an application failure. As there are exactly nrg
remaining running processors, the inter-arrival times of the nrg-th and (nrg+1)-
th failures is equal to 1

λnrg
(minimum of nrg Exponential laws). Hence:

E (TTI |nrg ) = 1
λnrg

.

For the general case, 0 ≤ nf ≤ nrg − 1, either the next failure hits a replica-
group with still 2 running processors, or it strikes a replica-group that had
already been victim of a failure. The latter case leads to an application failure;
then, after nf failures, the expected application running time before failure is
equal to the inter-arrival times of the nf -th and (nf + 1)-th failures, which is
equal to 1

(2nrg−nf )λ . The failure probability is uniformly distributed among the
2nrg−nf running processors, hence the probability that the next failure strikes
a new replica-group is 2nrg−2nf

2nrg−nf . In this case, the expected application running
time before failure is equal to the inter-arrival times of the nf -th and (nf +1)-th
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failures plus E (TTI |nf + 1). We derive that:

E (TTI |nf ) =
2nrg − 2nf
2nrg − nf

×
(

1
(2nrg − nf )λ + E (TTI |nf + 1)

)
+ nf

2nrg − nf
× 1

(2nrg − nf )λ.

Therefore,

E (TTI |nf ) =
1

(2nrg − nf )λ + 2nrg − 2nf
2nrg − nf

E (TTI |nf + 1) .

The above results can be generalized to g ≥ 2. To compute MTTI under the
“already hit” assumption one can use Equation (3) replacing NF (nrg) by the
MNFTI ah value given by Theorem 1. To compute MNFTI rp under the “running
processors,” Theorem 3 can be generalized using the same proof technique as
when proving Proposition 2.

These approaches for computing MTTI are, unfortunately, limited to ex-
ponentially distributed failures. To encompass arbitrary distributions, we use
another approach based on the failure distribution density at the platform level.
Theorem 4 quantifies the probability of successfully completing an amount of
work of sizeW when using process replication for any failure distribution, which
makes it possible to compute MTTI via numerical integration. This theorem
can then be used to obtain a closed-form expression for MTTI when the failure
distribution is Exponential (Theorem 5) or Weibull (Theorem 6).

Theorem 4. Consider an application with nrg processes, each replicated g times
using process replication, so that processor Pi, 1 ≤ i ≤ g ·nrg, executes a replica
of process

⌈
i
g

⌉
. Assume that the failure inter-arrival times on the different

processors are i.i.d, and let τi denote the time elapsed since the last failure of
processor Pi. Let F denote the cumulative distribution function of the failure
probability, and F (t|τ) be the probability that a processor fails in the next t
units of time, knowing that its last failure happened τ units of time ago. The
probability that the application will still be running after t units of time is:

R(t) =
nrg∏
j=1

(
1−

g∏
i=1

F
(
t|τi+g(j−1)

))
(4)

and the MTTI is given by:

MTTI =
∫ +∞

0

nrg∏
j=1

(
1−

g∏
i=1

F
(
t|τi+g(j−1)

))
dt. (5)

While failure independence is necessary to prove Theorem 4, the assumption
that failures are i.i.d. can be removed. Nevertheless, we include this assumption
here so as to simplify the writing of Equations 4 and 5 above.

RR n° 7951



Combining Process Replication and Checkpointing for Resilience 15

Proof. The probability that processor Pi suffers from a failure during the next
t units of time, knowing that the time elapsed since its last failure is τi, is equal
by definition to Fi(t) = F (t|τi). Then the probability that the g processors
running the replicas of process j, 1 ≤ j ≤ nrg, all suffer from a failure during
the next t units of time is then equal to:

F
(g)
j (t) =

g∏
i=1

Fi+g(j−1)(t) =
g∏
i=1

F
(
t|τi+g(j−1)

)
.

Therefore, the probability that at least one of the g duplicates of process j is
still running after t units of time is equal to:

R
(g)
j (t) = 1− F (g)

j (t) = 1−
g∏
i=1

F
(
t|τi+g(j−1)

)
.

For the whole application to still be running after t units of time, each of the
nrg application processes must still be running (i.e., each must have at least one
of its g initial replicas still running). So, the probability that the application is
still running after t units of time is:

R(t) =
nrg∏
j=1

R
(g)
j (t) =

nrg∏
j=1

(
1−

g∏
i=1

F
(
t|τi+g(j−1)

))
.

We can then compute the Mean Time To Interruption of the whole application:

MTTI =
∫ +∞

0
R(t)dt

=
∫ +∞

0

nrg∏
j=1

(
1−

g∏
i=1

F
(
t|τi+g(j−1)

))
dt.

We now consider the case of the Exponential law.

Theorem 5. Consider an application with nrg processes, each replicated g times
using process replication. If the probability distribution of the time to failure of
each processor is Exponential with parameter λ, then the MTTI is given by:

MTTI = 1
λ

nrg∑
i=1

i·g∑
j=1

((
nrg
i

)(
i·g
j

)
(−1)i+j

j

)
.

Proof. According to Theorem 4, the probability that the application is still
running after t units of time is:

R(t) =
(

1−
(
1− e−λt

)g)nrg
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and the Mean Time To Interruption (MTTI) of the whole application is:∫ +∞

0
R(t)dt

=
∫ +∞

0

(
1−

(
1− e−λt

)g)nrg dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i

(
1− e−λt

)i·g dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i

 i·g∑
j=0

(
i · g
j

)
(−1)j e−λjt

 dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i

1 +
i·g∑
j=1

(
i · g
j

)
(−1)j e−λjt

 dt

=
∫ +∞

0

[
nrg∑
i=0

(
nrg
i

)
(−1)i

+
nrg∑
i=0

(nrg
i

)
(−1)i

i·g∑
j=1

(
i · g
j

)
(−1)j e−λjt

dt

=
∫ +∞

0

nrg∑
i=0

(nrg
i

)
(−1)i

i·g∑
j=1

(
i · g
j

)
(−1)j e−λjt

dt

=
nrg∑
i=0

(nrg
i

)
(−1)i

i·g∑
j=1

(
i · g
j

)
(−1)j

∫ +∞

0
e−λjtdt


=

nrg∑
i=0

(nrg
i

)
(−1)i

i·g∑
j=1

(
i·g
j

)
(−1)j

λj


=

nrg∑
i=1

(nrg
i

)
(−1)i

i·g∑
j=1

(
i·g
j

)
(−1)j

λj


Thus,

MTTI =
nrg∑
i=1

i·g∑
j=1

(
nrg
i

)(
i·g
j

)
(−1)i+j

jλ
.

The following corollary gives a simpler expression for the case g = 2:

Corollary 1. Consider an application with nrg processes, each replicated 2
times using process replication. If the probability distribution of the time to
failure of each processor is Exponential with parameter λ, then the MTTI is
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given by:

MTTI = 1
λ

nrg∑
i=1

i·2∑
j=1

((
nrg
i

)(
i·2
j

)
(−1)i+j

j

)

= 2nrg
λ

nrg∑
i=0

(
−1
2

)i (
nrg
i

)
(nrg + i) ·

Proof. The first expression is a simple corollary of Theorem 5 for the case g = 2.
The second expression is obtained through direct computation. Let f(t) be the
probability density function associated to the cumulative distribution function
F (t). Then, we have:

MTTI

=
∫ +∞

0
t · f(t)dt

=
∫ +∞

0
t 2kkλ

(
1− e−λt

)
e−λkt

(
1− e−λt

2

)k−1

dt

= 2kkλ
∫ +∞

0
t
(
1− e−λt

)
e−λkt

k−1∑
i=0

(
k − 1
i

)(
−1
2

)i
e−λitdt

= 2kkλ
k−1∑
i=0

(
k − 1
i

)(
−1
2

)i
∫ +∞

0
t
(
1− e−λt

)
e−λ(k+i)tdt

= 2kkλ
k−1∑
i=0

(
k − 1
i

)(
−1
2

)i
∫ +∞

0

(
te−λ(k+i)t − te−λ(k+i+1)t

)
dt.

As
∫ +∞

0
te−λt = 1

λ2 , the expression of MTTI can be further refined as
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follows:
MTTI

= 2kkλ
k−1∑
i=0

(
k − 1
i

)(
−1
2

)i( 1
(k + i)2

λ2

− 1
(k + i+ 1)2

λ2

)

= 2kk
λ

k−1∑
i=0

(
k − 1
i

)(
−1
2

)i
(

1
(k + i)2 −

1
(k + i+ 1)2

)

= 2kk
λ

k−1∑
i=0

[(
k − 1
i

)(
−1
2

)i 1
(k + i)2

]

−2kk
λ

k−1∑
i=0

[(
k − 1
i

)(
−1
2

)i 1
(k + i+ 1)2

]

= 2kk
λ

(
k−1∑
i=0

[(
k − 1
i

)(
−1
2

)i 1
(k + i)2

]

−
k∑
I=1

[(
k − 1
I − 1

)(
−1
2

)I−1 1
(k + I)2

])

= 2kk
λ

(
k−1∑
i=1

[(
k − 1
i

)(
−1
2

)i 1
(k + i)2

]
+
(
k − 1

0

)(
−1
2

)0 1
(k)2

+2
k−1∑
I=1

[(
k − 1
I − 1

)(
−1
2

)I 1
(k + I)2

]

+2
(
k − 1
k − 1

)(
−1
2

)k 1
(2k)2

)

= 2kk
λ

(
1
k2 +

(
−1
2

)k 1
2k2

+
k−1∑
i=1

[(
−1
2

)i 1
(k + i)2

((
k − 1
i

)
+2
(
k − 1
i− 1

))])
.
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Using the equation
(
k−1
i

)
+ 2
(
k−1
i−1
)

=
(
k
i

) (k+i)
k , we derive the desired expression

for MTTI :
MTTI

= 2kk
λ

(
1
k2 −

(
−1
2

)k+1 1
k2

+
k−1∑
i=1

(
−1
2

)i (
k
i

)
(k + i)2

(k + i)
k

)

= 2kk
λ

(
1
k2

(
1−

(
−1
2

)k+1
)

+
k−1∑
i=1

(
−1
2

)i (
k
i

)
(k + i) k

)

= 2k
λ

(
1
k

(
1 + 1

2

(
−1
2

)k)

+
k−1∑
i=1

(
−1
2

)i (
k
i

)
(k + i)

)

= 2k
λ

k∑
i=0

(
−1
2

)i (
k
i

)
(k + i)

We now consider the case of the Weibull law.

Theorem 6. Consider an application with nrg processes, each replicated g times
using process replication. If the probability distribution of the time to failure of
each processor is Weibull with scale parameter λ and shape parameter k, then
the MTTI is given by:

MTTI = λ

k
Γ
(

1
k

) nrg∑
i=1

i·g∑
j=1

(
nrg
i

)(
i·g
j

)
(−1)i+j

j
1
k

.

Proof. According to Theorem 4, the probability that the application is still
running after t units of time is:

R(t) =
(

1−
(

1− e−( tλ )k
)g)nrg
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and the Mean Time To Interruption of the whole application is:

MTTI

=
∫ +∞

0
R(t)dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i

(
1− e−( tλ )k

)i·g
dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i i·g∑

j=0

(
i · g
j

)
(−1)j e−j( tλ )k

 dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i1 +

i·g∑
j=1

(
i · g
j

)
(−1)j e−j( tλ )k

 dt

=
∫ +∞

0

[
nrg∑
i=0

(
nrg
i

)
(−1)i

+
nrg∑
i=0

(
nrg
i

)
(−1)i

 i·g∑
j=1

(
i · g
j

)
(−1)j e−j( tλ )k

dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i i·g∑

j=1

(
i · g
j

)
(−1)j e−j( tλ )k

dt

=
nrg∑
i=1

(
nrg
i

)
(−1)i i·g∑

j=1

(
i · g
j

)
(−1)j

∫ +∞

0
e−j( tλ )kdt


We consider any value j ∈ [0..nrg · g] and we make the following change

of variable: u = j
λk
tk. This is equivalent to t = λ

(
u
j

) 1
k and thus dt =
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λ
k

(
1
j

) 1
k

u( 1
k−1)du. With this notation,

∫ +∞

0
e−j( tλ )kdt = λ

kj
1
k

Γ
(

1
k

)
.

Therefore, MTTI is equal to:

nrg∑
i=1

(
nrg
i

)
(−1)i

 i·g∑
j=1

(
i · g
j

)
(−1)j λ

kj
1
k

Γ
(

1
k

) .

Thus,

MTTI = λ

k
Γ
(

1
k

) nrg∑
i=1

i·g∑
j=1

(
nrg
i

)(
i·g
j

)
(−1)i+j

j
1
k

.

4.3 Numerical Evaluation

Table 1: MNFTI ah as computed by the formula in [9] and by Theorem 1, for
nrg = 20, . . . , 220, with g = 2.

Number of processes 20 21 22 23 24 25 26

Formula in [9] 2 2.5 3.22 4.25 5.7 7.77 10.7
Theorem 1 3 3.67 4.66 6.09 8.15 11.1 15.2
% Relative Difference -33 -32 -31 -30 -30 -30 -30
Number of processes 27 28 29 210 211 212 213

Formula in [9] 14.9 20.7 29 40.8 57.4 80.9 114
Theorem 1 21.1 29.4 41.1 57.7 81.2 114 161
% Relative Difference –30 -29 -29 -29 -29 -29 -29
Number of processes 214 215 216 217 218 219 220

Formula in [9] 161 228 322 454 642 908 1284
Theorem 1 228 322 455 643 908 1284 1816
% Relative Difference -29 -29 -29 -29 -29 -29 -29

Table 1 shows the MNFTI ah values as computed by the formula in [9] and
by Theorem 1, for various values of nrg and for g = 2. The percentage relative
difference between the two values is included in the table as well. The two
values diverge significantly, with relative differences between 29% and 33%.
Here again we conclude that the formula in [9] significantly under-estimates
MNFTI for either of the failure accounting approaches (recall that MNFTI ah

and MNFTI rp differ only by 1).
Table 2 shows the MTTI values as computed by the formula in [9] and by

Corollary 1, for various values of nrg and for g = 2. The percentage relative
difference between the formula in [9] and our recursive formula is indicated
as well. Here again the two values diverge significantly, exactly in the same
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Table 2: MTTI as computed by the formula in [9] and by Corollary 1, for
nrg = 20, . . . , 220, with g = 2.

Number of processes 20 21 22 23 24 25 26

Formula in [9] 1 0.625 0.402 0.265 0.178 0.121 0.0836
Corollary 1 1.5 0.917 0.582 0.381 0.255 0.173 0.119
% Relative Diff -33.33 -31.82 -30.89 -30.32 -29.97 -29.75 -29.6
Simulated MTTI 1.498 0.9184 0.5831 0.3808 0.2542 0.1725 0.1188
Number of processes 27 28 29 210 211 212 213

Formula in [9] 0.058 0.0405 0.0284 0.0199 0.014 0.00987 0.00696
Corollary 1 0.0823 0.0574 0.0402 0.0282 0.0198 0.014 0.00985
% Relative Diff -29.5 -29.44 -29.39 -29.36 -29.34 -29.33 -29.31
Simulated MTTI 0.08226 0.05738 0.0401 0.02825 0.01982 0.01399 0.009853
Number of processes 214 215 216 217 218 219 220

Formula in [9] 0.00492 0.00347 0.00245 0.00173 0.00123 0.00086 0.000612
Corollary 1 0.00695 0.00491 0.00347 0.00245 0.00173 0.00122 0.000866
% Relative Diff -29.31 -29.3 -29.3 -29.3 -29.29 -29.29 -29.29
Simulated MTTI 0.00693 0.00491 0.00347 0.00245 0.00173 0.00123 0.000868

proportion as for the MNFTI ah (see Equation (3)). We conclude that the
formula in [9] significantly under-estimates MTTI .

As expected, using the formula from Corollary 1, plugging in the value from
Theorem 1 into Equation (3), and a using the recursive computation given
all lead to the same numerical values. To validate these computations we have
compared the values that they produce to the MTTI as computed through
simulations. For each studied value of nrg, we have generated 200, 000 random
failure dates, computed the Time To application Interruption for each instance,
and computed the mean of these values. This simulated MTTI , also reported
in Table 2, is in full agreement with Corollary 1.

5 Simulation framework
In this section we detail our simulation methodology for evaluating the benefits
of process replication. We use both synthetic and real-world failure distribu-
tions. The source code and all simulation results are publicly available at: http:
//perso.ens-lyon.fr/frederic.vivien/Data/Resilience/SC2012Replication.
Synthetic failure distributions – To choose failure distribution parameters
that are representative of realistic systems, we use failure statistics from the
Jaguar platform. Jaguar is said to experience on the order of 1 failure per
day [3, 4]. Assuming a 1-day platform MTBF gives us a processor MTBF equal
to ptotal

365 ≈ 125 years, where ptotal = 45, 208 is the number of processors in the
Jaguar platform. We then compute the parameters of Exponential and Weibull
distributions so that they lead to this MTBF value. Namely, for the Exponential
distribution we set λ = 1

MTBF and for the Weibull distribution, which requires
two parameters k and λ, we set λ = MTBF/Γ(1 + 1/k). We fix k to 0.7 and
0.5 based on the results in [16] and [17].
Log-based failure distributions – We also consider failure distributions
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based on failure logs from production clusters. We used logs for the largest
clusters among the preprocessed logs in the Failure trace archive [30], i.e., for
clusters at the Los Alamos National Laboratory [16]. In these logs, each failure
is tagged by the node —and not just the processor— on which the failure oc-
curred. Among the 26 possible clusters, we opted for the logs of the only two
clusters with more than 1,000 nodes. The motivation is that we need a sample
history sufficiently large to simulate platforms with more than ten thousand
nodes. The two chosen logs are for clusters 18 and 19 in the archive (referred
to as 7 and 8 in [16]). For each log, we record the set S of availability intervals.
The discrete failure distribution for the simulation is generated as follows: the
conditional probability P (X ≥ t | X ≥ τ) that a node stays up for a duration t,
knowing that it has been up for a duration τ , is set to the ratio of the number
of availability durations in S greater than or equal to t, over the number of
availability durations in S greater than or equal to τ .
Scenario generation – Given a p-processor job, a failure trace is a set of
failure dates for each processor over a fixed time horizon h set to 2 years. The
job start time is assumed to be one year to avoid side-effects related to the
synchronous initialization of all nodes/processors. Given the distribution of
inter-arrival times at a processor, for each processor we generate a trace via
independent sampling until the target time horizon is reached.

The two clusters used for computing our log-based failure distributions con-
sist of 4-processor nodes. Hence, to simulate a 45,208-processor platform we
generate 11,302 failure traces, one for each four-processor node.
Checkpointing policy – Replication dramatically reduces the number of ap-
plication failures, so that standard periodic checkpointing strategies can be used
(in [8] we have developed a dynamic programming strategy that leads to non-
periodic checkpointing in the general case). The checkpointing period can be
computed based on the MTTI value using Young’s approximation [11] or Daly’s
first-order approximation [10], the latter being used in [9]. Alternately, since our
experiments are in simulation, we can search numerically for the best period.
To build the candidate periods, the period computed by OptExp from [8] is
multiplied and divided by 1 + 0.05 × i with i ∈ {1, ..., 180}, and by 1.1j with
j ∈ {1, ..., 60}. We present results with the period as given by Daly’s approxi-
mation and with the best period found numerically.
Replication overhead – In [9], the authors consider that the communication
overhead due to replication is proportional to the application’s communica-
tion demands. Arguing that, to be scalable, an application must have sub-
linear communication costs with respect to increasing processor counts, they
consider an approximate logarithmic model for the percentage replication over-
head: log(p)

10 +3.67, where p is the number of processors. The parameters to this
model are instantiated from the application in [9] that has the highest replica-
tion overhead. We use the same logarithmic model to augment our first two
parallel job models in Section 3:

• Perfectly parallel jobs: W (p) = W
p × (1 + 1

100 × ( log(p)
10 + 3.67)).

• Generic parallel jobs: W (p) = (Wp + γW )× (1 + 1
100 × ( log(p)

10 + 3.67)).

For the numerical kernel job model, we can use a more accurate overhead model
that does not rely on the above logarithmic approximation. Our original model
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in Section 3 comprises a computation component and a communication compo-
nent. Using replication (g = 2), for each point-to-point communication between
two original application processes, now a communication occurs between each
process pair, considering both original processors and replicas, for a total of 4
communications. We can thus simply multiply the communication component
of the model by a factor 4 and obtain the augmented model:

• Numerical kernels: W (p) = W
p + γ×W

2
3√

p × 4.

Parameter values – We use the same parameters as in [8]. Namely, C = R =
600 s, D = 60 s and W = 10, 000 years (except for log-base simulations for
which W = 1, 000 years).

6 Simulation Results
6.1 Checkpointing Period
Our first set of experiments aims at determining whether using Daly’s approx-
imation for computing the checkpointing period, as done in [9], is an effective
approach. In the g = 2 case (two replicas per application process), we compute
this period using the correct MTTI expression from Corollary 1 rather than
the erroneous value given in [9]. Given a failure distribution and a parallel job
model, we compute the average makespan over 100 sample simulated applica-
tion executions for a range of numbers of processors. Each sample is obtained
using a different seed for generating random failure events based on the failure
distribution. We present results using the best period found via a numerical
search in a similar manner. In addition to the g = 2 results, we also present re-
sults for g = 1 (no replication) as a baseline (in which case the MTTI is simply
the processor MTBF).

We ran experiments for five failure distributions: (i) Exponential with a 125-
year MTBF; (ii) Weibull with a 125-year MTBF and shape parameter k = 0.70;
(iii) Weibull with a 125-year MTBF and shape parameter k = 0.50; (iv) Failures
drawn from the failure log of LANL cluster 18; and (v) Failures drawn from the
failure log of LANL cluster 19. For each failure distribution, we use five parallel
job models as described in Section 3, augmented with the replication overhead
model described in Section 5: (i) perfectly parallel; (ii) generic parallel jobs
with γ = 10−6; (iii) numerical kernels with γ = 0.1; (iv) numerical kernels with
γ = 1; and (v) numerical kernels with γ = 10. We thus have 5× 5 = 25 sets of
results.

We found that for a given failure distribution all results follow the same trend
regardless of the job model. We show results for the five considered parallel job
models. Figures 1, 2, 3, 4, and 5 show results for each of the five considered
failure distributions. Each figure shows five graphs, each graph shows average
makespan vs. number of processors for one of the five parallel job models. The
two curves for g = 1 are exactly superposed in all graphs of Figure 1, and the
two curves for g = 2 are exactly superposed in all graphs of all figures.

Results for the case g = 1 (no replication) show that Daly’s approximation
achieves the same performance as the best periodic checkpointing policy for
Exponential failures. For our two real-world failure datasets using the approx-
imation also does well, deviating from the best periodic checkpointing policy

RR n° 7951



Combining Process Replication and Checkpointing for Resilience 25

Table 3: Fraction of processor failures that lead to application failures with
process replication (g = 2) assuming Weibull failure distributions (k = 0.7, 0.5)
for various numbers of processors and C=600s. Results are averaged over 100
experiments.

# of app. failures % of proc. failures
# of proc. k = 0.7 k = 0.5 k = 0.7 k = 0.5

214 1.95 4.94 0.35 0.39
215 1.44 3.77 0.25 0.28
216 0.88 2.61 0.15 0.19
217 0.45 1.67 0.075 0.12
218 0.20 1.11 0.034 0.076
219 0.13 0.72 0.022 0.049
220 0.083 0.33 0.014 0.023

only marginally as the platform becomes large. For Weibull failures, however,
Daly’s approximation leads to significantly suboptimal results that worsen as
k decreases (as we already reported in [8]). What is perhaps less expected is
that in the case g = 2, using Daly’s approximation leads to virtually the same
performance as using the best period even for Weibull failures. This is not to
say that Daly’s approximation yields the best checkpointing period. Application
makespan is simply not sentitive to the checkpointing period, at least in a wide
neighborhood around the best period. With process replication, application
failures and recoveries are so infrequent, i.e., the MTBF of a pair of replicas is
so large, that Daly’s approximation is good enough. To quantify the frequency
of application failures, Table 3 shows the percentage of processor failures that
actually lead to failure recoveries when using process replication. Results are
shown in the case of Weibull failures for k = 0.5 and k = 0.7, C = 600s, and for
various numbers of processors. We see that very few application failures, and
thus recoveries, occur throughout application execution (recall that makespans
are measured in days in our experiments). This is because a very small fraction
of processor failures manifest themselves as application failures (below 0.4%
in our experiments). While this low fraction showcases the benefit of process
replication, it also makes the choice of the replication period non-critical.

When setting the processor MTBF to a lower value so that the MTBF of a
pair of replicas is not as large, one does observe that Daly’s approximation leads
to longer average makespans than when using the best checkpointing period (see
Figures 6, 7, 8, 9, and 10 ). This is even true for exponential failures. Con-
sider for instance a process replication scenario with Weibull failures of shape
parameters k = 0.7, a perfect parallel job, and a platform with 220 processors.
When setting the MTBF to an unrealistic 0.1 year, using Daly’s approximation
yields an average makespan of 20.76 days, as opposed to 18.1 days when using
the best period–an increase of more than 12%.

We summarize our findings so far. Without replication, Daly’s approxima-
tion produces significantly suboptimal checkpointing policies when failures are
not exponentially distributed. The Weibull distribution is recognized as a rea-
sonable approximation of failures in real-world systems [15, 16, 17, 18]. When
using replication, Daly’s approximation can also lead to poor periodic check-
pointing. However, this never happens in practical settings because replication
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drastically reduces the number of failures. In fact, in practical process replica-
tion settings, the choice of the checkpointing period is not critical. Consequently,
setting the checkpointing period based on Daly’s approximation is a safe choice
when process replication is used. This validates the unsubstantiated choice of
using this approximation in [9].

6.2 Revisiting the Results in [9]
Figure 9 in [9] presents interesting results for the“break-even” point for process
replication. More specifically, in a 2-D plane defined by the processor MTBF
and the number of processors, and given a checkpointing overhead, the figure
shows a curve that divides the plane into two regions. Points above the curve
correspond to cases in which process replication is beneficial. Points below the
curve correspond to cases in which process replication is detrimental, i.e., the
resource waste due to replication is not worthwhile because the processor MTBF
is too large or the number of processors is too low. Several curves are shown
for different checkpointing overheads, and as expected, the higher the overhead,
the more beneficial it is to use process replication.

These results are obtained for exponential failures and using the checkpoint-
ing period given by Daly’s approximation. In the previous section we have seen
that in the no-replication case this approximation leads to poor results when
the failure distribution is Weibull (see the g = 1 curves in Figures 2 and 3 ).

Although our results for two particular production workloads show that
Daly’s approximation led to reasonably good results, there is evidence that,
in general, failure distributions are well approximated by Weibull distribu-
tions [15, 16, 17, 18]. Most recently, in [18], the authors show that failures
observed on a production cluster, over a cumulative 42-month time period, are
modeled well by a Weibull distribution. Furthermore, the shape parameter of
this distribution, k, is below 0.5. In other words, the failure distribution is far
from being Exponential and thus Daly’s approximation would be far from the
best period (compare Figure 2 for k = 0.7 to Figure 3 for k = 0.5). Neverthe-
less, in the case of process replication, Daly’s approximation leads to the same
results as the best checkpointing period for practical settings. We conclude that
the results in [9] give a biased answer to the break-even point question, or at
least an answer that is limited to the use of Daly’s approximation. Such an
answer is sensitive to the effect of this approximation on application execution,
and turns out to be too favorable for process replication.

We now revisit the results in [9] by always using the best checkpointing
period for each simulated application execution, as computed by a numerical
search. Therefore, our results quantify the definitive break-even point, remov-
ing the choice of the checkpointing period from the equation. These results
are shown as solid curves in Figure 11 for exponential failures and for Weibull
failures with k = 0.7 and k = 0.5, each curve corresponding to a different
checkpointing overhead (C) value. For comparison, dashed curves correspond
to results obtained using Daly’s approximation as done in [9]. The area above
a curve corresponds to settings for which replication is beneficial. As expected,
the general trends are similar to that seen in Figure 9 in [9]: process replica-
tion becomes detrimental when the number of processors is too small, when
the checkpointing overhead is too low, and/or when the processor MTBF is too
large. More importantly, the distance between each solid line and its dashed
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counterpart shows by how much the results in [9] are optimistic in favor of pro-
cess replication due to the use of Daly’s approximation. This distance increases
as k decreases, which is expected since the Weibull distribution is then further
away from the Exponential distribution. (For exponential distributions, the
curves match.) For instance, in the case k = 0.5 (Figure 11(c)), the break-even
curve for C = 600s as obtained using Daly’s approximation is in fact, for most
values of the MTBF, below the break-even curve for C = 900s, obtained using
the best checkpointing period. Considering the solid curve for C = 150s and
the dashed one for C = 300s, one sees that the impact of the checkpointing
overhead is twice as unfavorable for process replication as that indicated by
results obtained with the approach in [9] when the process MTBF is over 100
years.

7 Conclusion
In this paper we have presented a rigorous study of process replication for large-
scale platforms. We have conducted a thorough analysis, providing recursive
expressions for MNFTI , and analytical expressions for MTTI with arbitrary
distributions, that lead to closed-form expressions for Exponential and Weibull
distributions. We have explained why the MNFTI and MTTI values determined
in [9] are not accurate, leading to a difference of roughly 30% with our own
calculations, which are validated via simulation experiments. In addition, we
have identified an unexpected relationship between two natural failure models
(already hit and running processors).

We have conducted an extensive set of simulations for Exponential, Weibull
and trace-based failure distributions. These results have shown that although
the choice of a good checkpointing period can be important in the no-replication
case, namely for Weibull failure distributions, this choice is not critical when
process replication is used. This is because with process replication few proces-
sor failures lead to application failures (i.e., rollback and recovery). This effect
is essentially the reason why process replication was proposed in the first place.
But a surprising and interesting side-effect is that choosing a good checkpoint-
ing period is no longer challenging. Finally, we have revisited the results in [9]
that quantify the break-even point between replication and no-replication for
Weibull failures. Our results differ and are less favorable for process replication.
This difference is because we use the best checkpointing period rather than that
provided by Daly’s approximation, since we have shown the latter to be detri-
mental to the no-replication case. Our break-even results thus provide a fairer
comparison that is not impacted by the choice of a particular checkpointing
period.

Altogether, our results provide a sound basis for quantifying the potential
benefit of process replication for future HPC platforms. While not as favorable
for replication as those in [9], our results nevertheless point to relevant scenarios,
defined by instantiations of the platform and application parameters, in which
replication is worthwhile when compared to the no-replication case. This is in
spite of the resource waste that it induces, and even if the best checkpointing
period is used in the no-replication case. Finally, our results also have laid the
necessary theoretical foundations for future studies of process replication.
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Figure 1: Average makespan vs. number of processors for two choices
of the checkpointing period, without process replication (Daly-g=1 and
BestPeriod-g=1) and with process replication (Daly-g=2 and BestPeriod-
g=2), for Exponential failures (MTBF = 125 years).
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Figure 2: Average makespan vs. number of processors for two choices
of the checkpointing period, without process replication (Daly-g=1 and
BestPeriod-g=1) and with process replication (Daly-g=2 and BestPeriod-
g=2), for Weibull failures (MTBF = 125 years and k = 0.70).
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(a) Perfectly parallel jobs:
W(q) = W
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(b) Generic parallel jobs:
W(q) = W

q + 10−6 W.
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Figure 3: Average makespan vs. number of processors for two choices
of the checkpointing period, without process replication (Daly-g=1 and
BestPeriod-g=1) and with process replication (Daly-g=2 and BestPeriod-
g=2), for Weibull failures (MTBF = 125 years and k = 0.50).
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(b) Generic parallel jobs:
W(q) = W

q + 10−6 W.
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Figure 4: Average makespan vs. number of processors for two choices
of the checkpointing period, without process replication (Daly-g=1 and
BestPeriod-g=1) and with process replication (Daly-g=2 and BestPeriod-
g=2), for failures based on the failure log of LANL cluster 18.
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(a) Perfectly parallel jobs:
W(q) = W
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(b) Generic parallel jobs:
W(q) = W

q + 10−6 W.
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Figure 5: Average makespan vs. number of processors for two choices
of the checkpointing period, without process replication (Daly-g=1 and
BestPeriod-g=1) and with process replication (Daly-g=2 and BestPeriod-
g=2), for failures based on the failure log of LANL cluster 19.
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(b) Weibull failure distribution (k = 0.7)
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Figure 6: Average makespan vs. processor MTBF using group replication
(g = 2) and using Perfectly parallel jobs: W(q) = W

q , showing that Daly’s
approximation can be suboptimal.
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(b) Weibull failure distribution (k = 0.7)
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Figure 7: Average makespan vs. processor MTBF using group replication (g =
2) and using Generic parallel jobs: W(q) = W

q + 10−6 W, showing that Daly’s
approximation can be suboptimal.
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(b) Weibull failure distribution (k = 0.7)
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(b) Weibull failure distribution (k = 0.5)

Figure 8: Average makespan vs. processor MTBF using group replication (g =
2) and using Numerical kernels model: W(q) = W

q + 0.1 W2/3
√
q , showing that

Daly’s approximation can be suboptimal.

RR n° 7951



Combining Process Replication and Checkpointing for Resilience 39

10.1 10 100
Mean time between failures

0

5

10

15

20

25

30

35

40

av
er

ag
e

m
ak

es
pa

n
(in

da
ys

)

BestPeriod-g = 2
Daly-g = 2
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Figure 9: Average makespan vs. processor MTBF using group replication (g =
2) and uusing Numerical kernels model: W(q) = W

q +W2/3
√
q , showing that Daly’s

approximation can be suboptimal.
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Figure 10: Average makespan vs. processor MTBF using group replication
(g = 2) and using Numerical kernels model: W(q) = W

q + 10 W2/3
√
q , showing

that Daly’s approximation can be suboptimal.
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(b) Weibull failure distribution with k = 0.70
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(c) Weibull failure distribution with k = 0.50

Figure 11: Break-even point curves for process replication vs. no-replication
for various checkpointing overheads, as computed using the best checkpointing
periods (solid lines) and Daly’s approximation (dashed lines).
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