
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
80

23
--

FR
+E

N
G

RESEARCH
REPORT
N° 8023
July 2012

Project-Team ROMA

Impact of fault prediction
on checkpointing
strategies
Guillaume Aupy, Yves Robert, Frédéric Vivien, Dounia Zaidouni

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Impact of fault prediction on checkpointing
strategies

Guillaume Aupy∗, Yves Robert∗†‡, Frédéric Vivien§∗, Dounia
Zaidouni§∗

Project-Team ROMA

Research Report n° 8023 — July 2012 — 21 pages

Abstract: This paper deals with the impact of fault prediction techniques on checkpointing
strategies. We extend the classical analysis of Young in the presence of a fault prediction system,
which is characterized by its recall and its precision, and which provides either exact or window-
based time predictions. We succeed in deriving the optimal value of the checkpointing period
(thereby minimizing the waste of resource usage due to checkpoint overhead) in all scenarios.
These results lay the foundations for future experimental validation of the model.

Key-words: Fault-tolerance, checkpointing, prediction, migration, model, exascale

∗ LIP, École Normale Supérieure de Lyon, France
† University of Tennessee Knoxville, USA
‡ Institut Universitaire de France
§ INRIA

Étude de l’impact de la prédiction de fautes sur
les stratégies de protocoles de checkpoint

Résumé : Ce travail considère l’impact des techniques de prédiction de fautes
sur les stratégies de protocoles de sauvegarde de points de reprise (checkpoints)
et de redémarrage. Nous étendons l’analyse classique de Young en présence
d’un système de prédiction de fautes, qui est caractérisé par son rappel (taux
de pannes prévues sur nombre total de pannes) et par sa précision (taux de
vraies pannes parmi le nombre total de pannes annoncées), et qui fournit des
prédictions soit exactes soit avec des fenêtres. Dans ce travail, nous avons pu
obtenir la valeur optimale de la période de checkpoint (minimisant ainsi le gas-
pillage de l’utilisation des ressources dû au coût de prise de ces points de sauve-
garde) dans différents scénarios. Ce papier pose les fondations théoriques pour
de futures expériences et une validation du modèle.

Mots-clés : Tolérance aux pannes, checkpoint, prédiction, migration, modèle,
exascale

Impact of fault prediction on checkpointing strategies 3

1 Introduction

In this paper, we assess the impact of fault prediction techniques on check-
pointing strategies. We assume to have jobs executing on a platform subject to
faults, and we let µ be the mean time between faults (MTBF) of the platform.
In the absence of fault prediction, the standard approach is to take periodic
checkpoints, each of length C, every period of duration T . In steady-state uti-
lization of the platform, the value Topt of T that minimizes the (expectation
of the) waste of resource usage due to checkpointing, is easily computed as
Topt =

√
2Cµ. This is the well-known Young formula [1].

Now, when some fault prediction mechanism is available, can we compute
a better checkpointing period to decrease the expected waste? and to what
extent? Critical parameters that characterize a fault prediction system are its
recall r, which is the fraction of faults that are indeed predicted, and its preci-
sion p, which is the fraction of predictions that are correct (i.e., correspond to
actual faults). The major objective of this paper is to refine the expression of
the expected waste as a function of these new parameters, and to derive opti-
mal values for the checkpointing period. We deal with two problem instances,
one where the predictor system provides exact dates for predicted events, and
another where it only provides time windows during which events take place.
We succeed in characterizing optimal values for both instances.

The results of this preliminary work lay the theoretical foundations for the
study of the impact of prediction on checkpointing strategies, and are a prereq-
uisite for conducting experimental simulations to fully validate the analysis for
realistic application/platform scenarios.

2 Framework

2.1 Checkpointing strategy

We consider a platform subject to faults. Our work is agnostic of the granularity
of the platform, which may consist either of a single processor, or of several
processors that work concurrently and use coordinated checkpointing. The key
parameter is µ, the mean time between faults (MTBF) of the platform. If
the platform is made of K components whose individual MTBF is µind, then
µ = µind

K .
Checkpoints are taken at regular intervals, or periods, of length T . We

use C, D, and R for the duration of the checkpoint, downtime and recovery
(respectively). We must enforce that C ≤ T , and useful work is done only
T − C units of time during every period of length T , if no fault occurs. The
waste due to checkpointing in a fault-free execution is Waste = C

T . In the
following, the waste always denote the fraction of time that the platform is not
doing useful work.

2.2 Fault predictor

A fault predictor is a mechanism that is able to predict that some faults will take
place, either at a certain point in time, or within some time-interval window.
The accuracy of the fault predictor is characterized by two quantities, the recall
and the precision:

RR n° 8023

Impact of fault prediction on checkpointing strategies 4

• The recall r is the fraction of faults that are predicted;

• The precision p is the fraction of fault predictions that are correct.

Traditionally, one defines three types of events: (i) true positive events are
faults that the predictor has been able to predict (let TrueP be their number);
(ii) false positive events are fault predictions that did not materialize as actual
faults (let FalseP be their number); and (iii) false negative events are faults
that were not predicted (let FalseN be their number). With these definitions,
we have

r =
TrueP

TrueP + FalseN
and p =

TrueP
TrueP + FalseP

We point out that the precision p is a standard notion in the literature [2,
3, 4, 5, 6]. However, the name “precision” can be misleading. For instance,
consider a predictor that provides time windows of length I for a platform whose
MTBF is µ. The probability that a fault takes place inside the window is I

µ ,

hence a precision p = I
µ brings no additional information. Of course a very high

precision enables to identify those time intervals where faults are more likely to
strike, but a very low precision is useful too (somewhat counter-intuitively!): it
enables to identify those time intervals where faults should not be expected.

2.3 Fault rates

In addition to µ, the mean time between faults (MTBF) of the platform, let µP
be the mean time between predicted events (both true positive and false posi-
tive), and let µNP be the mean time between unpredicted faults (false negative).
Finally, we define the mean time between events as µe (including all three event
types). The relationships between µ, µP , µNP , and µe are the following:

• (1−r)
µ = 1

µNP
(here, 1− r is the fraction of faults that are unpredicted);

• r
µ = p

µP
(here, r is the fraction of faults that are predicted, and p is the

fraction of fault predictions that are correct);

• 1
µe

= 1
µP

+ 1
µNP

(here, events are either predicted (true or false) or not).

3 Predictor with exact event dates

In this section, we present an analytical model to assess the impact of prediction
on periodic checkpointing strategies. We consider the case where the predictor
is able to provide exact prediction dates, and to generate such predictions at
least C seconds in advance, so that a checkpoint can indeed be taken before the
event (otherwise the prediction cannot be useful, because there is not enough
time to take proactive actions). We consider the following algorithm:

1. While no fault prediction is available, checkpoints are taken periodically
with period T .

2. When a fault is predicted, we decide whether to take the prediction into
account or not. This decision is randomly taken: with probability q,
we trust the predictor and take the prediction into account, and, with

RR n° 8023

Impact of fault prediction on checkpointing strategies 5

TimeT-C Wreg T-Wreg -C T-C T-C

Predicted failure

C C C C C C

Figure 1: Whenever there is enough time, the algorithm takes a checkpoint just
before the predicted failure.

TimeT-C

Predicted failure

T-C T-C T-C

C C ε C C C

Figure 2: Whenever there is not enough time to take a checkpoint, the algorithm
executes some extra work.

probability 1− q, we ignore the prediction. If we take the prediction into
account, there are two cases. If we have enough time before the prediction
date, we take a checkpoint as late as possible, i.e., so that it completes right
at the time where the fault is predicted to happen. After the checkpoint,
we then complete the execution of the period (see Figure 1). Otherwise,
if we do not have enough time to take an extra checkpoint (ε < C), then
we do some extra work during ε seconds (see Figure 2). We account for
this work as idle time in the expression of the waste, to ease the analysis.
Our expression of the waste is thus an upper bound.

The rationale for not always trusting the predictor is to avoid taking useless
checkpoints too frequently. Intuitively, the precision p of the predictor must be
above a given threshold for its usage to be worthwhile. In other words, if we
decide to checkpoint just before a predicted event, there are two cases: either we
will save time by avoiding a costly re-execution if the event does correspond to
an actual fault, or we will lose time by unduly performing an extra checkpoint
if the event does not correspond to an actual fault. We need a larger proportion
of the former cases, i.e., a good precision, for the predictor to be really useful.
The following analysis will determine the optimal value of q as a function of the
parameters C, µ, r, and p.

3.1 Computing the waste

Our goal in this section is to compute a formula for the expected waste. Recall
that the waste is the fraction of time that the processors do not perform useful
computations, either because they are checkpointing, or because they recover
from a fault. There are four different sources of waste (see Figure 3):

1. Checkpoints: During a fault-free execution, the fraction of resources
used in checkpointing is:

C

T
(1a)

2. Unpredicted faults: This overhead occurs each time a unpredicted fault
strikes, that is, on average, once every µNP seconds. The time wasted be-
cause of the unpredicted fault is then the time elapsed between the last

RR n° 8023

Impact of fault prediction on checkpointing strategies 6

checkpoint and the fault, plus the downtime and the time needed for the
recovery. The expectation of the time elapsed between the last check-
point and the fault is equal to half the period of checkpoints, because the
time where the fault hits the system is independent of the checkpointing
algorithm. Finally, the waste due to unpredicted faults is:

1

µNP

[
T

2
+D +R

]
(1b)

3. Predictions taken into account: Now we have to compute the exe-
cution overhead due to a prediction which we trust (hence we checkpoint
just before its date). This overhead occurs each time a prediction is made
by the predictor, that is, on average, once every µP seconds, and that we
decide to trust it, with probability q. If the predicted event is an actual
fault, we waste C +D +R seconds (we waste D +R seconds because the
predicted event corresponds to an actual fault and if we have enough time
before the prediction date, we waste C seconds because we take an extra
checkpoint as late as possible before the prediction date (see Figure 1).
Note that if we do not have enough time to take an extra checkpoint
(see Figure 2), we overestimate the waste as C seconds. Otherwise, if the
predicted event is not an actual fault, we waste C seconds. An actual
fault occurs with probability p, and a false prediction is made with prob-
ability (1− p). Averaging with these probabilities, we waste an expected
amount of [p(C +D +R) + (1− p)C] seconds. Finally, the corresponding
overhead is:

1

µP
q [p(C +D +R) + (1− p)C] (1c)

4. Ignored predictions: The final source of waste is for predicted events
that we do not trust. This overhead occurs each time a prediction is made
by the predictor, that is, on average, once every µP seconds, and that we
decide to trust it, with probability 1−q. If the predicted event corresponds
to an actual fault, we waste (T2 + D + R) seconds (as for a unpredicted
fault). Otherwise there is no fault and we took no extra checkpoint, and
thus we lose nothing. An actual fault occurs with a probability p. The
corresponding overhead is:

1

µP
(1− q)

[
p(
T

2
+D +R) + (1− p)0

]
(1d)

Summing up the overhead over the four different sources, we obtain the
following equation for the waste:

Waste =
C

T

+
1

µNP

[
T

2
+D +R

]
+

1

µP
q [p(C +D +R) + (1− p)C]

+
1

µP
(1− q)

[
p(
T

2
+D +R) + (1− p)0

]

RR n° 8023

Impact of fault prediction on checkpointing strategies 7

TimeT-C T-C Tlost T-C

failure

TimeT-C Wreg

Predicted failure

T-Wreg -C T-C T-C

TimeT-C Wreg

failure Predicted failure

T-Wreg -C T-C

Failure without prediction C C C D R C

Prediction without failure C C C C C C

Prediction with failure C C C D R C C

Figure 3: Actions taken when the predictor provides exact event dates.

After simplification, we have:

Waste =
C

T
+

1

µ

[
(1− rq)T

2
+D +R+

qr

p
C

]
(2)

3.2 Validity of the analysis

We point out that Equation (2) is accurate only when two events (an event being
a prediction (true or false) or a unpredicted fault) do not take place within the
same period. To ensure that this condition is met with a high probability, we
bound the length of the period: we enforce the condition T < αµe, where α is
some tuning parameter.

In fact, the number of events during a period of length T can be modeled
as a Poisson process of parameter T

µe
; the probability of having k ≥ 0 faults is

1
k! (

T
µe

)ke−
T
µe . Hence the probability of having two or more faults is π = P (X ≥

2) = 1 − (P (X = 0) + P (X = 1)) = 1 − (1 + T
µe

)e−
T
µe , where X is the number

of faults. Enforcing the constraint T ≤ αµe leads to π ≤ 1− (1 + α)e−α. If we
assume α = 0.1 then π ≤ 0.005, hence a valid approximation when bounding the
period range accordingly. Indeed, with such a conservative value for α, we have
overlapping faults every 200 periods in average, so that the model is accurate
for 98% of the checkpointing segments, hence quite reliable.

In addition to the previous constraint, recall that we must always enforce the
condition C ≤ T , by construction of the periodic checkpointing policy. Finally,
note that the optimal waste may never exceed 1, since it represents the fraction
of time that is “wasted”. When the waste equals 1, the application no longer
makes progress.

3.3 Waste minimization

3.3.1 Computation of the extremum period Textr

We have the expression of the waste from Equation (2):

Waste(T) =
C

T
+

1

µ

[
(1− rq)T

2
+D +R+

qr

p
C

]

RR n° 8023

Impact of fault prediction on checkpointing strategies 8

Differentiating twice with respect to T , we obtain

Waste′(T) =
−C
T 2

+
1

µ

[
(1− rq)1

2

]
Waste′′(T) =

2C

T 3
> 0

We obtain that Waste′′(T) is strictly positive, hence Waste(T) is a convex
function of T and admits a unique minimum on its domain [C,αµe]. We also
compute Textr, the extremum value of T that is the unique zero of the function
Waste′(T):

Textr =

√
2µC

1− rq

Note that this Equation makes sense even when 1− rq = 0: indeed this would
mean that both r = 1 and q = 1: the predictor predicts every fault, and we take
proactive action for each one of them. Then there should never be any periodic
checkpointing!

Finally, note that Textr may well not belong to the admissible domain [C,αµ].
The optimal waste Wasteopt is determined via the following case analysis.

3.3.2 Computation of Wasteopt

We rewrite the waste as an affine function of q:

Waste(q) =
rq

µ

(
C

p
− T

2

)
+

(
C

T
+

T

2µ
+
D +R

µ

)
For any value of T , we deduce that Waste(q) is minimized either for q = 0 or
for q = 1. This (somewhat unexpected) conclusion is that the predictor should
sometimes be always trusted, and sometimes never, but no in-between value for
q will do a better job. Thus we need to minimize the two functions Waste{q=0}
and Waste{q=1} over the domain of admissible values for T , and to retain the
best result.

We have:

Waste{q=0}(T) =
C

T
+

1

µ

[
T

2
+D +R

]
The function Waste{q=0}(T) is a convex function and reaches its minimum for
Topt1 in the interval [C,αµ]:

• If (C < Textr < αµe): Topt1 = Textr =
√

2µC

• If (Textr < C): Topt1 = C

• If (Textr ≥ αµe): Topt1 = αµe

Thus, Waste{q=0} is minimized for:

Topt1 = min
{
αµe,max{

√
2µC,C}

}
Similarly, we have:

Waste{q=1}(T) =
C

T
+

1

µ

[
(1− r)T

2
+D +R+

r

p
C

]
RR n° 8023

Impact of fault prediction on checkpointing strategies 9

The function Waste{q=1}(T) is a convex function and reaches its minimum for
Topt2 in the interval [C,αµe].

• If (C < Textr < αµe): Topt2 = Textr =
√

2µC
1−r

• If (Textr < C): Topt2 = C

• If (Textr ≥ αµe): Topt2 = αµe

Thus, Waste{q=1} is minimized for:

Topt2 = min

{
αµe,max{

√
2µC

1− r
, C}

}
Finally, the optimal waste is:

Wasteopt = min
{
Waste{q=0}(Topt1),Waste{q=1}(Topt2)

}
3.4 Prediction and preventive migration

In this section, we make a short digression and briefly present an analytical
model to assess the impact of prediction and preventive migration on periodic
checkpointing strategies. As before, we consider a predictor that is able to
predict exactly when faults happen, and to generate these predictions at least
C seconds before the event dates.

The idea of migration consists in moving a task for execution on another
node, when a fault is predicted to happen on the current node in the near future.
Note that the faulty node can later be replaced, in case of a hardware fault, or
software rejuvenation can be used in case of a software fault. We consider the
following algorithm, which is very similar to that used in Section 3.1:

1. When no fault prediction is available, checkpoints are taken periodically
with period T .

2. When a fault is predicted, we decide whether to execute the migration
or not. The decision is a random one: with probability q we trust the
predictor and do the migration and, with probability 1-q, we ignore the
prediction. If we take the prediction into account, we execute the migra-
tion as late as possible, so that it completes right at the time when the
fault is predicted to happen.

As before, we have four different sources of waste. Summing the overhead
of the execution of these different sources, we obtain the following equation for
the waste (where M is the duration of a migration):

Waste =
C

T

+
1

µNP

[
T

2
+D +R

]
+

1

µP
q [p(M) + (1− p)M]

+
1

µP
(1− q)

[
p(
T

2
+D +R) + (1− p)0

]

RR n° 8023

Impact of fault prediction on checkpointing strategies 10

After simplification, we get:

Waste =
C

T
+

1

µ

[
(1− rq)

(
T

2
+D +R

)
+
qr

p
M

]
(4)

Equation (4) is very similar to Equation (2), and the minimization of the
waste proceeds exactly as in Section 3.3. In a nutshell, Waste(T) is again a
convex function and admits a unique minimum over its domain [C,αµe], the

unique zero of the derivative has the same value Textr =
√

2µC
1−rq , and for any

value of T , the waste is minimized for either q = 0 or q = 1. We conduct the
very same case analysis as in Section 3.3.

4 Predictor with a prediction window

In the previous section, we have supposed that the predictor was able to predict
exactly when faults will strike. Here, we suppose (maybe more realistically) that
the predictor gives a prediction window, that is an interval of time of length I
during which the predicted fault is likely to happen. As before in Section 3, we
suppose that we have enough time to checkpoint before the beginning of the
prediction window. Also, as in Section 3, when a prediction is made, we enforce
that the scheduling algorithm has the choice either to take or not to take this
prediction into account, with probability q.

We start with a description of the strategies that can be used, depending
upon the (relative) length I of the prediction window. Let us define two modes
for the scheduling algorithm:

Regular: This is the mode used when no fault prediction is available, or when a
prediction is available but we decide to ignore it (with probability 1−q). In
regular mode, we use periodic checkpointing with period TNP. Intuitively,
TNP corresponds to the checkpointing period T of Section 3.

Proactive: This is the mode used when a fault prediction is available and we
decide to trust it – decision taken with probability q –. Consider such a
trusted prediction made with the prediction window [t0, t0 + I]. There are
several strategies that can be envisioned:

1. Instantaneous– The first strategy is to ignore the time-window and
to execute the same algorithm as if the predictor had given an exact
fault date at time t0. Just as described in Section 3, the algorithm
interrupts the current period (of scheduled length TNP), checkpoints
during the interval [t0 −C, t0], and then returns to regular mode: at
time t0, it resumes the work due to complete the interrupted period.

2. No checkpoint during prediction window– The second strategy is in-
tended for a short prediction window: instead of ignoring it, we ac-
knowledge it, but make the decision not to checkpoint during it. As
in the first strategy, the algorithm interrupts the current period (of
scheduled length TNP), and checkpoints during the interval [t0−C, t0].
But here, we return to regular mode only at time t0 + I, where we
resume the work due to complete the interrupted period of the reg-
ular mode. During the whole length of the time-window, we execute

RR n° 8023

Impact of fault prediction on checkpointing strategies 11

TimeTNP-C TNP-C Tlost TNP-C

failure

Time

Regular mode Proactive mode
TNP-C Wreg

I

TP-C TP-C TP-C TNP-C
-Wreg

Time

Regular mode Proactive mode
TNP-C Wreg

I

TP-C TP-C TNP-C
-Wreg

failure

Regular mode C C C D R C

Prediction without failure C C C C C C C

Prediction with failure C C C C C D R C

Figure 4: Outline of the behavior of Algorithm 1 (third strategy) (checkpoints
taken during the prediction window in proactive mode).

work without checkpointing, at the risk of losing work if a fault in-
deed strikes. But for a small value of I, it may not be worthwhile to
checkpoint during the prediction window (if at all possible, note that
there is no choice if I < C).

3. With checkpoints during prediction window– The third strategy is
intended for a longer prediction window: as before, the algorithm
interrupts the current period (of scheduled length TNP), and check-
points during the interval [t0−C, t0], but then decides to take several
checkpoints during the prediction window. The period TP of these
checkpoints in proactive mode will presumably be shorter than TNP,
to take into account the higher fault probability. To simplify the
presentation, we will use an integer number of periods of length TP
within the prediction window. In the following, we analytically com-
pute the optimal number of such periods. But we take at least one
period here, hence one checkpoint, which implies that C ≤ I. We
return to regular mode either right after the fault stroke within the
time window [t0, t0 + I], or at time t0 + I whenever no actual fault
happens within the prediction window. Then, we resume the work
due to complete the interrupted period of the regular mode.

The third strategy is the most complex to describe, and the complete be-
havior of the scheduling algorithm is shown in Algorithm 1. Note that for all
strategies, exactly as in Section 3, we insert some additional work for the par-
ticular case where there is not enough time to take a checkpoint before entering
proactive mode (because a checkpoint for the regular mode is currently on-going,
see Figure 2). We account for this work as idle time in the expression of the
waste, to ease the analysis. Our expression of the waste is thus an upper bound.

First we compute the waste incurred by the three algorithms, starting with
the most complex strategy (Section 4.1), and then simplifying the formula and
establishing the result for the other two strategies (Section 4.2). Then we discuss
the validity of the model in Section 4.3. Finally, we solve the optimization
problem and derive optimal values for the parameter q, and for the two periods
TP and TNP (Section 4.4).

RR n° 8023

Impact of fault prediction on checkpointing strategies 12

Algorithm 1: Proactive algorithm.

1 if fault happens then
2 After downtime, execute recovery;
3 Enter regular mode;

4 if in proactive mode for a time greater than or equal to I then
5 Switch to regular mode
6 if Prediction made with interval [t, t+ I] and prediction taken into
account then

7 Let tC be the date of the last checkpoint under regular mode to start
no later than t− C;

8 if tC + C < t− C then (time for an extra checkpoint)
9 Take a checkpoint starting at time t− C

10 else (no time for the extra checkpoint)
11 Work in the time interval [tC + C, t]
12 Wreg ← max (0, t− C − (tC + C)) ;
13 Switch to proactive mode at time t;

14 while in regular mode and no predictions are made and no faults happen
do

15 Work for a time TNP-Wreg -C and then checkpoint;
16 Wreg ← 0;

17 while in proactive mode and no faults happen do
18 Work for a time TP-C and then checkpoint;

4.1 Computing the waste with checkpoints during predic-
tion window

In this section we focus on computing the waste of the most complex strategy,
that with checkpoints during prediction window (Algorithm 1). As in Section 3,
we assume that there is a single event of any type (either a prediction (true
or false), or an unpredicted failure). As already mentioned, we discuss this
hypothesis in Section 4.3.

We first compute which fraction of the time the algorithm spends in either
mode:

• the fraction of time spent in the regular mode (checkpointing with period
TNP);

• the fraction of time spent in the proactive mode (checkpointing with period
TP).

Let I ′ be the average time spent in the proactive mode. When a prediction is
made, we may choose to ignore it, which happens with probability 1 − q. In
this case, the algorithm stays in regular mode and does not spend any time in
the proactive mode. With probability q, we may decide to take the prediction
into account. In this case, if the prediction is a false positive event (no actual
fault strikes), which happens with probability 1− p, then the algorithm spends
I units of time in the proactive mode. Otherwise, if the prediction is a true
positive event (an actual fault hits the system), which happens with probability

p, then the algorithm spends an average of E(f)
I in the proactive mode. Here E(f)

I

is the expectation of the time elapsed between the beginning of the prediction
window and the time when a fault happens, knowing that a fault happens in

RR n° 8023

Impact of fault prediction on checkpointing strategies 13

the prediction window. Note that if faults are uniformly distributed across the

prediction window, then E(f)
I = I

2 . Altogether, we obtain:

I ′ = (1− q) · 0 + q
(

(1− p) · I + p · E(f)
I

)
= q

(
(1− p)I + pE(f)

I

)
.

Finally, each time there is a prediction, that is, on the average, every µP seconds,
the algorithm spends a time I ′ in the proactive mode. Therefore, Algorithm 1
spends a fraction of time I′

µP
in the proactive mode, and a fraction of time 1− I′

µP
in the regular mode. We now identify the four different sources of waste, and
we analyze their respective costs.

1. Waste due to periodic checkpointing. There are two cases, depending
upon the mode of Algorithm 1.
(a) Regular mode. In this mode, we take periodic checkpoints. We

take a checkpoint of size C each time the algorithm has processed
work for a time TNP − C in the regular mode. This remains true if,
after spending some time in the regular mode, the algorithm switches
to the proactive mode, and later switches back to the regular mode.
This behavior is enforced by recording the amount of work performed
under the regular mode (variable Wreg , at line 12 of Algorithm 1),
and by taking this value into account at line 15.
Taking into account the fraction of time that Algorithm 1 spends in
the regular mode, this source of waste has a total cost of:(

1− I ′

µP

)
C

TNP
. (5a)

(b) Proactive mode. In this mode, we take a checkpoint of size C each
time the algorithm has processed work for a time TP − C.
If no fault happens while the algorithm is in the proactive mode,
then the algorithm stays exactly a time I in this mode (thanks to
the condition at line 4). The waste due to the periodic checkpointing
is exactly C

TP
(because TP divides I).

If a fault happens while the algorithm is in proactive mode, then, the
expectation of the waste due to the periodic checkpointing is upper-
bounded by the same quantity C

TP
. This is an over-approximation

of the waste in that case, because the fault may strike before full
completion of the last period.
Overall, taking into account the fraction of time Algorithm 1 is in
the proactive mode, the cost of this source of waste is:

I ′

µP

C

TP
. (5b)

2. Waste incurred when switching to the proactive mode. Each
time we take into account a prediction (which happens with probability
q on average every µP units of time), we start by doing one preliminary
checkpoint if we have the time to do so (line 9). If we do not have the time
to take an additional checkpoint, the algorithm do not do any processing
for a duration of at most C (line 11). In both cases, the wasted time is
at most C and this happens once every µP

q . Hence, switching from the

RR n° 8023

Impact of fault prediction on checkpointing strategies 14

regular mode to the proactive one induces a waste of at most

q

µP
C (5c)

3. Waste due to predicted faults. Predicted faults happen with frequency
p
µP

. As we may choose to ignore a prediction, there are still two cases
depending on the mode of the algorithm at the time the fault hits the
system.

(a) Regular mode. If the algorithm is in regular mode when a predicted
fault hits, this means that we have chosen to ignore the prediction,
a decision taken with probability (1− q).
The time wasted because of the predicted fault is then the time
elapsed between the last checkpoint and the fault, plus the down-
time and the time needed for the recovery. The expectation of the
time elapsed between the last checkpoint and the fault is equal to
half the period of checkpoints, because the time where the fault hits
the system is independent of the checkpointing algorithm. Therefore,
the waste due to predicted faults hitting the system in regular mode
is:

p(1− q)
µP

(
TNP

2
+D +R

)
(5d)

(b) Proactive mode. If the algorithm is in proactive mode when a
fault hits, then we have chosen to take the prediction into account,
a decision that is taken with probability q.

The time wasted because of the predicted fault is then, in addition to
the downtime and the time needed for the recovery, the time elapsed
between the last checkpoint and the fault or, if no checkpoint had
already been taken in the proactive mode, the time elapsed between
the start of the proactive mode and the fault.

Here, we can no longer assume that the time the fault hits the system
is independent of the checkpointing date. This is because the proac-
tive mode starts exactly at the beginning of the prediction window.
Let Tlost denote the computation time elapsed between the latest of
the beginning of the proactive mode and the last checkpoint, and
the fault date. Then the expectation of Tlost depends on the dis-
tribution of the fault date in the prediction window. However, we
know that whatever the distribution, Tlost ≤ TP. Therefore we over
approximate the waste in that case by:

qp

µP
(TP +D +R) (5e)

4. Waste due to unpredicted faults. There are again two cases, de-
pending upon the mode of the algorithm at the time the fault hits the
system.

(a) Regular mode. In this mode the work done is periodically check-
pointed with period TNP. The time wasted because of an unpredicted
fault is then the time elapsed between the last checkpoint and the

RR n° 8023

Impact of fault prediction on checkpointing strategies 15

fault, plus the downtime and the time needed for the recovery. As be-
fore, the expectation of this value is Tlost = TNP

2 . An unexpected fault
hits the system once every µNP seconds on the average. Taking into
account the fraction of the time the algorithm is in regular mode, the
waste due to unpredicted faults hitting the system in regular mode
is: (

1− I ′

µP

)
1

µNP

(
TNP

2
+D +R

)
(5f)

(b) Proactive mode. Because of the assumption that a single event
takes place within a time-interval, we do not consider the very un-
likely case where a unpredicted fault strikes during a prediction win-
dow. This amounts to assume that I′

µP
1

µNP
(TP +D+R) is negligible.

Finally, we gather the expressions of the different types of waste of Equa-
tions (5a) through (5f) to obtain the formula of the overall waste:

WastewithCkpt =

(
1− I ′

µP

)
C

TNP
+

I ′

µP

C

TP
+

q

µP
C +

p(1− q)
µP

(
TNP

2
+D +R

)
+
pq

µP
(TP +D +R)

+

(
1− I ′

µP

)
1

µNP

(
TNP

2
+D +R

)
WastewithCkpt =

((
1− I ′

µP

)
1

TNP
+

I ′

µP

1

TP
+

q

µP

)
C +

p(1− q)
µP

TNP

2
+
pq

µP
TP +

(
1− I ′

µP

)
1

µNP

TNP

2

+

(
p

µP
+

(
1− I ′

µP

)
1

µNP

)
(D +R) (6)

4.2 Computing the waste of the other strategies

The waste of the first strategy (Instantaneous) is very close to the one given in
Equation (2). The difference lies in Tlost, the expectation of the work lost when
a fault is predicted and the prediction is taken into account. When a prediction
is taken into account and the predicted event is an actual fault, the waste in
Equation (2) was qp

µP
(C + D + R) (see Equation (1c)). Because the prediction

was exact, Tlost was equal to 0. However in our new Equation, the waste for this
part is now qp

µP
(C + Tlost + D + R). On average, the fault occurs after a time

E(f)
I . However, because we do not know the relation between E(f)

I and TNP,

then Tlost has expectation TNP

2 if TNP

2 ≤ E(f)
I . The new waste is then:

Wasteinstant =
C

TNP
+

1

µ

[
(1− rq)TNP

2
+D +R+

qr

p
C + qrmin

(
E(f)
I ,

TNP

2

)]
(7)

As for the second strategy (No checkpoint during prediction window), we
do no longer incur the waste of Equation (5b) as we no longer checkpoint in

proactive mode. Furthermore, the value of Tlost in Equation (5e) becomes E(f)
I

instead of TP. Consequently, the total waste when there is no checkpoint during
the proactive mode is:

RR n° 8023

Impact of fault prediction on checkpointing strategies 16

WastenoCkpt =

(
1− I ′

µP

)
C

TNP
+

q

µP
C +

p(1− q)
µP

(
TNP

2
+D +R

)
+
pq

µP

(
E(f)
I +D +R

)
+

(
1− I ′

µP

)
1

µNP

(
TNP

2
+D +R

)

which we rewrite as

WastenoCkpt =

((
1− I ′

µP

)
1

TNP
+

q

µP

)
C +

p(1− q)
µP

TNP

2
+
pq

µP
E(f)
I +

(
1− I ′

µP

)
1

µNP

TNP

2

+

(
p

µP
+

(
1− I ′

µP

)
1

µNP

)
(D +R) (8)

Note that when I = 0, the first and second strategies collapse. Indeed, we

have E(f)
I = 0 if I = 0, and we check that Equations (7) and (8) are identical in

that case.

4.3 Validity of the results

In this subsection, we discuss the validity of the model. The analysis is similar
to that of Section 3.2, except that we deal with different length intervals here.
As before, we assume that there is a single event of any type within each interval
under study. The condition T ≤ αµe then becomes

TNP + I ≤ αµe (9)

as TNP + I is the longer time interval considered in the analysis of Algorithm 1.

4.4 Waste minimization

In this section we aim at minimizing the waste of the three strategies, and
then we find conditions to characterize which one is better. Recall that I ′ =
q
(

(1− p)I + pE(f)
I

)
4.4.1 With checkpoints during prediction window (Algorithm 1)

In order to compute the optimal value for TP, let us find the portion of the
waste that depends on TP:

WasteTP
=
rq

µ

(
(1− p)I + pE(f)

I

p

C

TP
+ TP

)

As we can see, the optimal value for TP is independent from q, but also from µ.
The optimal value for TP is thus:

T extr
P =

√
(1− p)I + pE(f)

I

p
C (10)

RR n° 8023

Impact of fault prediction on checkpointing strategies 17

However, for our algorithm to be correct, we want I
TP
∈ N (the interval I is

partitioned in k intervals of length TP, for some integer k). We choose T opt
P

equal to either I⌊
I

Textr
P

⌋ or I⌊
I

Textr
P

⌋
+1

, depending on the value that minimizes

WasteTP
. Note that we also have the constraint T opt

P ≥ C, hence if both values

are lower than C, then T opt
P = C.

Now that we know that T opt
P is independent from both q and TNP, we can

see the waste in Equation (6) as a function of two variables. One can see from
Equation (6) that the waste is an affine function of q. This means that the
minimum is always reached for either q = 0 or q = 1. We now consider the two
functions WastewithCkpt{q=0} and WastewithCkpt{q=1} in order to minimize
them with respect to TNP. First we have:

WastewithCkpt{q=0} =
C

TNP
+

1

µ

(
TNP

2
+D +R

)
(11)

As expected, this is exactly the equation without prediction, the study of the
optimal solution has been done in Section 3, it is minimized when T

opt0
NP =

min
(
αµe − I,max

(√
2Cµ,C

))
.

Next we have:

WastewithCkpt{q=1} =

1−
r
(

(1− p)I + pE(f)
I

)
pµ

(C

TNP
+

1− r
µ

TNP

2

)

+
r

µ


(

(1− p)I + pE(f)
I

)
p

C

T opt
P

+ T opt
P

+
r

pµ
C (12)

+

 r

µ
+

1−
r
(

(1− p)I + pE(f)
I

)
pµ

 1− r
µ

 (D +R)

This equation is minimized when

T
opt1
NP =

√
2µC

(1− r)

One can remark that this value is equal to the result without intervals (Sec-
tion 3). Actually, the only impact of the prediction interval I is the moment
when we should take a pre-emptive action. Note that when r = 0 (this means

that there is no prediction), we have T
opt1
NP = T

opt0
NP , and we retrieve Young’s

formula [1].
Finally, we know that the waste is defined for C ≤ TNP ≤ αµe − I. Hence,

if T
opt1
NP /∈ [C,αµe− I], this solution is not satisfiable. However Equation (12) is

convex, so the optimal solution is C if T
opt1
NP < C, and αµe − I if T

opt1
NP > αµe.

Hence, when q = 1, the optimal solution should be

min

(
αµe − I,max

(√
2µC

(1− r)
, C

))
. (13)

RR n° 8023

Impact of fault prediction on checkpointing strategies 18

4.4.2 Waste for the algorithm that does not checkpoint during the
proactive mode

One can see that Equation (8) and Equation (6) only differ: by the quantity

qr
µ

(
(1−p)I+pE(f)

I

p
C
T opt
P

+ T opt
P − E(f)

I

)
. This value is linear in q and a constant

with regards to TNP. Hence the minimization is almost the same.
Once again we can see that the optimal value for q is either 0 or 1. We can

consider the two functions WastenoCkpt{q=0} and WastenoCkpt{q=1}. We re-
mark that WastenoCkpt{q=0} = WastewithCkpt{q=0}, and hence that the study
has already been done. As for WastenoCkpt{q=1}, it is also minimized when

T opt
NP =

√
2µC

(1− r)
.

Finally, the last step of this study is identical to the previous minimization,

and the optimal solution when q = 1 is defined by T
opt1
NP = min

(
αµe − I,max

(√
2µC

(1− r)
, C

))
.

4.4.3 Identifying the most efficient algorithm

Finally in this section, we consider the waste for the two algorithms that take
the prediction window into account (the one that does not checkpoint during the
prediction window, and the one that checkpoints during the prediction window),
and try to find conditions of dominance of one strategy over the other. Since
the equation of the waste is identical when q = 0, let us consider the case when
q = 1. We have seen that:

WastewithCkpt{q=1}−WastenoCkpt{q=1} =
r
(

(1− p)I + pE(f)
I

)
pµ

C

T opt
P

+
r

µ

(
T opt
P − E(f)

I

)
(14)

We want to know when Equation (14) is nonnegative (meaning that it is ben-
eficial not to take any checkpoints during proactive mode). We know that this

value is minimized when T extr
P =

√
(1− p)I + pE(f)

I

p
C (Equation (10)), then

a sufficient condition would be to study the equation WastewithCkpt{q=1} −
WastenoCkpt{q=1} ≥ 0 with T extr

P instead of T opt
P . That is:

r(1− p)I + pE(f)
I

pµ

C√
(1− p)I + pE(f)

I

p
C

+
r

µ

√ (1− p)I + pE(f)
I

p
C − E(f)

I

 ≥ 0

⇔ 2

√
(1− p)I + pE(f)

I

p
C ≥ E(f)

I
2

(15)

Consequently, we can say that if Equation (15) is matched, then WastenoCkpt ≤
Waste, the algorithm where we do not checkpoint during the proactive mode
has a better solution than Algorithm 1. For example, if we assume that faults
strike uniformly during the prediction window [t0, t0 + I], in other words, if

RR n° 8023

Impact of fault prediction on checkpointing strategies 19

Paper Lead Time Precision Recall Prediction Window
[6] 300 s 40 % 70% -
[6] 600 s 35 % 60% -
[5] 2h 64.8 % 65.2% yes (size unknown)
[5] 0 min 82.3 % 85.4 % yes (size unknown)
[2] 32 s 93 % 43 % -
[4] NC 70 % 75 % -

Table 1: Comparative study of different parameters returned by some predictors.

0 ≤ x ≤ I, the probability that the fault occurs in the interval [t0, t0 + x] is x
I ,

then E(f)
I = I

2 , and our condition becomes

I ≤ 16
1− p/2

p
C.

We can now finish our study by saying that in order to find the optimal
solution, one should compute both optimal solutions for q = 0 and q = 1, for
both algorithms, and choose the one that minimizes the waste, as was done
in Section 3, except when Equation (15) is valid, then we can focus on the
computation of the waste of the algorithms that does not checkpoint during
proactive mode.

5 Related work

Considerable research has been conducted on fault prediction using different
models (system logs analysis, event-driven approach). In this section we give a
brief overview of the results obtained by predictors. We focus on their results
rather than on their methods of prediction.

The authors of [6] introduce the lead time, that is the time between the
prediction and the actual fault. It is a time that should be sufficient to take
proactive actions. They are also able to give the location of the fault. The
fact that the location is given has an impact on the precision and the recall
(see Table 5). The authors of [5] also consider also a lead time, and introduce
a prediction window when the predicted fault should happen. This motivates
the work on Section 4, even though they never give the size of their prediction
window. Unfortunately, much of the work done on prediction does not provide
information that could be really useful for the design of good algorithms. These
informations are those stated above, namely the lead time and the size of the
prediction window, but other information that could be useful would be the
distribution of the faults in the prediction window, the precision as a function
of the recall (see our analysis), or even the precision and recall as functions of
the prediction window (what happens with a bigger prediction window). Again,
all these informations could be useful in the design of good algorithms.

While many study on fault prediction focus on the conception of the pre-
dictor, most of them consider that the proactive action should simply be a
checkpoint of a migration right before the fault. However, in their paper [3],
Li et al. consider the mathematical problem to determine when and how to
migrate. In order to be able to use migration, they stated that at every time,

RR n° 8023

Impact of fault prediction on checkpointing strategies 20

2% of the resources are available. This allowed them to conceive a Knapsack-
based heuristic. Thanks to their algorithm, they were able to save 30% of the
execution time compared to an heuristic that does not take the reliability into
account, with a precision and recall of 70%, and with a maximum load of 0.7.

6 Conclusion

The comprehensive analytical results provided in this preliminary report enable
to fully asses the impact of fault prediction on optimal checkpointing strate-
gies. Future work will be devoted to instantiate these results with realistic
application/platform scenarios, and to provide an experimental evaluation of
the importance of fault prediction to reduce checkpoint overhead.

RR n° 8023

Impact of fault prediction on checkpointing strategies 21

References

[1] J. W. Young, “A first order approximation to the optimum checkpoint in-
terval,” Comm. of the ACM, vol. 17, no. 9, pp. 530–531, 1974.

[2] B. K. A. Gainaru, F. Cappello, “Taming of the shrew: Modeling the nor-
mal and faulty behavior of large-scale hpc systems,” in Proceedings of the
2012 IEEE Internation Parallel and Distributed Processing Symposium, ser.
IPDPS’12, may 2012.

[3] S. Fu and C.-Z. Xu, “Exploring event correlation for failure prediction in
coalitions of clusters,” in Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, ser. SC ’07. New York, NY, USA: ACM, 2007, pp. 41:1–
41:12. [Online]. Available: http://doi.acm.org/10.1145/1362622.1362678

[4] E. W. Fulp, G. A. Fink, and J. N. Haack, “Predicting computer system
failures using support vector machines,” in Proceedings of the First
USENIX conference on Analysis of system logs, ser. WASL’08. Berkeley,
CA, USA: USENIX Association, 2008, pp. 5–5. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855886.1855891

[5] L. Yu, Z. Zheng, Z. Lan, and S. Coghlan, “Practical online failure prediction
for blue gene/p: Period-based vs event-driven,” in Dependable Systems and
Networks Workshops (DSN-W), 2011 IEEE/IFIP 41st International Con-
ference on, june 2011, pp. 259 –264.

[6] Z. Zheng, Z. Lan, R. Gupta, S. Coghlan, and P. Beckman, “A practical
failure prediction with location and lead time for blue gene/p,” in Dependable
Systems and Networks Workshops (DSN-W), 2010 International Conference
on, 28 2010-july 1 2010, pp. 15 –22.

RR n° 8023

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

