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1. INTRODUCTION

For large-scale applications targeted to parallel and distributed computers, finding
an efficient task and communication mapping and schedule is critical to reach the
best possible application performance. At the heart of the scheduling process is the
workflow of an application: an abstract representation that expresses the atomic
computation units and their data dependencies. A large class of applications needs
to execute the same workflow on different independent data items. Examples of
such applications are video processing [GRRL05], image analysis [SKS+09], motion
detection [KRC+99], signal processing [CkLW+00; HFB+09], databases [CHM95],
molecular biology [RKO+03], and various scientific data analyses, including particle
physics [DBGK03], earthquake [KGS04], weather and environmental data analy-
ses [RKO+03].

To execute data items in parallel, two simple approaches are commonly used.
The first one consists of finding an efficient parallel execution schedule for one
single data item, and then executing all the data items using the same schedule, one
after the other. This approach is well known as latency or makespan optimization.
Although some good algorithms are known for this problem [KA99b; KA99a], the
resulting performance of the system may be far from the peak performance of the
target parallel platform. The workflow may have a limited degree of parallelism for
efficient execution of a single data item, and hence the parallel machine may not
be fully utilized.

The second approach consists in executing multiple data items in parallel. This
approach complicates the scheduling problem, because the execution of one data
item imposes some constraints on the execution of the next one. The scheduling
problems which use both intra data item and inter data item parallelisms are called
pipelined workflow scheduling, or in short pipelined scheduling. (Notice that some
applications may not allow this kind of parallelism ; for instance, the applications
with a feedback loop like iterative solvers.)

Pipelined workflow scheduling has been widely studied in the last decade. The
pipelined execution model is the core of many software and programming mid-
dleware. It is used on different types of parallel machine such as SMP (Intel
TBB [Rei07]), clusters (DataCutter [BKC+01], Anthill [TFG+08], Dryad [IBY+07]),
grid computing environment (Microsoft AXUM [Mic09], DAGMan [CT02], Tav-
erna [OGA+06], LONI [MGPD+08], Kepler [BML+06]), and more recently on
cluster with accelerators (DataCutter [HCR+08] and DataCutter-Lite [HC09]).
Multiple models and algorithms have emerged to deal with various programming
paradigms, hardware constraints, and scheduling objectives.

To evaluate the performance of a schedule, various optimization criteria are used
in the literature. The most common ones are (i) the latency (denoted by L), or
makespan, which is the maximum time a data item spends in the system, and
(ii) the throughput (denoted by T ), which is the number of data items processed
per time unit. The period of the schedule (denoted by P) is the time elapsed
between two consecutive data items entering the system. Note that the period is
commonly used instead of the throughput, since it is the inverse of the achieved
throughput. Depending on the application, a combination of multiple performance
objectives may be desired. For instance, an interactive video processing application
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(such as SmartKiosk [KRC+99], a computerized system that interacts with multiple
people using cameras) needs to be reactive while ensuring a good frame rate; these
constraints call for an efficient latency/throughput trade-off. Other criteria may
include reliability, resource cost, and energy consumption.

Several types of parallelism can be used to achieve good performance. Task-
parallelism is the most well known. It consists in concurrently executing indepen-
dent tasks of the workflow for the same data item; it can help minimize the workflow
latency. Pipelined-parallelism is used when two dependent tasks in the workflow are
being executed simultaneously on different data items. The goal is to improve the
throughput of the application, possibly at the price of more communication, hence
potentially a larger latency. Replicated-parallelism can improve the throughput of
the application, because several copies of a single task operate on different data
items concurrently; this is especially useful in situations where more computational
resources than workflow tasks exist. Finally, data-parallelism may be used when
some tasks contain inherent parallelism. It corresponds to using several processors
to execute a single task for a single data item.

The rest of this paper is organized as follows. Before going into technical detail,
Section 2 illustrates the various parallelism techniques, task properties, and their
impact on objective functions using a motivating example.

The first issue when dealing with a pipelined application is to select the right
model among the tremendous number of variants that exist. To solve this issue,
Section 3 organizes the different characteristics that the target application can
exhibit into three components: the workflow model, the system model, and the
performance model. This organization helps position a given problem with respect
to related work.

The second issue is building the relevant scheduling problem from the model of
the target application. There is no direct formulation going from the model to the
scheduling problem, so we cannot provide a general method to derive the schedul-
ing problem. However, in Section 4, we illustrate the main techniques on basic
problems and show how the application model impacts the scheduling problem.
The scheduling problems become either more or less complicated depending upon
the application requirements. As usual in optimization theory, the most basic (and
sometimes unrealistic) problems can usually be solved in polynomial time, whereas
the most refined and accurate models usually lead to NP-hard problems. Although
the complexity of some problems is still open, Section 4 concludes by highlighting
the known frontier between polynomial and NP-complete problems.

Finally, in Section 5, we survey various techniques that can be used to solve
the scheduling problem, i.e., finding the best parallel execution of the application
according to the performance criteria. We provide optimal algorithms to solve the
simplest problem instances in polynomial time. For the most difficult instances,
we present some general heuristic methods which aim at giving good approximate
solutions.

2. MOTIVATING EXAMPLE

In this section, we focus on a simple pipelined application and emphasize the need
for scheduling algorithms.
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Consider an application composed of four tasks, which dependencies form a linear
chain: a data item must first be processed by task S1 before it can be processed
by S2, then S3, and finally S4. The processing of a data item takes respectively 5,
2, 3, and 20 time units for tasks S1, S2, S3 and S4, as illustrated in Fig. 1(a). If two
consecutive tasks are executed on two distinct processors, then a communication
cost must be paid, in order to transfer the intermediate result. These costs are
set respectively to 20, 15 and 1 for communications S1 → S2, S2 → S3, and
S3 → S4. The target platform consists of three processors, with various speeds and
interconnection bandwidths, as illustrated in Fig. 1(a). If task S1 is scheduled to
be executed on processor P2, a data item is processed within 5

1 = 5 time units,
while the execution on the faster processor P1 requires only 5

10 = 0.5 time units.
Similarly, the communication of a data of cost c from processor P1 to processor P2

takes c
1 time units, while it is ten times faster to communicate from P1 to P3.

First examine the execution of the application sequentially on the fastest proces-
sor, P3 (see Fig. 1(b)). For such an execution, there is no communication cost to
pay, and because of the dependencies between tasks, this is actually the best way
to execute a single data item. The latency is computed as L = 5+2+3+20

20 = 1.5. A
new data item can be processed once the previous one is finished, hence the period
P = L = 1.5.

Of course, this sequential execution does not exploit any parallelism. Since there
are no independent tasks in this application, we cannot use task-parallelism here.
However, we now illustrate pipelined-parallelism: different tasks are scheduled on
distinct processors, and thus they can be executed simultaneously on different data
items. In the execution of Fig. 1(c), all processors are used, and we balanced the
computation requirement of tasks according to processor speeds. The performance
of such a parallel execution turns out to be quite bad, because lots of large com-
munications occur. The latency is now obtained by summing up all computation
and communication times: L = 5

10 + 20 + 2 + 15 + 3
10 + 1

10 + 20
20 = 38.9. Moreover,

the period is not better than the one obtained with the sequential execution pre-
sented previously because communications become the bottleneck of the execution.
Indeed, the transfer from S1 to S2 takes 20 time units, and therefore the period
cannot be better than 20: P ≥ 20. This example of execution illustrates that
parallelism should be used with caution.

However, one can obtain a throughput better than that of the sequential ex-
ecution as shown in Fig. 1(d). In this case, we enforce some resource selection:
the slowest processor is discarded since it only slows down the whole execution.
We process different data items in parallel: the k-th data item is executed at time
step k+1 for S4 on P3, while the (k−1)-th data item is processed on P2 sequentially
for S1, S2, S3, also in time step k + 1. This partially sequential execution avoids all
large communication costs. The communication time is 1

10 . In a model in which
communication and computation can overlap, after the first item, this communi-
cation occurs while processors are computing. Finally, the period is P = 1. Note
that this improved period is obtained at the price of a higher latency: the latency
has gone from 1.5 in the fully sequential execution to L = 1 + 1

10 + 1 = 2.1 here.

This example illustrates the necessity of finding efficient trade-offs between an-
tagonistic criteria.
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(a) Application and platform.
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(b) Sequential execution on the fastest processor.
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(c) Greedy execution using all processors.
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(d) Resource selection to optimize period.

Fig. 1. Motivating example.
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Workflow Model

Shape Task
Weight

Comm.
Weight

Task
Parellelism

Task
Execution

sequential, 
parallel

Linear chains, forks, trees, 
fork-join, series-parallel, 

general DAG
unit, non-unit 0 (precedence only),

unit, non-unit
monolithic, 
replicable

Fig. 2. The components of the Workflow Model.

3. MODELING TOOLS

This section gives general information on the scheduling problems. It should help
the reader understand the key properties of pipeline applications.

All applications of pipelined scheduling are characterized by properties from three
components that we call the Workflow Model, the System Model and the Perfor-
mance Model. These components correspond to “which kind of program we are
scheduling”, “which parallel machine will host the program” and “what are we try-
ing to optimize”. This three-component view is similar to the three-field notation
which is used to define classical scheduling problems [Bru07].

In the example of Section 2, the workflow model is the four-stage application
with linear dependencies, computation costs, and communication costs; the system
model is the three-processor platform with speeds and bandwidths; and the perfor-
mance model corresponds to the two optimization criteria: latency and period.

We present in Sections 3.1, 3.2 and 3.3 the three models; then Section 3.4 classifies
work in the taxonomy that has been detailed.

3.1 Workflow Model

The workflow model defines the program that is going to execute; its components
are presented in Fig. 2.

Programs are usually represented as Directed Acyclic Graphs (or DAGs) in which
nodes represent computation tasks, and edges represent communications between
them. The shape of the graph is a parameter. Most program DAGs are not arbitrary
but instead have some predefined form. For instance, it is common to find DAGs
which are a single linear chain, as in the example of Section 2. Some other frequently
encountered structures are fork graphs, trees, fork-join, and series-parallel graphs.
Most of the time, the DAG is assumed to have a single node without parent node
called the source and a single node without child node called the sink.

The weight of the tasks are important because they represent computational
requirements. For some applications, all the tasks have the same computation
requirement (they are said to be unit tasks). The weight of communications is
defined similarly. Notice that a zero weight may be used to express a precedence
between tasks with no communication.

The tasks of the program may contain parallelism. Although the standard model
only uses sequential tasks, some applications feature parallel tasks. Three models
of parallel tasks are commonly used (this naming was proposed by [FRS+97] and is
now commonly used in job scheduling for production systems): a rigid task requires
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System Model

Processor Network Communication

homogeneous, 
hetero-related, 

hetero-unrelated

Fully Connected, 
Structured, Unstructured

single-port, unbounded 
multi-port, bw-bounded 

multi-port, k-port

Topology Type

homogeneous, 
heterogeneous

Compute &
Communicate

overlap, 
non-overlap

Fig. 3. The components of the System Model.

a given number of processors to execute; a moldable task can run on any number
of processors, and its computation time is given by a speed up function (which can
be arbitrary or can match a classical model such as the Amdahl’s law [Amd67]);
and a malleable task can change the number of processors it is executing on during
its execution.

The task execution model indicates whether it is possible to execute concurrent
replicas of a task at the same time or not. Replicating a task may not be possible
due to an internal state of the task; the processing of the next data item depends
upon the result of the computation of the current one. Such tasks are said to be
monolithic; otherwise they are replicable. When a task is replicated, it is common
to impose some constraints on the allocation of the data items to the replicas.
For instance, the dealable stage rule [Col04] forces data items to be allocated in a
round-robin fashion among the replicas. This constraint is enforced to avoid out-
of-order completion and is quite useful when, say, a replicated task is followed by a
monolithic one.

3.2 System Model

The system model describes the parallel machine used to run the program; its
components are presented in Fig. 3 and are now described in more detail.

First, processors may be identical (homogeneous), or instead they can have dif-
ferent processing capabilities (heterogeneous). There are two common models of
heterogeneous processors. Either their processing capabilities are linked by a con-
stant factor, i.e., the processors have different speeds (known as the related model
in scheduling theory), or they are not speed-related, which means that a processor
may be fast on a task but slow on another one (known as the unrelated model
in scheduling theory). Homogeneous and related processors are common in clus-
ters. Unrelated processors arise when dealing with dedicated hardware or from
preventing certain tasks to execute on some machines (to handle licensing issues or
applications that do not fit in some machine’s memory).

The network defines how the processors are interconnected. The topology of
the network describes the presence and capacity of the interconnection links. It
is common to find fully connected networks in the literature, which can model
buses as well as Internet connectivity. Arbitrary networks which topologies are
specified explicitly through an interconnection graph are also common. In between,
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Performance Model

Single 
Objective

Multiple 
Objectives

throughput, latency, 
resource, reliability

latency vs throughput, 
latency vs reliability,

latency vs resources, etc.

Fig. 4. The components of the Performance Model.

some systems may exhibit structured networks such as chains, 2D-meshes, 3D-
torus, etc. Regardless of the connectivity of the network, links may be of different
types. They can be homogeneous – transport the information in the same way –
or they can have different speeds. The most common heterogeneous link model
is the bandwidth model, in which a link is characterized by it sole bandwidth.
There exist other communication models such as the delay model [RS87] which
only consider latency with infinite bandwidth, or the LogP(Latency, overhead, gap
and Processor) model [CKP+93], which is a realistic communication model. The
latter two models are rarely used in pipelined scheduling.

Some assumptions must be made in order to define how communications take
place. The one-port model [BRP99] forbids a processor to be involved in more
than one communication at a time. This simple, but somewhat pessimistic, model
is useful for representing single-threaded systems; it has been reported to accu-
rately model certain MPI implementations that serialize the communication when
the messages are larger than a few megabytes [SP04]. The opposite model is the
multi-port model that allows a processor to be involved in an arbitrary number
of communications simultaneously. This model is often considered to be unrealis-
tic since some algorithms will use a large number of simultaneous communications
which induce large overheads in practice. An in-between model is the k-port model
where the number of simultaneous communications must be bounded by a parame-
ter of the problem [HP03]. In any case, the model can also limit the total bandwidth
that a node can use at a given time (that corresponds to the capacity of its network
card).

Finally, some machines have hardware dedicated to communication or use multi-
threading to handle communication; thus they can compute while using the net-
work. This leads to an overlap of communication and computation. However, some
machines or software libraries are still mono-threaded, so no such overlapping is
possible.

3.3 Performance Model

The performance model describes the goal of the scheduler and tells from two valid
schedules which one is better. Its components are presented in Fig. 4.

The most common objective in pipelined scheduling is to maximize the through-
put of the system, which is the number of data processed by unit of time. In
permanent applications such as interactive real time systems, it indicates the load
that the system can handle.
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Another common objective is to minimize the latency of the application, which is
basically defined as the time taken by a single data item to be entirely processed. It
measures the response time of the system to handle each data item. The maximum
latency is most of the time the chosen objective since this value may depend on
the chosen data item. Latency is mainly relevant in interactive systems. Note that
latency minimization corresponds to makespan minimization in DAG scheduling,
when there is a single data item to process.

Other objectives have also been studied. When the size of the computing system
increase, hardware and software become more likely to be affected by malfunctions.
Lots of formulation can model the problem (See [BBG+09] for details) but most
of the time it reduces to optimizing the probability of correct execution of the
application called reliability [GST09]. An other concern is the energy consumption
of a computing system. It such models, processors’ speed can be adjusted and the
slower they are, the less energy they consume. Different model exist depending on
the shape the energy cost function (usually quadratic or cubic in the speed) and on
which speed values a processor can run at [BRGR10].

The advent of more complex systems and modern user requirements increased
the interest in the optimization of several objectives at the same time. There are
various ways to optimize multiple objectives [DRST09], but the most classical one is
to optimize one of the objective while ensuring a given threshold value on the other
ones. Deciding which objectives are constrained, and which one remains to opti-
mize, makes no theoretical difference [TB07]. However, there is often an objective
which is a more natural candidate for optimization when designing heuristics.

3.4 Placing Related Work in the Taxonomy

The problem of scheduling pipelined linear chains, with both monolithic and repli-
cable tasks, on homogeneous or heterogeneous platforms, has been addressed in
scheduling literature [LLP98; SV96; BR08; BR10]. [LLP98] proposes a three-step
mapping methodology for maximizing the throughput of applications comprising a
sequence of computation stages, each one consisting of a set of identical sequential
tasks. [SV96] proposes a dynamic programming solution for optimizing latency
under throughput constraints for applications composed of a linear chain of data-
parallel tasks. [BR08] addresses the problem of mapping pipeline skeletons of linear
chains of tasks on heterogeneous systems. [BR10] explores the theoretical complex-
ity of the bi-criteria optimization of latency and throughput for chains and fork
graphs of replicable and data-parallel tasks under the assumptions of linear clus-
tering and round-robin processing of input data items.

Other works that address specific task graph topologies include [CNNS94], which
proposes a scheme for the optimal processor assignment for pipelined computations
of monolithic parallel tasks with series-parallel dependencies, and focuses on mini-
mizing latency under throughput constraints. Also, [HM94] (extended in [CHM95])
discusses the throughput optimization for pipelined operator trees of query graphs
that comprise sequential tasks.

Pipelined scheduling of arbitrary precedence task graphs of sequential monolithic
tasks has been explored by a few researchers. In particular, [JV96] and [HO99] dis-
cuss heuristics for maximizing the throughput of directed acyclic task graphs on
multiprocessor systems using point-to-point networks. [YKS03] presents an ap-
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proach for resource optimization under throughput constraints. [SRM06] proposes
an integrated approach to optimize throughput for task scheduling and scratch-pad
memory allocation based on integer linear programming for multiprocessor system-
on-chip architectures. [GRRL05] proposes a task mapping heuristic called EXPERT
(EXploiting Pipeline Execution undeR Time constraints) that minimizes latency of
streaming applications, while satisfying a given throughput constraint. EXPERT
identifies maximal clusters of tasks that can form synchronous stages that meet the
throughput constraint and maps tasks in each cluster to the same processor so as
to reduce communication overhead and minimize latency.

Pipelined scheduling algorithms for arbitrary DAGs that target heterogeneous
systems include the work of [Bey01], which presents the Filter Copy Pipeline (FCP)
scheduling algorithm for optimizing latency and throughput of arbitrary application
DAGs on heterogeneous resources. FCP computes the number of copies of each task
that is necessary to meet the aggregate production rate of its predecessors and maps
these copies to processors that yield their least completion time. Later on, [SFB+02]
proposed Balanced Filter Copies which refine Filter Copy Pipeline. [BHCF95]
and [RA01] address the problem of pipelined scheduling on heterogeneous systems.
[RA01] uses clustering and task duplication to reduce the latency of the pipeline
while ensuring a good throughput. However, these works target monolithic tasks,
while [SFB+02] targets replicable tasks. Finally, [VCK+07] addresses the latency
optimization under throughput constraints for arbitrary precedence task graphs of
replicable tasks on homogeneous platforms.

An extensive set of papers dealing with pipelined scheduling is summed up in
Table I. Each paper is listed with its characteristic. Since there are too many
characteristics to present, we focus on the main ones: structure of the precedence
constraints, type of computation, replication, performance metric, and communi-
cation model. The table is sorted according to the characteristic so that searching
for papers close to a given problem is made easier. Different papers with the same
characteristics are merged into a single line.

The structure of the precedence constraints (the Str. column) can be a single
chain (C), a structured graph such as a tree or series parallel graph (S) or an ar-
bitrary DAG (D). The processing units have computation capabilities (the Comp.
column) which can be homogeneous (H), heterogeneous related (R) or heteroge-
neous unrelated (U). Replication of task (the Rep. column) can be authorized (Y)
or not (N). The performance metric to compare the schedule (the Metric column)
can be the throughput (T), the latency (L), the reliability (R), the energy con-
sumption (E) or the number of processor used (N). The multi-objective problems
are denoted with an & so that T&L denotes the bi-objective problem of optimiz-
ing both the throughput and the latency. Finally, the communication model (the
Comm. column) can follow the precedence only model (P), the one-port model
(1), the multi-port model (M), the k-port model (k), the delay model (D) or can
be abstracted in the scheduling problem (abstr). When a paper deals with several
scheduling model, the variation are denoted with a slash (/). For instance, the
paper [BRSR08] deals with scheduling a chain (C) on either homogeneous or het-
erogeneous related processor (H/R) without using replication (N) to optimize the
latency, the reliability or both of them (L/R/L&R) under the one-port model (1).
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Table I. Papers about pipelined scheduling and the characteristics of the scheduling problems.
Reference Str. Comp. Rep. Metric Comm.

[Bok88][HNC92] [Iqb92][MO95] [Nic94][PA04] [LLP98] C H N T P

[Dev09] C H N T&L P

[MCG+08] C H Y T P
[BR08] C H/R N T 1

[ABDR09] C H/R N T/L/T&L 1/M

[ABR08] C H/R N T/L M
[BRGR10] C H/R N T/L/E 1

[BRSR08] C H/R N L/R/L&R 1
[BR09] C H/R Y/N T/L/T&L 1

[BKRSR08][BKRSR09] C R N T&L 1

[BRT09] C R N L 1
[BRSR07] C R N T/L/T&L 1

[ABMR10] C R N T/L/T&L 1/M

[dNFJG05] C R Y T&N M
[BGGR09] C R Y T 1/M

[KN10] C R Y/N T M

[BR10] C/S H/R Y/N T/L&T P
[HM94] [CHM95] S H N T M

[CNNS94] S H N T&L P

[JV96] D H N T M
[HO99] D H N T&L M

[GRRL05] D H N T&L D
[KRC+99] D H N T&L P

[VCK+07] [VCK+08] [VCK+10] D H Y T&L M
[SV95] D H Y/N T abstr
[SV96] D H Y/N T&L abstr

[RA01] D H/U N T&L M
[TC99] D R N T M

[YKS03] D R N T&N D

[Bey01][SFB+02] D R Y T M
[BHCF95] D U N T D
[SRM06] D U N T M

4. FORMULATING THE SCHEDULING PROBLEM

The goal of this section is to build a mathematical formulation of the scheduling
problem from a given application. It is a common practice to consider a more
restrictive formulation than strictly necessary, in order to focus on more structured
schedules which are likely to perform well.

We outline some principles in Section 4.1, and then we detail a few examples to
illustrate the main techniques in Section 4.2. Finally we conclude in Section 4.3 by
highlighting the known frontier between polynomial and NP-complete problems.

4.1 Compacting the Problem

One way to schedule a pipelined application is to explicitly schedule all the tasks of
all the data items, amounts to completely unroll the execution graph and to assign
a start-up time and a processor to each task. In order to ensure that all dependen-
cies and resource constraints are fulfilled, it must be checked that all predecessor
relations are satisfied by the schedule and that every processor does not execute
more than one task at a given time. To do so, it may be necessary to associate a
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start-up time to each communication, and a fraction of the bandwidth used (multi-
port model). However, the number of tasks to schedule could be extremely large,
making this approach intractable in practice.

To avoid this problem, a solution is to construct a more compact schedule, which
hopefully has some interesting properties. The overall schedule should be easily
deduced from the compact schedule in an incremental way. Checking whether the
overall schedule is valid or not and computing the performance index (e.g., through-
put, latency) should be easy operations. To make an analogy with compilation,
this amounts to move from DAG scheduling to loop nest scheduling. Compiler
techniques such as Lamport hyperplane vectors, or space-time unimodular trans-
formations [Wol89; DRV00; KA02] allow to efficiently expose the parallelism while
providing a linear or affine closed-form expression for scheduling each statement
instance within each loop iteration.

The most common compact schedules are cyclic schedules. If a schedule has a
period P, then all computations and communications are repeated every P time
units: two consecutive data items are processed exactly in the same way, with a shift
of P time units. The cyclic schedule is constructed from the elementary schedule
which gives the schedule of one data-item. If task ti is executed on processor j
at time si in the elementary schedule, then the execution of this task ti for data
item x will be executed at time si + (x− 1)P on the same processor j in the cyclic
schedule. This simple expression makes it easy to unravel the scheduling at run
time.

With cyclic schedules, one data item starts its execution every P time units.
Thus, the system has a throughput T = 1/P. However, the latency L of the
application is harder to compute; in the general case, one must follow the entire
processing of a given data item (but all data items have the same latency, which
helps simplify the computation). The latency L is the length of the elementary
schedule.

Checking the validity of a cyclic schedule is easier than that of an arbitrary
schedule. Intuitively, it is sufficient to check the data items released in the last L
units of time to make sure that a processor does not execute two tasks at the same
time, or that a communication link is not used twice. Technically, we can build
an operation list [ABDR09; ABMR10] which size is proportional to the original
application precedence task graph and does not depend upon the number of data
items that are processed.

A natural extension of cyclic schedules are periodic schedules, which repeat their
operation every K data items. When K = 1, we retrieve cyclic schedules, but
larger values of K are useful to gain performance (throughput increase) or to allow
for replicated parallelism. For throughput increase, it is easy to give an example.
Suppose that we have three different-speed processors P1, P2 and P3 with speeds
1/3, 1/5 and 1/8, respectively. Within 120 time units, P1 can process 40 data
items, P2 can process 24 and P3 can process 15, resulting a periodic schedule with
K = 40 + 24 + 15 = 79, and a throughput T = 79/120. If the application has large
inter-task communication costs, we cannot distribute the execution of a given data
item among two or more processors. Hence the best choice for a cyclic schedule
is to use only the fastest processor, for a throughput T = 1/3, about half that
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Fig. 5. An instance of the chain scheduling problem.

of the periodic schedule. Of course it is easy to generalize the example to derive
an arbitrarily bad throughput ratio between cyclic and periodic schedules. As for
replicated parallelism, the gain in throughput comes with a price: in some case,
it becomes very difficult to compute the throughput, because there is no longer a
critical resource that dictates the pace of operation for the entire system. Please
refer to [BGGR09] for details.

Other common compact schedules consist in giving only the fraction of the time
each processor spends executing each task [BLMR04; VCK+08]. Such representa-
tions are more convenient when using linear programming tools. Reconstructing
the actual schedule involves several concepts from graph theory and may be difficult
to use in practice but can be done in polynomial time [BLMR04].

4.2 Examples

The goal of this section is to provide examples to help the reader understand how
to build a schedule from the application and platform, as well as how the problem
varies when basic assumptions are modified.

4.2.1 Chain on Identical Processors with Interval Mapping. We consider the
problem of scheduling a linear chain of n monolithic tasks onto p identical proces-
sors, linked by an infinitely fast network. For 1 ≤ i ≤ n, task ti has a processing
time pi. Fig. 5 presents an instance of this scheduling problem with four tasks of
processing times p1 = 1, p2 = 2, p3 = 4, and p4 = 3.

When scheduling chains of tasks, several mapping rules can be enforced:

—The one-to-one mapping rule ensures that each task is mapped to a different
processor. This rule may be useful to deal with tasks having a high memory
requirement, but all inter-task communications must then be paid.

—Another classical rule is the interval mapping rule, which ensures that if a pro-
cessor executes tasks tibegin and tiend

, then all tasks ti, with ibegin < i < iend,
are executed on the same processor. This rule, which provides an extension of
one-to-one mappings, is often used to reduce the communication overhead of the
schedule.

—Finally, the general mapping rule does not enforce any constraint, and thus any
schedule is allowed. Note that for a homogeneous platform with communication
costs, [ABR08] showed for the throughput objective that the optimal interval
mapping is a 2-approximation of the optimal general mapping.

In this section, we are considering interval mappings. Therefore, a solution to the
scheduling problem is a partition of the task set {t1, . . . , tn} into m sets or intervals
{I1, . . . , Im}, where Ij (1 ≤ j ≤ m) is a set of consecutive tasks (∀i ∈ Ij , i

′ ∈
Ij′ , j < j′ ⇒ i < i′), and m ≤ p (recall that there are p processors). The length of
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Fig. 6. The optimal solution to the instance of Fig. 5 using interval mapping on two processors.

an interval is defined as the sum of the processing time of its tasks: Lj =
∑

i∈Ij pi,

for 1 ≤ j ≤ m. Note that all processors are identical (with unit speed), so that all
mappings of intervals onto processors are identical.

In this case, the intervals are compact representations of the schedule. The
elementary schedule represents the execution of a single data item: task ti starts
its execution at time si =

∑
i′<i pi′ on the processor in charge of its interval. An

overall schedule of period P = max1≤j≤m Lj can now be constructed: task ti is
executed at time si + (x − 1)P on the x-th data item. A solution of the instance
of Fig. 5 on two processors which uses the intervals {t1, t2, t3} and {t4} is depicted
in Fig. 6, where the boxes represent tasks and data items are identified by colors.
The schedule is focused on the cyan data item (the labeled tasks) which follows the
green one (partially depicted) and precedes the red one (partially depicted). Each
task is periodically scheduled every 7 time units (a period is depicted with dotted
lines). Processor 2 is idle during 4 time units for each period.

One can check that such a schedule is valid: the precedence constraints are
respected, two tasks are never scheduled on the same processor at the same time
(the processor in charge of interval Ij executes tasks for one single data item during
Lj time units, and the next data item arrives after maxj′ Lj′ time units), and the
monolithic constraint is also fulfilled, since all the instances of a task are scheduled
on a unique processor.

To conclude, the throughput of the schedule is T = 1
P = 1

max1≤j≤mLj
, and its

latency is L =
∑

1≤i≤n pi. Note that given an interval mapping, it is not possible
to achieve a better throughput since the machine for which Lj = maxj′ Lj′ will
never be idle, and it is the one that defines the period. Note also that the latency
is optimal over all schedules, since

∑
i pi is a lower bound on the latency.

For such a problem (no communication, identical processors, linear dependency
graph, no replication, interval mapping), the problem of optimizing the throughput
is reduced to the classical chain-on-chain problem [PA04], and it can be solved in
polynomial time, using for instance a dynamic programming algorithm.

4.2.2 Chain on Identical Processors with General Mapping. This problem is a
slight variation of the previous one: solutions are no longer restricted to interval
mapping schedules, but any mapping may be used. By suppressing the interval
mapping constraint, we can usually obtain a better throughput, but the scheduling
problem and schedule reconstruction become harder, as we illustrate in the following
example.
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Fig. 7. The solution of optimal throughput to the instance of Fig. 5 using a general mapping on

two processors.
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Fig. 8. A solution of same throughput than Fig. 7, but with better latency.

The solution of a general mapping can be expressed as a partition of the task
set {t1, . . . , tn} into m sets {A1, . . . , Am}, but these sets are not enforced to be
intervals anymore. The optimal period is then P = max1≤j≤m

∑
i∈Aj

pi.
We present a generic way to reconstruct from the mapping a periodic schedule

that preserves the throughput. A core schedule is constructed by scheduling all
the tasks according to the allocation without leaving any idle time and, therefore,
reaches the optimal period. Task ti in set Aj is scheduled in the core schedule at
time si =

∑
i′<i,i′∈Aj

pi′ . A solution of the instance presented in Fig. 5 is depicted

in Fig. 7 between the dotted lines (time units 0 to 5); it schedules tasks t1 and t3
on processor 1, and tasks t2 and t4 on processor 2.

The periodic schedule is built so that each task takes its predecessor from the
previous period: inside a period, each task is processing a different data item. We
can now follow the execution of the x-th data item: it starts being executed for
task ti at time si + (i + x − 1)P, as illustrated for the white data item in Fig. 7.
This technique produces schedules with large latency, between (n − 1)P and nP.
In the example, the latency is 20, exactly 4 times the period.

The strict rule of splitting the execution in n periods ensures that no precedence
constraint is violated. However, if the precedence constraint between task ti and
task ti+1 is respected in the core schedule, then it is possible to schedule both of
them in a single time period. Consider the schedule depicted in Fig. 8. It uses the
same allocation as the one in Fig. 7, but tasks t2 and t4 have been swapped in the
core schedule. Thus, tasks t1 and t2 can be scheduled in the same period, leading
to a latency of 13 instead of 20.

Note that the problem of finding the best general mapping for the throughput
maximization problem is NP-complete: it is equivalent to the 2-PARTITION prob-
lem [GJ79] (consider an instance with two processors).
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4.2.3 Chain with a Fixed Processor Allocation. In the previous examples, we
have given hints of techniques to build the best core schedule, given a mapping
and a processor allocation, in simple cases with no communication costs. In those
examples, we were able to schedule tasks in order to reach the optimal throughput
and/or latency.

Given a mapping and a processor allocation, obtaining a schedule that reaches
the optimal latency can be done by greedily scheduling the tasks in the order of the
chain. However, this may come at the price of a degradation of the throughput,
since idle times may appear in the schedule. We can ensure that there will be no
conflicts if the period equals the latency (only one data item in the pipeline at any
time step).

If we are interested in minimizing the period, the presence of communications
makes the problem much more difficult. In the model without overlap, it is actu-
ally NP-hard to decide the order of communications (i.e., decide the start time of
each communication in the core schedule) in order to obtain the minimum period
(see [ABMR10] for details). If computation and communication can be overlapped,
the processor works simultaneously on various data sets, and we are able to build
a conflict free schedule. When a bi-criteria objective function is considered, more
difficulties arise, as the ordering of communications also becomes vital.

Even though the reconstruction technique has been illustrated only on a sim-
ple chain example, it can be applied in a similar way on a more complex DAG
scheduling problem. We believe that the interest of interval mapping schedules of
chains can be transposed to convex schedules on DAGs. Although such mapping
rules were not considered in pipeline application, [BHCF95] build processor ordered
schedules which is a property implied by convex clusters. In classical DAG schedul-
ing problems convex clustering techniques have been developed before [PST05].

4.2.4 Scheduling Moldable Tasks with Series-Parallel Precedence. Chains are
not the only kind of precedence constraints which are structured enough to help de-
riving interesting results. For instance, [CNNS94] considers the scheduling of series-
parallel pipelined precedence task graphs, composed of moldable tasks. Series-
parallel graphs are constructed recursively by expanding an edge of a series-parallel
graph into several independent series-parallel graphs. Fig. 9 gives an example of
such a graph. A given processor executes a single task and communications are
assumed to be included in the parallel processing times.

Since a processor is only involved in the computation of a single task (note that in
[CNNS94]’s model, there is no communication), each task can begin its execution as
soon as all its predecessors have completed their executions or just after it finishes
its execution on the previous data item. Therefore, one can build a periodic schedule
which period is the length of the longest task by scheduling the ancestors of this task
as late as possible and the successors as soon as possible. The obtained elementary
schedule has no idle time on the longest path of the application task graph and the
other paths only idle to wait for the longest path. Hence, the latency of the solution
is the length of the longest path from the source to the sink, while the throughput
is the inverse of the processing time of the longest task.

Since the application task graph is a series-parallel graph, the latency and through-
put of a solution can be expressed according to its Binary Decomposition Tree
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Fig. 9. A series-parallel graph, and its binary decomposition tree.

0

8 2

3 2

0

t1

t2 t3

t6

t5t4

Fig. 10. An arbitrary DAG. (The processing requirement of each task is the label next to the

task.)

(BDT) [VTL82] into series nodes S and parallel nodes P (see example in Fig. 9).
In the BDT form, the throughput of a node is the minimum of the throughputs
of the children of the node: T (S(l, r)) = T (P (l, r)) = min(T (l), T (r)). The ex-
pression of the latency depends on the type of the considered node. If the node
is a parallel node, then the latency is the maximum of the latency of its children:
L(P (l, r)) = max(L(l),L(r)). If it is a serial node, the latency is the sum of the
latency of its children: L(S(l, r)) = L(l) + L(r).

4.2.5 Arbitrary DAGs on Homogeneous Processors. Many applications cannot
be represented by a structured graph such as a chain or a series-parallel graph.
Arbitrary DAGs are more general but at the same time they are more difficult to
schedule efficiently. Fig. 10 presents a sample arbitrary DAG.

Scheduling arbitrary DAGs poses problems which are similar to scheduling chains.
Consider first the case of one-to-one mappings, in which each task is allocated to
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Fig. 11. One to one mapping of the instance of Fig. 10 with L = 11 and T = 1
8

. Tasks t1 and t6
have computation time 0, therefore they are omitted.

a different processor. A periodic schedule is easily built by scheduling all tasks as
soon as possible. Task i is scheduled in the periodic schedule on processor i at
time si = maxi′∈pred(i) si′ + pi′ . This schedule can be executed periodically every

P = maxi pi with throughput T = 1
maxi pi

. The latency is the longest path in the
graph L = max si + pi. A schedule built in such a way does not schedule two tasks
on the same processor at the same time since single task is executed in each period
per processor and its processing time is smaller or equal to period. Under the one-
to-one mapping constraint, this schedule is optimal for both objective functions.
The solution of the graph presented in Fig. 10 is presented in Fig. 11, with a latency
L = 11 and a throughput T = 1

8 .
When there is no constraint enforced on the mapping rule, problems similar to

those of general mappings for linear chains appear (see Section 4.2.2): we cannot
easily derive an efficient periodic schedule from the processor allocation. Estab-
lishing a periodic schedule that reaches the optimal throughput given a processor
allocation is easy without communication cost, but it can lead to a large latency.
Similarly to the case of chains, a core schedule is obtained by scheduling all the
tasks consecutively without taking care of the dependencies. This way, we obtain
the optimal period (for this allocation) equal to the load of the most loaded pro-
cessor. The periodic schedule is built so that each task takes its data from the
execution of its predecessors in the last period. Therefore, executing a data item
takes as many periods as the depth of the precedence task graph. On the instance
of Fig. 10, the optimal throughput on two processors is obtained by scheduling t2
alone on a processor. Fig. 12 presents a periodic schedule of this processor alloca-
tion according to this generic technique, leading to a latency L = 15. Note that t5
could be scheduled in the same period as t3 and in general this optimization can be
done by a greedy algorithm. However, it does not guarantee to obtain the schedule
with the optimal latency, which is presented in Fig. 13 and has a latency L = 11.
Indeed, contrarily to linear pipelines, given a processor allocation, obtaining the
periodic schedule that minimizes the latency is NP-hard [RSBJ95].

4.2.6 Scheduling Arbitrary DAGs on Homogeneous Processors with Replication.
A task is replicable if it does not contain an internal state. It means that the same
task can be executed at the same time on different data items. On the instance
presented in Fig. 10, only two processors can be useful: the dependencies prevent
from executing any three tasks simultaneously, so a third processor would improve
neither the throughput nor the latency for monolithic tasks. However, if task t2 is
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Fig. 12. A general mapping solution of the instance of Fig. 10 with L = 15 and T = 1
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Fig. 14. A general mapping solution of the instance of Fig. 10 with L = 14 and T = 1
7

when task

t2 is replicable. Tasks t1 and t6 have computation time 0, therefore they are omitted.

replicable, the third processor could be used to replicate the computation of this
task, therefore leading to the schedule depicted in Fig. 14.

Replicating t2 leads to a schedule of period P = 14 but which executes two data
items per period. It obtains a throughput of T = 2

14 = 1
7 , which is better than

without replication. The latency is the maximum time a data item spends in the
system. Without replication, all the data items spend the same time in the system.
With replication, this statement no longer holds. In the example, the cyan data
item spends 11 time units in the system whereas the green one spends 14. The
latency of the schedule is then L = 14. If t4 was replicable as well, two copies could
be executed in parallel, improving the throughput to T = 2

11 and the latency to
L = 11. A fourth processor could be used to pipeline the execution of t4 and reach
a period of P = 8 and, hence, a throughput of T = 1

4 .
A schedule with replication is no longer cyclic but instead is periodic, with the

definitions of Section 4.1. Such a schedule can be seen as a pipelined execution
of an unrolled version of the graph. The overall schedule should be specified by
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giving a periodic schedule of length l (the time between the start of the first task
of the first data item of the period and the completion of the last task of the last
data item of the period) presenting how to execute K consecutive data items as
well as its period P. Verifying that the schedule is valid is done in the same way
the verification is done for classical elementary schedules: one needs to expand all
the periods that have a task running during the schedule, that is to say the ones
that start during the elementary schedule and in the l time units before. Such a
schedule has a throughput of T = K

P and the latency should be computed as the
maximum latency of the data items in the elementary schedule.

Note that if all tasks are replicable, the whole task graph can be replicated on
all the m processors. Each processor executes sequentially exactly one copy of the
application. This lead to a schedule of latency and period P = L =

∑
i pi, and a

throughput of T =

∑
i
pi

m .

A fairly common constraint when dealing with replication is to forbid out-of-order
execution. The point is that a monolithic task needs to process the data items in
the right order to provide the correct result. This problem mainly appears when
processors are heterogeneous. See the dealable stage constraint [Col04] for details.

4.2.7 Model Variations. In most cases, heterogeneity does not change drasti-
cally the scheduling model. However, the compact schedule description must then
contain the processor allocation, i.e., say which task is executed onto which proces-
sor. Otherwise the formulations stay similar.

A technique to reduce latency is to consider duplication [AK98; VCK+08]. Du-
plicating a task consists in executing the same task more than once on different
processors for every data item. Each task receives its data from one of the du-
plicates of each of its predecessors. Hence, this allows more flexibility for dealing
with data dependency. The idea is to reduce the communication overheads at the
expense of increasing the computation load. The major difference of duplication
replication is, in duplication a single data item is executed in each period, whereas
in replication, several data items can be executed in each period.

Communication models affect the schedule formulation. The easiest communica-
tion model is the one-port model where a machine communicates with a single one
at a time. Therefore, in the schedule, each machine is represented by two processors,
one for the computations and one for the communications. A valid schedule needs
to “execute” a communication task at the same time on the communication pro-
cessor of both machines involved in the data transfer. A common variation on the
one-port model is to forbid communication and computation overlap. This model
is used in [HO99]. In this case, there is no need for a communication processor; the
communication tasks have to be scheduled on the computation processor [BRSR07].

To deal with more than one communication at a time, a realistic model would be
to split the bandwidth equally among the communications. However such models
are more complicated to analyze and are therefore not used in practice. Two ways
of overcoming the problem exist. The first one is to consider the k-port model where
each machine has a bandwidth B divided equally in k channels. The scheduling
problem is then considered by using k communication processors per machine. This
model has been used in [VCK+08].
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When only the throughput matters (and not the latency), it is enough to en-
sure that no network link is overloaded. One can reconstruct a periodic schedule
explicitly using the model detailed previously, considering each network link as a
processor. This model has been used in [TC99].

4.3 Complexity

The goal of this section is to provide reference points for the complexity of the
pipelined scheduling problem. Lots of works are dedicated to highlighting the fron-
tier between polynomial and NP-hard optimization problems in pipelined schedul-
ing.

The complexity of classical scheduling problems have been studied in [Bru07].
One of the main contributions was to determine some constraint changes that al-
ways make the problem harder. Some similar results are valid on pipelined schedul-
ing. For instance, heterogeneous versions of problem are always harder than the
homogeneous counterpart, since homogeneous cases can be easily represented as
heterogeneous problem instances but not vice versa. Arbitrary task graph or ar-
chitecture graph is always harder than the structured counterpart and in general
considering a superset of graph makes problems harder. Also, removing communi-
cations makes the problem easier.

As seen in the previous examples, throughput optimization is always NP-hard for
general mappings but polynomial instances can be found for interval mappings. The
communication model plays a key role in complexity. The optimization of latency
is usually equivalent to the optimization of the makespan in classical DAG schedul-
ing [KA99b]. Multi-objective optimization problems are always more difficult than
their single-objective counterparts [TB07].

The complexity of linear graph problems has been widely studied since it roots the
general DAG case and most of the structured graph ones [BR08; BR10; BRSR07;
ABR08; BRSR08; BRT09; BR09; ABMR10]. The large number of variants of
those scheduling problems makes complexity issues very difficult. An exhaustive
list of complexity results can be found in [Ben09]. We provide in Tables II and III a
summary of complexity results for period and latency optimization problems, which
hold for all communication models. Fully Hom. platforms refer to homogeneous
computations and communications. Comm. Hom. platforms add one level of
heterogeneity (heterogeneous related processors). Finally, Hetero. platforms are
fully heterogeneous (Comm. Hom. with heterogeneous communications links).

For the period minimization problem, the reader can refer to [BR08] for the vari-
ant with no replication, and to [BR10] otherwise (results denoted with (rep.)). For
the latency minimization problem, we report here results with no data-parallelism;
otherwise the problem becomes NP-hard as soon as processors have different speed,
with no communication costs [BR10].

5. SOLVING PROBLEMS

The goal of this section is to give methods to solve the pipelined scheduling problem
using exact algorithms or heuristic techniques.
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Table II. Summary of complexity results for period.

Fully Hom. Comm. Hom. Hetero.

one-to-one polynomial polynomial, NP-hard (rep.) NP-hard

interval polynomial NP-hard NP-hard

general NP-hard, polynomial (rep.) NP-hard

Table III. Summary of complexity results for latency.

Fully Hom. Comm. Hom. Hetero.

one-to-one polynomial [BR09] NP-hard [BRSR08]

interval polynomial [BR09] NP-hard [BRT09]

general polynomial [BRSR08]

5.1 Scheduling a Chain of Tasks on Identical Processors with Interval Mappings

The first problem that we consider has been presented in Section 4.2.1. It consists
in scheduling a chain of n tasks onto m processors without communication and
enforcing the interval mapping constraint. Section 4.2.1 states that the latency of
such schedules is constant, however the throughput can be optimized by minimizing
the length of the longest interval.

The optimization of the throughput problem is the same combinatorial problem
as the known chain-on-chain problem which has been solved by a polynomial al-
gorithm in [Bok88], and then refined to reach lower complexity in [Iqb92; Nic94;
MO95]. For very large problems, some heuristics have also been designed to reduce
the scheduling times even further (see [PA04] for a survey). The first algorithm was
based on a shortest path algorithm in an assignment graph. The approach below
has a lower complexity, and is easier to understand.

The core of the technique is the Probe function that takes as a parameter the
processing time of the tasks and the length of the longest interval P. It constructs
intervals {I1, . . . , Im} such that max1≤j≤m Lj ≤ P, or shows that no such intervals
exist (remember that Lj =

∑
i∈Ij pi, where pi is the processing time of task ti).

Probe recursively allocates the first x tasks of the chain to the first processor so that∑
i≤x pi ≤ P and

∑
i≤x+1 pi > P until no task remains and returns the schedule.

If the number of intervals is less than the number of processors, this function builds
a schedule having no interval more than P. Otherwise, no schedule of maximal
interval length less than P exists with m processors. It can be easily shown that
the schedules constructed are dominant, i.e., if a schedule exists then there is one
respecting this construction.

The last problem is to choose the optimal value for the threshold P. The optimal
value is obtained by using a binary search on the possible values of P, which tested
using the Probe function. This construction is polynomial but has a quite high
complexity. It is possible to reduce the complexity of the Probe function using
prefix sum arrays and binary search so that fewer values of P can be tested by
analyzing the processing time values. In the general case, the lowest complexity
is reached by using Nicol’s algorithm [Nic94] with Han’s Probe function [HNC92]
leading to a complexity of O(n + m2 log(n) log(n/m)) (see [PA04] for details).
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The same idea can be used to deal with different problems. For instance, with
non-overlapping communication following the one-port model, the same idea ap-
plies. There may be inefficient cutting points (where cutting after or before is
always better) which can be removed by scanning the chain once. Then the same
algorithm may be used to solve the problem optimally, see [Iqb92] for additional
details.

The same algorithm can also be used to solve optimally the case with related pro-
cessor heterogeneity (processor speeds differ) if the order in which a data item goes
through the processors is known. This is the case on dedicated hardware where the
processor network forces the order of execution between the processors. However, if
this order is not known, the problem is NP-complete in the strong sense [BRSR07],
even without taking communication costs into account. Nevertheless, there are too
many permutations to try, but the Probe algorithm sets a solid ground to build
heuristics upon.

[BR08] proposes three heuristics to build interval mappings for optimizing the
throughput on heterogeneous processors. The first one, called SPL, starts by as-
signing all the tasks to the fastest processor and then greedily splits the largest
interval by unloading work to the fastest available processor. The splitting point is
chosen so as to minimize the period of the new solution. The two other heuristics
BSL and BSC use a binary search on the period of the solution. This period is
used as a goal in the greedy allocation of the tasks to the processors. BSL allocates
the beginning of the chain of tasks to the processor that will execute the most
computations while respecting the threshold. On the other hand, BSC chooses the
allocation which is the closest to the period.

[KN10] proposes an algorithm to schedule a chain using interval mappings on
Grid computing systems (related processors, bounded multi-port, communication
and computation overlapping, no replication), considering routing through inter-
mediate nodes. The heuristic is based on the Dijkstra shortest path algorithm and
their benchmark shows that its performance is within 30% of the general mapping
optimal solution.

Solving the problem of optimizing both the latency and the throughput of a
linear pipeline application has been considered in [SV96; BRSR07; BKRSR08]. Bi-
objective optimization problems are usually solved by providing a set of efficient
solutions. This set of solutions is generated by using an algorithm which targets val-
ues of one objective while optimizing the other one. The solution space is explored
by executing this algorithm with different values of the threshold which cover the
efficient part of the solution space.

[SV95] addresses the problem of scheduling a chain of tasks on homogeneous
processors to optimize the throughput of the application without computation and
communication overlapping. It covers a large scale of problems since it addresses
moldable tasks with dedicated communication functions and replicable tasks. The
network is supposed to be homogeneous but the details of the communication model
are abstracted by explicitly giving the communication time in the instance of the
problem. The technique used is based on dynamic programming and leads to a
polynomial algorithm. This result can be extended by adding a latency dimension
in the dynamic program to allow the optimization of the latency under throughput
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constraint [SV96].
[BRSR07] propose heuristics that optimize the throughput and latency when link

bandwidths are identical but processors have different speeds (one-port communi-
cations without overlap). Six heuristics are presented, enforcing a constraint on
either the throughput or the latency. All six heuristics are similar to SPL, they
start by allocating all the tasks to the fastest processor and split the interval it-
eratively. The differences are that each interval may be split in two to the fastest
available processor or split in three to the two fastest processors available. The
other differences are about the solution chosen; it could be the one that maximizes
one objective or a ratio of improvement. [BKRSR08] propose an integer linear
programming formulation to solve the problem optimally (and with heterogeneous
bandwidths). The solving procedure takes a long time even on a simple instance of
7 tasks and 10 processors (a few hours on a modern computer) but allows to assess
the absolute performance of the previously proposed heuristics.

5.2 Solving Chains with General Mappings

Using general mappings instead of restricting to interval mappings leads to bet-
ter throughput. Without replication or communication, the optimization of the
throughput on homogeneous processors is NP-complete by reduction to 3-PARTITION.
In fact, the mathematical problem is to partition n integers p1, . . . , pn into m sets
A1, . . . , Am so that the length of the largest set maxj

∑
i∈Aj

pi is minimized. This
mathematical formulation is the same as scheduling independent tasks on identical
processors to minimize the makespan which has been studied for a long time.

On homogeneous processors, the classical List Scheduling algorithm schedules
tasks greedily on the least loaded processor, and it is a 2-approximation [Gra66],
i.e., the value of the obtained solution is at most twice the optimal value. Sorting
tasks by non increasing processing times leads to the Largest Processing Time
(LPT) algorithm which is known to be a 4/3-approximation algorithm [Gra69].
An approximation scheme (i.e., approximation algorithm with arbitrary precision)
based on binary search and dynamic programming has been proposed in [HS87].

When processors become heterogeneous, the link with the classical makespan op-
timization problem stays valid. If processors are uniform (they compute at different
speeds), the throughput optimization problem is the same as scheduling indepen-
dent tasks on uniform processors. This problem admits a 2-approximation algo-
rithm similar to LPT [GIS77]. [HS88] provides an elaborate approximation scheme
with very high runtime complexity as well as a simple 3/2-approximation algorithm.
If processors are unrelated (i.e., their speeds depend on the task they are handling),
the throughput optimization problem is the same as scheduling independent tasks
on unrelated processors to minimize the makespan. It can be shown than there
exists no approximation algorithm with a ratio better than 3/2 [LST90]. Moreover,
a 2-approximation algorithm based on binary search and linear programming is
known [LST90].

The results on classical scheduling problems stays valid even if the graph is not
linear as long as the performance index is the throughput and communication occur.
However, it still provides an interesting baseline to study the impact of communi-
cations.

[KN10] considers the problem of scheduling a chain on a grid computer with
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routing to optimize the throughput. Processors are heterogeneous (related) and
communications follow the bounded multi-port model with overlapping. They first
consider the case with replication (called multi-path in their terminology). This
case is solved optimally in polynomial time by a flow-based linear programming
formulation (somehow similar to LPsched [dNFJG05]). They also consider the case
without replication (single-path). The problem becomes NP-complete, but they
still provide a Integer Linear Program to solve it optimally. They also propose
a polynomial heuristic based on the Dijkstra shortest path algorithm that only
construct interval mappings. Their experiments show that the heuristic is within
30% of the Integer Linear Programming solution.

[BRT09] provides a polynomial algorithm to optimize the latency of a pipelined
chain on heterogeneous (related) network of processor under the one-port model.
The algorithm is based on a dynamic programming formulation.

5.3 Structured Application Graphs

We show in this section how to solve the problem of scheduling pipelined series-
parallel graphs of moldable tasks. This problem has been presented in Section 4.2.4.

[CNNS94] optimizes both the latency and the throughput of the solution by op-
timizing the latency under throughput constraint. They are optimizing the latency
by computing, for each node of the binary decomposition tree, the optimal latency
achievable for all number of processors using dynamic programming: L(S(l, r,m)) =
minj L(l, j) + L(r,m − j) and L(P (l, r,m)) = minj max(L(l, j),L(r,m − j)). The
throughput constraint is ensured by setting the latency of the leaves to infinity on
processor allocations that would not respect the throughput constraint.

Evaluating the latency of a node for a given number of processors require O(m)
computations and there are 2n − 1 ∈ O(n) nodes to estimate in the tree for m
different values of the number of processors. The overall complexity of the algorithm
is O(nm2). As it is usual with dynamic programming, evaluating the recursive
function only gives the value of the minimal latency in schedule of throughput
respecting the constraint but the allocation can be deduced from the table in linear
time.

[CNNS94] contains some techniques to reduce the time complexity on some cases
by exploiting the convexity of the processing time of the Series operator. They
also explain how to solve the problem of optimizing the throughput under latency
constraint efficiently.

[HM94] and its refinement [CHM95] are interested in optimizing the through-
put of pipelined trees for databases applications. They are considering homoge-
neous processors, no communication overlap, and the bandwidth bounded multi-
port model. Therefore the load of a processor is the sum of the weights of the nodes
executed by this processor plus the weights of the edges to other processors. Since
latency is not a concern here, there is no fine grain scheduling of the instruction but
only a flow-like solution where each processor has a large buffer of tasks to execute.
The main contribution of [HM94] is the definition of a monotone tree which is a
modified version of a tree where two nodes linked by too high communication edge
are merged. They show that such a modification is optimal.

[CHM95] presents two approximation algorithms for the previous problem. Both
are based on a two-phase decomposition: first the tree is decomposed into a forest
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by removing some edges; then the trees are allocated to processors using LPT.
Removing an edge incurs communication costs to both extremities of the edge. It
is shown that if the obtained forest does not have too large trees and the load is kept
reasonable, then LPT will generate an approximation of the optimal solution. Two
tree decomposition algorithms follow. The first one is a simple greedy algorithm
of approximation ratio 3.56, the second one is a more complex greedy algorithm of
approximation ratio 2.87.

5.4 Scheduling with Replication

[SV95] addresses the problem of scheduling a chain of moldable tasks to optimize
the throughput using replicated interval mappings: if a task is replicated, its whole
interval is replicated too. The algorithm uses dynamic programming to find the
intervals I, the number of processors per interval mint and the number of replica-

tions rint of the interval which minimizes the throughput T = maxint∈I
p(int,mint)

rint
.

This information does not give the periodic schedule that the system should follow.
It just states where the tasks should be executed and a Demand Driven middle-
ware will execute them correctly. Building a periodic schedule reaching the same
throughput from the intervals and the number of time they should be replicated
is possible. However, one needs to specify the execution of the Least Common
Multiple of the number of replication LCMint(rint) data items to obtain a periodic
schedule. Indeed, if one task is replicated two times and another one is replicated
three times, the execution of six data items must be unrolled for the schedule to be
periodic.

[SV96] adds the computation of the latency to [SV95]. Since the graph is a
chain and all the intervals are executed independently, it is possible to build a
schedule that reaches the optimal latency for a given processor allocation L =∑

int∈I p(int,mint). The interval which constrains the throughput must be exe-
cuted without idle time, the preceding tasks are scheduled as late as possible and
the following tasks are scheduled as soon as possible. The optimization of the
latency under throughput constraint is obtained using a dynamic programming al-
gorithm, by forbidding the numbers of processors and numbers of replications for
each interval that violates the throughput constraint.

5.5 General Method to Optimize the Throughput

[BHCF95] deals with executing a signal processing application on heterogeneous
machines, where not all tasks can be executed on all type of processors. They
schedule a precedence task graph of sequential monolithic tasks. Communications
overlap and follow the bandwidth bounded multi-port model with latency. First
they build a schedule using clustering to reduce the coarsen the graph. Then they
apply an exponential algorithm that finds the optimal processor ordered schedule.
Finally they improve iteratively the clustering. Having a processor ordered schedule
means that the graph of the communications between the processors is acyclic and
the authors claim that it helps ensuring the precedence constraints are respected.

[Bey01] deals with scheduling pipelined task graphs on the grid. The resources of
the grid are exploited using replication. He propose the Filter Copy Pipeline (FCP)
algorithm. FCP considers the application graph in a topological order and chooses
the number of copies for each task so that it can process the data it receives without
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getting a large backlog. In other words, if the predecessor of a task handles x data
items per time unit, FCP replicates this task to handle x data items per time unit.
Those replicates are allocated to processors using the earliest completion time rule.
Later on, [SFB+02] propose Balanced Filter Copies that allocates a processor to
a single task and keeps tracks of the network consumption while computing the
schedule.

[TC99] is concerned with scheduling a pipelined task graph on a heterogeneous
network of heterogeneous processors with computation and communication overlap.
Since the authors are only interested in the throughput, a solution to the problem
reduces to a mapping of the tasks to the processors and the throughput of the solu-
tion is given by the most loaded processor or link. The algorithm starts by ordering
the tasks in depth-first traversal of a clustering tree. Then the tasks are mapped
to the processors using the following algorithm. The processors are, the one after
the other, loaded with the first unallocated tasks that minimize the maximum of
three quantities: the current load, the perfect load balance of the unallocated tasks
on the unallocated processors, and the yet to be decided communications to the
current processor from the unallocated tasks. Finally, the obtained schedule is iter-
atively improved by unscheduling some of the tasks on the most loaded processors
and links and scheduling them again.

[YKS03] deals with scheduling arbitrary precedence task graphs on a Network
of Workstation (NOW). The processors are heterogeneous (related) and allow for
communication and computation overlap. It assumes a linear communication model
without contention. Two objectives are optimized: the throughput and number of
machines used from the NOW. The throughput is given by the user and then, the
execution is cut in stages whose lengths is given by the throughput. A processor
used in one stage is not reused in the next one so that the throughput can be
guaranteed. The tasks are allocated using earliest time first heuristic. The authors
propose then some techniques to compact the schedule, reducing the number of
processors used.

5.6 General Method to Optimize Throughput and Latency

[GRRL05] is interested in scheduling a pipelined precedence task graph on a ho-
mogeneous cluster with communication and computation overlap to optimize both
latency and throughput. The network is assumed to be completely connected and
the delay model is used. The delay is computed using a latency plus bandwidth
model, but no link congestion is considered.

The authors propose the EXPERT algorithm that optimizes the latency under a
throughput constraint. Given a throughput goal T = 1/P, all tasks are partitioned
in stages such that task t is allocated to the minimum number of stages k such that
topLevel(t) ≤ k × P. Then all the paths of the graph are considered in decreasing
order of length including communication delays, and tasks of the same stage are
clustered greedily as long as the cluster is smaller than P. Finally, inter-stage
clusters can be merged as long as the length of the resulting cluster is less than P.
Communication between the clusters are grouped at the end of the execution of the
cluster.

[HO99] deals with arbitrary application graphs and homogeneous processors and
network. The technique is designed for hypercube networks but can be adapted to
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arbitrary networks. It assumes communication and computation can overlap. They
are interested in optimizing both latency and throughput. The algorithm proposed
only provides a processor allocation and the periodic schedule is reconstructed using
a technique similar to the one presented in Section 4.2.5: in a period, the tasks are
ordered in topological order. If a task does not get its precedences in the current
iteration, it takes them from the previous iteration.

Given a targeted period, and therefore throughput, the proposed method has
three steps. It first clusters the task in order of non-increasing communication re-
quirement and keeps the size of the clusters less than the targeted period. Then
the clusters are mapped to computation nodes to minimize the amount of com-
munication. This is done by mapping the tasks randomly to the nodes. Then the
processor set is cut in two equals parts and tasks are exchanged to decrease the
communication on the processor cut. The communications in each part are then
optimized recursively. Finally, the solution is improved iteratively by moving tasks
between processors to decrease the load of the most loaded link.

[VCK+08] is dealing with optimizing the latency and throughput of arbitrary
DAGs on homogeneous processors linked by a network of different bandwidth with
communication/computation overlapping and using replication and duplication.

The algorithm is in three steps and takes a throughput constraint as a parameter.
The first step generates clusters to match the throughput constraint. It considers
the replication of tasks to deal with computational bottlenecks, and duplication
of tasks and clustering to decrease communication bottlenecks. In a second step,
it reduces the number of clusters to the number of processors in the system by
merging clusters to minimize processor idle times. Finally, the latency is minimized
by considering for each task of the critical path its duplication and clustering to its
predecessor cluster or successor cluster.

6. CONCLUSION AND FUTURE WORK

In this survey, we presented an overview of pipelined workflow scheduling, a problem
that asks for an efficient execution of a streaming application that operates on a
set of consecutive data items. We described the components of application and
platforms models, and how a scheduling problem can be formulated for a given
application. We presented a brief summary of the solution methods for specific
problems, highlighting the frontier between polynomial and NP-hard optimization
problems.

Although there is a significant body of literature for this complex problem, real-
istic application scenarios still call for more work in the area, both theoretical and
practical.

When developing solutions for realistic applications, one has to consider all the
ingredients of the schedule as a whole, including detailed communication models
and memory requirements (especially when more than one data item is processed
in a single period). Such additional constraints make the development of efficient
scheduling methods even more difficult.

As the literature shows, having structure either in the application graph or in
the execution platform graph dramatically helps for developing effective solutions.
We think that extending this concept to the schedule could be useful too. For
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example, for scheduling arbitrary DAGs, developing structured schedules, such as
convex schedules, has a potential for yielding new results in this area.

Finally, as the domain evolves, new optimization criteria must be introduced. In
this paper, we have mainly dealt with throughput and latency. Other performance-
related objectives arise with the advent of very large-scale platforms, such as in-
creasing the reliability of the schedule (e.g., through task duplication). Environmen-
tal and economic criteria, such as the energy dissipated throughout the execution,
or the rental cost of the platform, are also likely to play an increasing role. Alto-
gether, achieving a reasonable trade-off between all these multiple and antagonistic
objectives, will prove a very interesting algorithmic challenge.
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