
Static Scheduling
for Large-Scale Heterogeneous Platforms:

Myth or Reality?

Yves Robert
École Normale Supérieure de Lyon

joint work with
Larry Carter, Henri Casanova, Jeanne Ferrante, Yang Yang

Olivier Beaumont, Arnaud Legrand, Loris Marchal, Frédéric Vivien

Yves.Robert@ens-lyon.fr

http://graal.ens-lyon.fr/∼yrobert

IΠ∆ΠΣ’2006

http://graal.ens-lyon.fr/~yrobert

Evolution of parallel machines

From good old parallel architectures . . .

Yves Robert Scheduling for Heterogeneous Platforms 2/ 90

Evolution of parallel machines

. . . to heterogeneous clusters . . .

Yves Robert Scheduling for Heterogeneous Platforms 2/ 90

Evolution of parallel machines

. . . and soon to the Holy Grid?

Yves Robert Scheduling for Heterogeneous Platforms 2/ 90

Evolution of parallel machines

. . . and soon to the Holy Grid?

Parallel algorithm design and scheduling were already difficult tasks with
homogeneous machines

Yves Robert Scheduling for Heterogeneous Platforms 2/ 90

Evolution of parallel machines

. . . and soon to the Holy Grid?

Parallel algorithm design and scheduling were already difficult tasks with
homogeneous machines
On heterogeneous platforms, it gets worse

Yves Robert Scheduling for Heterogeneous Platforms 2/ 90

New platforms, new problems, new solutions

Target platforms: Large-scale heterogenous platforms
(networks of workstations, clusters, collections of clusters, grids, ...)

New problems

Heterogeneity of processors (CPU power, memory)

Heterogeneity of communication links

Irregularity of interconnection networks

Non-dedicated platforms

Need to adapt algorithms and scheduling strategies: new objective
functions, new models

Yves Robert Scheduling for Heterogeneous Platforms 3/ 90

New platforms, new problems, new solutions

Target platforms: Large-scale heterogenous platforms
(networks of workstations, clusters, collections of clusters, grids, ...)

New problems

Heterogeneity of processors (CPU power, memory)

Heterogeneity of communication links

Irregularity of interconnection networks

Non-dedicated platforms

Need to adapt algorithms and scheduling strategies: new objective
functions, new models

Yves Robert Scheduling for Heterogeneous Platforms 3/ 90

Outline

1 Background on traditional scheduling

2 Packet routing

3 Master-worker on heterogeneous platforms

4 Broadcast

5 Limitations

6 Putting all together

7 Conclusion

Yves Robert Scheduling for Heterogeneous Platforms 4/ 90

Background on traditional scheduling

Outline

1 Background on traditional scheduling

2 Packet routing

3 Master-worker on heterogeneous platforms

4 Broadcast

5 Limitations

6 Putting all together

7 Conclusion

Yves Robert Scheduling for Heterogeneous Platforms 5/ 90

Background on traditional scheduling

Traditional scheduling – Framework

Application = DAG G = (T , E, w)
I T = set of tasks
I E = dependence constraints
I w(T) = computational cost of task T (execution time)
I c(T, T ′) = communication cost (data sent from T to T ′)

Platform
I Set of p identical processors

Schedule
I σ(T) = date to begin execution of task T
I alloc(T) = processor assigned to it

Yves Robert Scheduling for Heterogeneous Platforms 6/ 90

Background on traditional scheduling

Traditional scheduling – Constraints

w(T’)

time

w(T)

comm(T,T’)

σ(T) + w(T)σ(T)

T T’

σ(T ′)

Data dependences If (T, T ′) ∈ E then

I if alloc(T) = alloc(T ′) then σ(T) + w(T) ≤ σ(T ′)
I if alloc(T) 6= alloc(T ′) then σ(T) + w(T) + c(T, T ′) ≤ σ(T ′)

Resource constraints

alloc(T) = alloc(T ′) ⇒
(σ(T) + w(T) ≤ σ(T ′)) or (σ(T ′) + w(T ′) ≤ σ(T))

Yves Robert Scheduling for Heterogeneous Platforms 7/ 90

Background on traditional scheduling

Traditional scheduling – Objective functions

Makespan or total execution time

MS(σ) = max
T∈T

(σ(T) + w(T))

Other classical objectives:

I Sum of completion times
I With release dates: maximum flow (response time), or sum flow
I Fairness oriented: maximum stretch, or sum stretch

Yves Robert Scheduling for Heterogeneous Platforms 8/ 90

Background on traditional scheduling

Traditional scheduling – About the model

Simple but OK for computational resources
I No CPU sharing, even in models with preemption
I At most one task running per processor at any time-step

Very crude for network resources
I Unlimited number of simultaneous sends/receives per processor
I No contention → unbounded bandwidth on any link
I Fully connected interconnection graph (clique)

In fact, model assumes infinite network capacity

Yves Robert Scheduling for Heterogeneous Platforms 9/ 90

Background on traditional scheduling

Makespan minimization

NP-hardness
I Pb(p) NP-complete for independent tasks and no communications

(E = ∅, p = 2 and c = 0)
I Pb(p) NP-complete for UET-UCT graphs (w = c = 1)

Approximation algorithms
I Without communications, list scheduling is a (2− 1

p)-approximation
I With communications, result extends to coarse-grain graphs
I With communications, no λ-approximation in general

Yves Robert Scheduling for Heterogeneous Platforms 10/ 90

Background on traditional scheduling

List scheduling – Without communications (1/2)

Initialization:
1 Compute priority level of all tasks
2 Priority queue = list of free tasks (tasks without predecessors)

sorted by priority
3 t is the current time step: t = 0.

While there remain tasks to execute:
1 Add new free tasks, if any, to the queue. If the execution of a task

terminates at time step t, suppress this task from the predecessor
list of all its successors. Add those tasks whose predecessor list has
become empty.

2 If there are q available processors and r tasks in the queue, remove
first min(q, r) tasks from the queue and execute them; if T is one
of these tasks, let σ(T) = t.

3 Increment t.

Yves Robert Scheduling for Heterogeneous Platforms 11/ 90

Background on traditional scheduling

List scheduling – Without communications (2/2)

Priority level
I Use critical path: longest path from the task to an exit node
I Computed recursively by a bottom-up traversal of the graph

Implementation details
I Cannot iterate from t = 0 to t = MS(σ) (exponential in problem

size)
I Use a heap for free tasks valued by priority level
I Use a heap for processors valued by termination time
I Complexity O(|V | log |V |+ |E|)

Yves Robert Scheduling for Heterogeneous Platforms 12/ 90

Background on traditional scheduling

List scheduling – With communications (1/2)

Priority level
I Use pessimistic critical path: include all edge costs in the weight
I Computed recursively by a bottom-up traversal of the graph

MCP Modified Critical Path
I Assign free task with highest priority to best processor
I Best processor = finishes execution first, given already taken

scheduling decisions
I Free tasks may not be ready for execution (communication delays)
I May explore inserting the task in empty slots of schedule
I Complexity O(|V | log |V |+ (|E|+ |V |)p)

Yves Robert Scheduling for Heterogeneous Platforms 13/ 90

Background on traditional scheduling

List scheduling – With communications (2/2)

EFT Earliest Finish Time
I Dynamically recompute priorities of free tasks
I Select free task that finishes execution first (on best processor),

given already taken scheduling decisions
I Higher complexity O(|V |3p)
I May miss “urgent” tasks on critical path

Other approaches
I Two-step: clustering + load balancing

- DSC Dominant Sequence Clustering O((|V |+ |E|) log |V |)
- LLB List-based Load Balancing O(C log C + |V |) (C number of
clusters generated by DSC)

I Low-cost: FCP Fast Critical Path
- Maintain constant-size sorted list of free tasks:
- Best processor = first idle or the one sending last message
- Low complexity O(|V | log p + |E|)

Yves Robert Scheduling for Heterogeneous Platforms 14/ 90

Background on traditional scheduling

Extending the model to heterogeneous clusters

Task graph with n tasks T1, . . . , Tn.

Platform with p heterogeneous processors P1, . . . , Pp.

Computation costs:
- wiq = execution time of Ti on Pq

- wi =
Pp

q=1 wiq

p average execution time of Ti

- particular case: consistent tasks wiq = wi × γq

Communication costs:
- data(i, j): data volume for edge eij : Ti → Tj

- vqr: communication time for unit-size message from Pq to Pr

(zero if q = r)
- com(i, j, q, r) = data(i, j)× vqr communication time from Ti

executed on Pq to Pj executed on Pr

- comij = data(i, j)×
P

1≤q,r≤p,q 6=r vqr

p(p−1) average communication
cost for edge eij : Ti → Tj

Yves Robert Scheduling for Heterogeneous Platforms 15/ 90

Background on traditional scheduling

Rewriting constraints

Dependences For eij : Ti → Tj , q = alloc(Ti) and r = alloc(Tj):

σ(Ti) + wiq + com(i, j, q, r) ≤ σ(Tj)

Resources If q = alloc(Ti) = alloc(Tj), then

(σ(Ti) + wiq ≤ σ(Tj)) or (σ(Tj) + wjq ≤ σ(Ti))

Makespan
max
1≤i≤n

(
σ(Ti) + wi,alloc(Ti)

)

Yves Robert Scheduling for Heterogeneous Platforms 16/ 90

Background on traditional scheduling

HEFT: Heterogeneous Earliest Finishing Time

1 Priority level:
I rank(Ti) = wi + max

Tj∈Succ(Ti)
(comij + rank(Tj)),

where Succ(T) is the set of successors of T
I Recursive computation by bottom-up traversal of the graph

2 Allocation
I For current task Ti, determine best processor Pq:

minimize σ(Ti) + wiq

I Enforce constraints related to communication costs
I Insertion scheduling: look for t = σ(Ti) s.t. Pq is available during

interval [t, t + wiq[
3 Complexity: same as MCP without/with insertion

Yves Robert Scheduling for Heterogeneous Platforms 17/ 90

Background on traditional scheduling

Bibliography – Traditional scheduling

Introductory book:
Distributed and parallel computing, H. El-Rewini and T. G. Lewis,
Manning 1997

FCP:
On the complexity of list scheduling algorithms for
distributed-memory systems, A. Radulescu and A.J.C. van
Gemund, 13th ACM Int Conf. Supercomputing (1999), 68-75

HEFT:
Performance-effective and low-complexity task scheduling for
heterogeneous computing, H. Topcuoglu and S. Hariri and M.-Y.
Wu, IEEE TPDS 13, 3 (2002), 260-274

Yves Robert Scheduling for Heterogeneous Platforms 18/ 90

Background on traditional scheduling

What’s wrong?

, Nothing (still may need to map a DAG onto a platform!)

/ Absurd communication model:
complicated: many parameters to instantiate
while not realistic (clique + no contention)

/ Wrong metric: need to relax makespan minimization objective

Yves Robert Scheduling for Heterogeneous Platforms 19/ 90

Background on traditional scheduling

What’s wrong?

, Nothing (still may need to map a DAG onto a platform!)

/ Absurd communication model:
complicated: many parameters to instantiate
while not realistic (clique + no contention)

/ Wrong metric: need to relax makespan minimization objective

Yves Robert Scheduling for Heterogeneous Platforms 19/ 90

Background on traditional scheduling

What’s wrong?

, Nothing (still may need to map a DAG onto a platform!)

/ Absurd communication model:
complicated: many parameters to instantiate
while not realistic (clique + no contention)

/ Wrong metric: need to relax makespan minimization objective

Yves Robert Scheduling for Heterogeneous Platforms 19/ 90

Packet routing

Outline

1 Background on traditional scheduling

2 Packet routing

3 Master-worker on heterogeneous platforms

4 Broadcast

5 Limitations

6 Putting all together

7 Conclusion

Yves Robert Scheduling for Heterogeneous Platforms 20/ 90

Packet routing

Problem

A

E

G

C

H

D
F

B

Routing sets of messages from sources to destinations

Paths not fixed a priori

Packets of same message may follow different paths

Yves Robert Scheduling for Heterogeneous Platforms 21/ 90

Packet routing

Hypotheses

A

E

G

C

H

D
F

B

A packet crosses an edge within one time-step

At any time-step, at most one packet crosses an edge

Yves Robert Scheduling for Heterogeneous Platforms 22/ 90

Packet routing

Hypotheses

A

E

G

C

H

D
F

B

A packet crosses an edge within one time-step

At any time-step, at most one packet crosses an edge

Scheduling: for each time-step, decide which packet crosses any given
edge

Yves Robert Scheduling for Heterogeneous Platforms 22/ 90

Packet routing

Notation

k

i

l

j

nk,l

nk,l
i,j

nk,l: total number of packets to be routed from k to l

nk,l
i,j : total number of packets routed from k to l and crossing

edge (i, j)

Yves Robert Scheduling for Heterogeneous Platforms 23/ 90

Packet routing

Lower bound

Congestion Ci,j of edge (i, j)
= total number of packets that cross (i, j)

Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j Cmax = maxi,j Ci,j

Cmax lower bound on schedule makespan
C∗ ≥ Cmax

⇒ “Fluidified” solution in Cmax?

Yves Robert Scheduling for Heterogeneous Platforms 24/ 90

Packet routing

Lower bound

Congestion Ci,j of edge (i, j)
= total number of packets that cross (i, j)

Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j Cmax = maxi,j Ci,j

Cmax lower bound on schedule makespan
C∗ ≥ Cmax

⇒ “Fluidified” solution in Cmax?

Yves Robert Scheduling for Heterogeneous Platforms 24/ 90

Packet routing

Lower bound

Congestion Ci,j of edge (i, j)
= total number of packets that cross (i, j)

Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j Cmax = maxi,j Ci,j

Cmax lower bound on schedule makespan
C∗ ≥ Cmax

⇒ “Fluidified” solution in Cmax?

Yves Robert Scheduling for Heterogeneous Platforms 24/ 90

Packet routing

Equations (1/2)

A

E

G

C

H

D
F

B

A

E

G

B

1 Initialization (packets leave node k):
∑

j|(k,j)∈A

nk,l
k,j = nk,l

2 Reception (packets reach node l):
∑

i|(i,l)∈A

nk,l
i,l = nk,l

3 Conservation law (crossing edge (i, j)):∑
i|(i,j)∈A

nk,l
i,j =

∑
i|(j,i)∈A

nk,l
j,i ∀(k, l), j 6= k, j 6= l

Yves Robert Scheduling for Heterogeneous Platforms 25/ 90

Packet routing

Equations (1/2)

A

E

G

C

H

D
F

B

G

H

D

1 Initialization (packets leave node k):
∑

j|(k,j)∈A

nk,l
k,j = nk,l

2 Reception (packets reach node l):
∑

i|(i,l)∈A

nk,l
i,l = nk,l

3 Conservation law (crossing edge (i, j)):∑
i|(i,j)∈A

nk,l
i,j =

∑
i|(j,i)∈A

nk,l
j,i ∀(k, l), j 6= k, j 6= l

Yves Robert Scheduling for Heterogeneous Platforms 25/ 90

Packet routing

Equations (1/2)

G G

1 Initialization (packets leave node k):
∑

j|(k,j)∈A

nk,l
k,j = nk,l

2 Reception (packets reach node l):
∑

i|(i,l)∈A

nk,l
i,l = nk,l

3 Conservation law (crossing edge (i, j)):∑
i|(i,j)∈A

nk,l
i,j =

∑
i|(j,i)∈A

nk,l
j,i ∀(k, l), j 6= k, j 6= l

Yves Robert Scheduling for Heterogeneous Platforms 25/ 90

Packet routing

Equations (2/2)

4 Congestion
Ci,j =

∑
(k,l)|nk,l>0 nk,l

i,j

5 Objective function

Cmax ≥ Ci,j , ∀i, j

Minimize Cmax

Linear program in rational numbers: polynomial-time solution. In
practice use Maple or Mupad

Yves Robert Scheduling for Heterogeneous Platforms 26/ 90

Packet routing

Equations (2/2)

4 Congestion
Ci,j =

∑
(k,l)|nk,l>0 nk,l

i,j

5 Objective function

Cmax ≥ Ci,j , ∀i, j

Minimize Cmax

Linear program in rational numbers: polynomial-time solution. In
practice use Maple or Mupad

Yves Robert Scheduling for Heterogeneous Platforms 26/ 90

Packet routing

Equations (2/2)

4 Congestion
Ci,j =

∑
(k,l)|nk,l>0 nk,l

i,j

5 Objective function

Cmax ≥ Ci,j , ∀i, j

Minimize Cmax

Linear program in rational numbers: polynomial-time solution. In
practice use Maple or Mupad

Yves Robert Scheduling for Heterogeneous Platforms 26/ 90

Packet routing

Routing algorithm

1 Compute optimal solution Cmax, nk,l
i,j of previous linear program

2 Periodic schedule:
I Define Ω =

√
Cmax

I Use
⌈

Cmax
Ω

⌉
periods of length Ω

I During each period, edge (i, j) forwards (at most)

mk,l
i,j =

⌊
nk,l

i,jΩ
Cmax

⌋

packets that go from k to l

3 Clean-up: sequentially process residual packets inside network

Yves Robert Scheduling for Heterogeneous Platforms 27/ 90

Packet routing

Performance

Schedule is feasible

Schedule is asymptotically optimal:

Cmax ≤ C∗ ≤ Cmax + O(
√

Cmax)

Yves Robert Scheduling for Heterogeneous Platforms 28/ 90

Packet routing

Why does it work?

Relaxation of objective function

Rational number of packets in LP formulation

Periods long enough so that rounding down to integer numbers
has negligible impact

Periods numerous enough so that loss in first and last periods has
negligible impact

Periodic schedule, described in compact form

Yves Robert Scheduling for Heterogeneous Platforms 29/ 90

Packet routing

Bibliography – Packet routing

Survey of results:
Introduction to parallel algorithms and architectures: arrays, trees,
hypercubes, F.T. Leighton, Morgan Kaufmann (1992)

NP-completeness, approximation algorithm:
A constant-factor approximation algorithm for packet routing and
balancing local vs. global criteria, A. Srinivasan, C.-P. Teo, SIAM
J. Comput. 30, 6 (2000), 2051-2068

Steady-state:
Asymptotically optimal algorithms for job shop scheduling and
packet routing, D. Bertsimas and D. Gamarnik, Journal of
Algorithms 33, 2 (1999), 296-318

Yves Robert Scheduling for Heterogeneous Platforms 30/ 90

Master-worker on heterogeneous platforms

Outline

1 Background on traditional scheduling

2 Packet routing

3 Master-worker on heterogeneous platforms

4 Broadcast

5 Limitations

6 Putting all together

7 Conclusion

Yves Robert Scheduling for Heterogeneous Platforms 31/ 90

Master-worker on heterogeneous platforms

Master-worker tasking: framework

Heterogeneous resources

Processors of different speeds
Communication links with various bandwidths

Large number of independent tasks to process

Tasks are atomic
Tasks have same size

Single data repository

One master initially holds data for all tasks
Several workers arranged along a fork, a tree or a
general graph

Yves Robert Scheduling for Heterogeneous Platforms 32/ 90

Master-worker on heterogeneous platforms

Application examples

Monte Carlo methods

SETI@home

Factoring large numbers

Searching for Mersenne primes

Particle detection at CERN (LHC@home)

... and many others: see BOINC at http://boinc.berkeley.edu

Yves Robert Scheduling for Heterogeneous Platforms 33/ 90

http://boinc.berkeley.edu

Master-worker on heterogeneous platforms

Makespan vs. steady state

Two-different problems

Makespan Maximize total number of tasks processed within a
time-bound

Steady state Determine periodic task allocation which maximizes total
throughput

Yves Robert Scheduling for Heterogeneous Platforms 34/ 90

Master-worker on heterogeneous platforms

Example

� �� � � � � �� �� � � � � �
�� �� 	 �
�� �� 	 �

� � � �� �� � � �� �
�� � ��� � �

� �� �
�� � ��� �� �� � � � �� !" #" $ #" % # $ &' %'!" #" $ #" % # $ &' %'

() *,+ -.
/0 1 2�3 45 6

78 9:; < 9
=> ?@

AB CDE FE G B D E H I AJ K L
M NO PQ RS T U M UV Q N T

W N UX RY X O V M UX NQ O X T
Z M N ZQ Y [�\ UX UQ Q

Yves Robert Scheduling for Heterogeneous Platforms 35/ 90

Master-worker on heterogeneous platforms

Example

��

��

��

��

��
��

��

��

��
��

��

Time for computingTime for computing

one task in Cone task in C

Time for sending Time for sending

one task from A to Bone task from A to B

A is the root of the tree;A is the root of the tree;

all tasks start at Aall tasks start at A

Yves Robert Scheduling for Heterogeneous Platforms 35/ 90

Master-worker on heterogeneous platforms

Example

��

��

��

��
�� ��

��

��

�� ��

��

A computeA compute
A sendA send

B receiveB receive
B computeB compute

C receiveC receive
C computeC compute

C sendC send

D receiveD receive
D computeD compute

	
 ��	
 ��
11 22 33

Yves Robert Scheduling for Heterogeneous Platforms 35/ 90

Master-worker on heterogeneous platforms

Example

��

��

��

��
�� ��

��

��

�� ��

��

A computeA compute
A sendA send

B receiveB receive
B computeB compute

C receiveC receive
C computeC compute

C sendC send

D receiveD receive
D computeD compute

	
 ��	
 ��
11 22 33

Yves Robert Scheduling for Heterogeneous Platforms 35/ 90

Master-worker on heterogeneous platforms

Example

��

��

��

��
�� ��

��

��

�� ��

��

A computeA compute
A sendA send

B receiveB receive
B computeB compute

C receiveC receive
C computeC compute

C sendC send

D receiveD receive
D computeD compute

	
 ��	
 ��
11 22 33

Yves Robert Scheduling for Heterogeneous Platforms 35/ 90

Master-worker on heterogeneous platforms

Example

��

��

��

��
�� ��

��

��

�� ��

��

A computeA compute
A sendA send

B receiveB receive
B computeB compute

C receiveC receive
C computeC compute

C sendC send

D receiveD receive
D computeD compute

	
 ��	
 ��
11 22 33

Yves Robert Scheduling for Heterogeneous Platforms 35/ 90

Master-worker on heterogeneous platforms

Example

��

��

��

��
�� ��

��

��

�� ��

��

A computeA compute
A sendA send

B receiveB receive
B computeB compute

C receiveC receive
C computeC compute

C sendC send

D receiveD receive
D computeD compute

	
 ��	
 ��
11 22 33

Yves Robert Scheduling for Heterogeneous Platforms 35/ 90

Master-worker on heterogeneous platforms

Example

A computeA compute
A sendA send

B receiveB receive
B computeB compute

C receiveC receive
C computeC compute

C sendC send

D receiveD receive
D computeD compute

11 22 33

StartupStartup
RepeatedRepeated

patternpattern
CleanClean--upup

SteadySteady--state: 7 tasks every 6 time unitsstate: 7 tasks every 6 time units

��

��

��

��

��

��

��

�� ��

��

��

Yves Robert Scheduling for Heterogeneous Platforms 35/ 90

Master-worker on heterogeneous platforms

Solution for star-shaped platforms

� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �
� �� �� �� �

� �� �� �� �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �
	 	 	 	 		 	 	 	 	

��
��
��
��
��
��
��
��
��
��

� �� �� �� �� �� �� �

�������������������������������
�������������������������������
�������������������������������

�����������������������������
�����������������������������
�����������������������������

�������������
�������������
�������������

���������
���������
���������

Communication links between master and workers have different
bandwidths

Workers have different computing power

Yves Robert Scheduling for Heterogeneous Platforms 36/ 90

Master-worker on heterogeneous platforms

Rule of the game

M

P1 P2 Pi Pp

w1 w2 wi wp

ci

cpc1

c2

Master sends tasks to workers sequentially, and without
preemption

Full computation/communication overlap for each worker

Worker Pi receives a task in ci time-units

Worker Pi processes a task in wi time-units

Yves Robert Scheduling for Heterogeneous Platforms 37/ 90

Master-worker on heterogeneous platforms

Equations

M

P1 P2 Pi Pp

w1 w2 wi wp

ci

cpc1

c2

Worker Pi executes αi tasks per time-unit

Computations: αiwi ≤ 1
Communications:

∑
i αici ≤ 1

Objective: maximize throughput

ρ =
∑

i

αi

Yves Robert Scheduling for Heterogeneous Platforms 37/ 90

Master-worker on heterogeneous platforms

Solution

Faster-communicating workers first: c1 ≤ c2 ≤ . . .

Make full use of first q workers, where q largest index s.t.∑
i

ci

wi
≤ 1

Make partial use of next worker

Discard other workers

Bandwidth-centric strategy
- Delegate work to whomever it takes you the least time to explain the
problem to!
- It doesn’t matter if that person is a slow worker
- Of course, slow workers will have full desktops more often

Yves Robert Scheduling for Heterogeneous Platforms 38/ 90

Master-worker on heterogeneous platforms

Example

Fully active

2
10

20
1

3 6 1 1 1

M

3

Discarded

Tasks Communication Computation
6 tasks to P1 6c1 = 6 6w1 = 18
3 tasks to P2 3c2 = 6 3w2 = 18
2 tasks to P3 2c3 = 6 2w3 = 2

11 tasks every 18 time-units (ρ = 11/18 ≈ 0.6)

Yves Robert Scheduling for Heterogeneous Platforms 39/ 90

Master-worker on heterogeneous platforms

Example

Fully active

2
10

20
1

3 6 1 1 1

M

3

Discarded

, Compare to purely greedy (demand-driven) strategy!
5 tasks every 36 time-units (ρ = 5/36 ≈ 0.14)

Yves Robert Scheduling for Heterogeneous Platforms 39/ 90

Master-worker on heterogeneous platforms

The beauty of steady-state scheduling

Rationale Maximize throughput (total load executed per period)

Simplicity Relaxation of makespan minimization problem

Ignore initialization and clean-up phases
Precise ordering/allocation of tasks/messages not
needed
Characterize resource activity during each time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent receiving
or sending to which neighbor?

Efficiency Optimal throughput ⇒ optimal schedule (up to a
constant number of tasks)

Periodic schedule, described in compact form
⇒ compiling a loop instead of a DAG!

Yves Robert Scheduling for Heterogeneous Platforms 40/ 90

Master-worker on heterogeneous platforms

The beauty of steady-state scheduling

Rationale Maximize throughput (total load executed per period)

Simplicity Relaxation of makespan minimization problem

Ignore initialization and clean-up phases
Precise ordering/allocation of tasks/messages not
needed
Characterize resource activity during each time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent receiving
or sending to which neighbor?

Efficiency Optimal throughput ⇒ optimal schedule (up to a
constant number of tasks)

Periodic schedule, described in compact form
⇒ compiling a loop instead of a DAG!

Yves Robert Scheduling for Heterogeneous Platforms 40/ 90

Master-worker on heterogeneous platforms

Extension to trees

1432

1 1 1

3 14

00

0 0

2

2 2

2 2

3 3

3 3

40
39

9

555

40
39

9

5

66 6 6

26666

5 5

9 9

5

66 6 6 2 10
7

5

40
67

10

1
2

1
2

1
2

1
2

1
2

1
2 1

2
1
2

1

90
53

Yves Robert Scheduling for Heterogeneous Platforms 41/ 90

Master-worker on heterogeneous platforms

Extension to trees

Fully used node

Partially used node

Idle node

1432

1 1 1

3

0

2

555

26666

5 5

9

10

1
2

1
2

Resource selection based on local information (children)

Yves Robert Scheduling for Heterogeneous Platforms 41/ 90

Master-worker on heterogeneous platforms

Does this really work?

Can we deal with arbitrary platforms (including cycles)?

Can we deal with return messages?

In fact, can we deal with more complex applications (arbitrary
collections of DAGs)?

Yves Robert Scheduling for Heterogeneous Platforms 42/ 90

Master-worker on heterogeneous platforms

Does this really work?

Can we deal with arbitrary platforms (including cycles)? Yes

Can we deal with return messages?

In fact, can we deal with more complex applications (arbitrary
collections of DAGs)?

Yves Robert Scheduling for Heterogeneous Platforms 42/ 90

Master-worker on heterogeneous platforms

Does this really work?

Can we deal with arbitrary platforms (including cycles)? Yes

Can we deal with return messages?

In fact, can we deal with more complex applications (arbitrary
collections of DAGs)?

Yves Robert Scheduling for Heterogeneous Platforms 42/ 90

Master-worker on heterogeneous platforms

Does this really work?

Can we deal with arbitrary platforms (including cycles)? Yes

Can we deal with return messages? Yes

In fact, can we deal with more complex applications (arbitrary
collections of DAGs)?

Yves Robert Scheduling for Heterogeneous Platforms 42/ 90

Master-worker on heterogeneous platforms

Does this really work?

Can we deal with arbitrary platforms (including cycles)? Yes

Can we deal with return messages? Yes

In fact, can we deal with more complex applications (arbitrary
collections of DAGs)?

Yves Robert Scheduling for Heterogeneous Platforms 42/ 90

Master-worker on heterogeneous platforms

Does this really work?

Can we deal with arbitrary platforms (including cycles)? Yes

Can we deal with return messages? Yes

In fact, can we deal with more complex applications (arbitrary
collections of DAGs)? Yes, I mean, almost!

Yves Robert Scheduling for Heterogeneous Platforms 42/ 90

Master-worker on heterogeneous platforms

LP formulation still works well . . .

Tm

file emn
Pj

Pi

Pk

wi

cik

cji

Tn

Conservation law

∀m, n
∑

j

sent(Pj → Pi, emn) + executed(Pi, Tm)

= executed(Pi, Tn) +
∑

k

sent(Pi → Pk, emn)

Computations∑
m

executed(Pi, Tm)× flops(Tm)× wi ≤ 1

Outgoing communications∑
m,n

∑
j

sent(Pj → Pi, emn)× bytes(emn)× cij ≤ 1

Yves Robert Scheduling for Heterogeneous Platforms 43/ 90

Master-worker on heterogeneous platforms

. . . but schedule reconstruction is harder

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1

, Actual (cyclic) schedule obtained in polynomial time

, Asymptotic optimality

/ A couple of practical problems (large period, # buffers)

/ No local scheduling policy

Yves Robert Scheduling for Heterogeneous Platforms 44/ 90

Master-worker on heterogeneous platforms

Bibliography – Master-worker tasking

Steady-state scheduling:
Scheduling strategies for master-worker tasking on heterogeneous
processor platforms, C. Banino et al., IEEE TPDS 15, 4 (2004),
319-330

With bounded multi-port model:
Distributed adaptive task allocation in heterogeneous computing
environments to maximize throughput, B. Hong and V.K.
Prasanna, IEEE IPDPS (2004), 52b

With several applications:
Centralized versus distributed schedulers for multiple bag-of-task
applications, presented yesterday!

Yves Robert Scheduling for Heterogeneous Platforms 45/ 90

Broadcast

Outline

1 Background on traditional scheduling

2 Packet routing

3 Master-worker on heterogeneous platforms

4 Broadcast

5 Limitations

6 Putting all together

7 Conclusion

Yves Robert Scheduling for Heterogeneous Platforms 46/ 90

Broadcast

Broadcasting data

Key collective communication operation

Start: one processor has the data

End: all processors own a copy

Vast literature about broadcast, MPI Bcast

Standard approach: use a spanning tree

Finding the best spanning tree: NP-Complete problem
(even in the telephone model)

Yves Robert Scheduling for Heterogeneous Platforms 47/ 90

Broadcast

Broadcasting data

Key collective communication operation

Start: one processor has the data

End: all processors own a copy

Vast literature about broadcast, MPI Bcast

Standard approach: use a spanning tree

Finding the best spanning tree: NP-Complete problem
(even in the telephone model)

Yves Robert Scheduling for Heterogeneous Platforms 47/ 90

Broadcast

Broadcasting data

Key collective communication operation

Start: one processor has the data

End: all processors own a copy

Vast literature about broadcast, MPI Bcast

Standard approach: use a spanning tree

Finding the best spanning tree: NP-Complete problem
(even in the telephone model)

Yves Robert Scheduling for Heterogeneous Platforms 47/ 90

Broadcast

Heuristic: Earliest completing edge first (ECEF)

3
3

3
1

6

4

4

2

2

Yves Robert Scheduling for Heterogeneous Platforms 48/ 90

Broadcast

Heuristic: Earliest completing edge first (ECEF)

3
3

3
1

6

4

4

2

(0) 2

Next node: minimize (Ri) + cij , Pj /∈ T

Yves Robert Scheduling for Heterogeneous Platforms 48/ 90

Broadcast

Heuristic: Earliest completing edge first (ECEF)

3
3

3
1

6

4

4

2

(3)

(3)

2

Next node: minimize (Ri) + cij , Pj /∈ T

Yves Robert Scheduling for Heterogeneous Platforms 48/ 90

Broadcast

Heuristic: Earliest completing edge first (ECEF)

3
3

3
1

6

4

4

2

(3) (6)

(6)

2

Next node: minimize (Ri) + cij , Pj /∈ T

Yves Robert Scheduling for Heterogeneous Platforms 48/ 90

Broadcast

Heuristic: Earliest completing edge first (ECEF)

3
3

3
1

6

4

4

2

(3)

(6)

2

(7)

(7)

Next node: minimize (Ri) + cij , Pj /∈ T

Yves Robert Scheduling for Heterogeneous Platforms 48/ 90

Broadcast

Heuristic: Earliest completing edge first (ECEF)

3
3

3
1

6

4

4

2

2(0)

(3)

(6)

(7)

(9)

(9)

Broadcast finishing times (t)

Yves Robert Scheduling for Heterogeneous Platforms 48/ 90

Broadcast

Heuristic: Look-ahead (LA)

3
3

3
1

6

4

4

2

(0) 2

(3)

(1)

(1)

Next node: minimize (Ri) + cij + (min cjk), Pj , Pk /∈ T

Yves Robert Scheduling for Heterogeneous Platforms 49/ 90

Broadcast

Heuristic: Look-ahead (LA)

3
3

3
1

6

4

4

2

2(4) (4) (3)

(2)

(4)

Next node: minimize (Ri) + cij + (min cjk), Pj , Pk /∈ T

Yves Robert Scheduling for Heterogeneous Platforms 49/ 90

Broadcast

Heuristic: Look-ahead (LA)

3
3

3
1

6

4

4

2

2(0) (7)

(7)

(4)

(5) (7)

Broadcast finishing times (t)

Yves Robert Scheduling for Heterogeneous Platforms 49/ 90

Broadcast

Broadcasting longer messages

Message size goes from L to, say, 10L

Communication costs scale from cij to 10cij

ECEF heuristic: broadcast time becomes 90
LA heuristic: broadcast time becomes 70

Yves Robert Scheduling for Heterogeneous Platforms 50/ 90

Broadcast

Broadcasting longer messages

Message size goes from L to, say, 10L

Communication costs scale from cij to 10cij

ECEF heuristic: broadcast time becomes 90
LA heuristic: broadcast time becomes 70

Yves Robert Scheduling for Heterogeneous Platforms 50/ 90

Broadcast

Broadcasting longer messages

Message size goes from L to, say, 10L

Communication costs scale from cij to 10cij

ECEF heuristic: broadcast time becomes 90
LA heuristic: broadcast time becomes 70

Yves Robert Scheduling for Heterogeneous Platforms 50/ 90

Broadcast

Broadcasting longer messages

Message size goes from L to, say, 10L

Communication costs scale from cij to 10cij

ECEF heuristic: broadcast time becomes 90
LA heuristic: broadcast time becomes 70

Yves Robert Scheduling for Heterogeneous Platforms 50/ 90

Broadcast

Broadcasting longer messages

Message size goes from L to, say, 10L

Communication costs scale from cij to 10cij

ECEF heuristic: broadcast time becomes 90
LA heuristic: broadcast time becomes 70

Eh wait!
What about

PIPELINING?!

Yves Robert Scheduling for Heterogeneous Platforms 50/ 90

Broadcast

Broadcasting longer messages

3
3

3
1

6

4

4

2

2
3 210 1...

size = 10L

Search spanning tree . . .

Objective: minimize pipelined execution time

Yves Robert Scheduling for Heterogeneous Platforms 51/ 90

Broadcast

Broadcasting longer messages

3
3

3
1

6

4

4

2

2
3 210 1...

size = 10L

Delay = inverse of throughput

Node delay =
∑

children of node comm. times

Tree delay = maximum node delay

Pipelined execution time:
(# edges in longest path + #packets) × tree delay

Objective: minimize tree delay

Yves Robert Scheduling for Heterogeneous Platforms 52/ 90

Broadcast

Back to the example

3
3

3
1

6

4

4

2

2

3
3

3
1

6

4

4

2

2

delay = 7delay = 3

ECEF tree LA tree

ECEF tree turns out to have minimum delay (maximal
throughput)

Can we always find tree with optimal throughput?

/ Problem is NP-complete

, Still, can design simple heuristics:
SDIEF: smallest-delay-increase edge first

Yves Robert Scheduling for Heterogeneous Platforms 53/ 90

Broadcast

Back to the example

3
3

3
1

6

4

4

2

2

3
3

3
1

6

4

4

2

2

delay = 7delay = 3

ECEF tree LA tree

ECEF tree turns out to have minimum delay (maximal
throughput)

Can we always find tree with optimal throughput?

/ Problem is NP-complete

, Still, can design simple heuristics:
SDIEF: smallest-delay-increase edge first

Yves Robert Scheduling for Heterogeneous Platforms 53/ 90

Broadcast

Back to the example

3
3

3
1

6

4

4

2

2

3
3

3
1

6

4

4

2

2

delay = 7delay = 3

ECEF tree LA tree

ECEF tree turns out to have minimum delay (maximal
throughput)

Can we always find tree with optimal throughput?

/ Problem is NP-complete

, Still, can design simple heuristics:
SDIEF: smallest-delay-increase edge first

Yves Robert Scheduling for Heterogeneous Platforms 53/ 90

Broadcast

Back to the example

3
3

3
1

6

4

4

2

2

3
3

3
1

6

4

4

2

2

delay = 7delay = 3

ECEF tree LA tree

ECEF tree turns out to have minimum delay (maximal
throughput)

Can we always find tree with optimal throughput?

/ Problem is NP-complete

, Still, can design simple heuristics:
SDIEF: smallest-delay-increase edge first

Yves Robert Scheduling for Heterogeneous Platforms 53/ 90

Broadcast

Assessing a broadcast strategy

/ Finding optimal spanning tree is NP-hard

, Finding optimal set of spanning trees is polynomial:
use LP formulation!

/ Schedule reconstruction and packet management is harder with
several trees

Suggested trade-off:
I Compute optimal throughput (several trees) with LP formulation
I Run preferred heuristic to generate one ”good” spanning tree
I Stop refining when performance “reasonably” close to upper bound
I If not try ”superimposing” two or three trees

Yves Robert Scheduling for Heterogeneous Platforms 54/ 90

Broadcast

Assessing a broadcast strategy

/ Finding optimal spanning tree is NP-hard

, Finding optimal set of spanning trees is polynomial:
use LP formulation!

/ Schedule reconstruction and packet management is harder with
several trees

Suggested trade-off:
I Compute optimal throughput (several trees) with LP formulation
I Run preferred heuristic to generate one ”good” spanning tree
I Stop refining when performance “reasonably” close to upper bound
I If not try ”superimposing” two or three trees

Yves Robert Scheduling for Heterogeneous Platforms 54/ 90

Broadcast

Assessing a broadcast strategy

/ Finding optimal spanning tree is NP-hard

, Finding optimal set of spanning trees is polynomial:
use LP formulation!

/ Schedule reconstruction and packet management is harder with
several trees

Suggested trade-off:
I Compute optimal throughput (several trees) with LP formulation
I Run preferred heuristic to generate one ”good” spanning tree
I Stop refining when performance “reasonably” close to upper bound
I If not try ”superimposing” two or three trees

Yves Robert Scheduling for Heterogeneous Platforms 54/ 90

Broadcast

Bibliography – Broadcast

Complexity:
On broadcasting in heterogeneous networks, S. Khuller and Y.A.
Kim, 15th ACM SODA (2004), 1011–1020

Heuristics:
Efficient collective communication in distributed heterogeneous
systems, P.B. Bhat, C.S. Raghavendra and V.K. Prasanna, JPDC
63 (2003), 251–263

Steady-state:
Pipelining broadcasts on heterogeneous platforms, O. Beaumont
et al., IEEE TPDS 16, 4 (2005), 300-313

Yves Robert Scheduling for Heterogeneous Platforms 55/ 90

Limitations Parameters

Outline

1 Background on traditional scheduling

2 Packet routing

3 Master-worker on heterogeneous platforms

4 Broadcast

5 Limitations
Parameters
Communication model
Bandwidth sharing
Topology hierarchy

6 Putting all together

7 Conclusion

Yves Robert Scheduling for Heterogeneous Platforms 56/ 90

Limitations Parameters

Good news and bad news

, One-port model: first step towards designing realistic
scheduling heuristics

, Steady-state circumvents complexity of scheduling problems
. . . while deriving efficient (often asympotically optimal)
scheduling algorithms

/ Need to acquire a good knowledge of the platform graph

/ Need to run extensive experiments or simulations

Yves Robert Scheduling for Heterogeneous Platforms 57/ 90

Limitations Parameters

Good news and bad news

, One-port model: first step towards designing realistic
scheduling heuristics

, Steady-state circumvents complexity of scheduling problems
. . . while deriving efficient (often asympotically optimal)
scheduling algorithms

/ Need to acquire a good knowledge of the platform graph

/ Need to run extensive experiments or simulations

Yves Robert Scheduling for Heterogeneous Platforms 57/ 90

Limitations Parameters

Good news and bad news

, One-port model: first step towards designing realistic
scheduling heuristics

, Steady-state circumvents complexity of scheduling problems
. . . while deriving efficient (often asympotically optimal)
scheduling algorithms

/ Need to acquire a good knowledge of the platform graph

/ Need to run extensive experiments or simulations

Yves Robert Scheduling for Heterogeneous Platforms 57/ 90

Limitations Parameters

Good news and bad news

, One-port model: first step towards designing realistic
scheduling heuristics

, Steady-state circumvents complexity of scheduling problems
. . . while deriving efficient (often asympotically optimal)
scheduling algorithms

/ Need to acquire a good knowledge of the platform graph

/ Need to run extensive experiments or simulations

Yves Robert Scheduling for Heterogeneous Platforms 57/ 90

Limitations Parameters

Knowledge of the platform graph

For regular problems, the structure of the task graph (nodes and
edges) only depends upon the application, not upon the target
platform

Problems arise from weights, i.e. the estimation of execution and
communication times

Classical answer: “use the past to predict the future”

Divide scheduling into phases, during which machine and network
parameters are collected (with NWS)
⇒ This information guides scheduling decisions for next phase

Moving from heterogeneous clusters to computational grids causes
further problems (even discovering the characteristics of the
surrounding computing resources may prove a difficult task)

Yves Robert Scheduling for Heterogeneous Platforms 58/ 90

Limitations Parameters

Knowledge of the platform graph

For regular problems, the structure of the task graph (nodes and
edges) only depends upon the application, not upon the target
platform

Problems arise from weights, i.e. the estimation of execution and
communication times

Classical answer: “use the past to predict the future”

Divide scheduling into phases, during which machine and network
parameters are collected (with NWS)
⇒ This information guides scheduling decisions for next phase

Moving from heterogeneous clusters to computational grids causes
further problems (even discovering the characteristics of the
surrounding computing resources may prove a difficult task)

Yves Robert Scheduling for Heterogeneous Platforms 58/ 90

Limitations Parameters

Knowledge of the platform graph

For regular problems, the structure of the task graph (nodes and
edges) only depends upon the application, not upon the target
platform

Problems arise from weights, i.e. the estimation of execution and
communication times

Classical answer: “use the past to predict the future”

Divide scheduling into phases, during which machine and network
parameters are collected (with NWS)
⇒ This information guides scheduling decisions for next phase

Moving from heterogeneous clusters to computational grids causes
further problems (even discovering the characteristics of the
surrounding computing resources may prove a difficult task)

Yves Robert Scheduling for Heterogeneous Platforms 58/ 90

Limitations Parameters

Experiments versus simulations

Real experiments difficult to drive (genuine instability of
non-dedicated platforms)

Simulations ensure reproducibility of measured data

Key issue: run simulations against a realistic environment

Trace-based simulation: record platform parameters today, and
simulate the algorithms tomorrow, against recorded data

Use SIMGRID, an event-driven simultation toolkit

Yves Robert Scheduling for Heterogeneous Platforms 59/ 90

Limitations Parameters

Experiments versus simulations

Real experiments difficult to drive (genuine instability of
non-dedicated platforms)

Simulations ensure reproducibility of measured data

Key issue: run simulations against a realistic environment

Trace-based simulation: record platform parameters today, and
simulate the algorithms tomorrow, against recorded data

Use SIMGRID, an event-driven simultation toolkit

Yves Robert Scheduling for Heterogeneous Platforms 59/ 90

Limitations Parameters

SIMGRID traces

server #1

client #1

client #2

client #3

server #2

router

switch

hub

Internet

CPU availability

Network bandwidth

Transient
Failure X

See http://simgrid.gforge.inria.fr/

Yves Robert Scheduling for Heterogeneous Platforms 60/ 90

http://simgrid.gforge.inria.fr/

Limitations Communication model

Outline

1 Background on traditional scheduling

2 Packet routing

3 Master-worker on heterogeneous platforms

4 Broadcast

5 Limitations
Parameters
Communication model
Bandwidth sharing
Topology hierarchy

6 Putting all together

7 Conclusion

Yves Robert Scheduling for Heterogeneous Platforms 61/ 90

Limitations Communication model

Models

Network = directed graph P = (V,E)

P0

P1

P3

P2

time

General case: affine model (includes latencies)

Common variant: sending and receiving processors busy during
whole transfer

Yves Robert Scheduling for Heterogeneous Platforms 62/ 90

Limitations Communication model

Models

Network = directed graph P = (V,E)

P0

P1

P3

P2

time

General case: affine model (includes latencies)

Common variant: sending and receiving processors busy during
whole transfer

Yves Robert Scheduling for Heterogeneous Platforms 62/ 90

Limitations Communication model

Models

Network = directed graph P = (V,E)

P0

P1

P3

P2

time

T2,3(L)link e2,3

General case: affine model (includes latencies)

Common variant: sending and receiving processors busy during
whole transfer

Yves Robert Scheduling for Heterogeneous Platforms 62/ 90

Limitations Communication model

Models

Network = directed graph P = (V,E)

P0

P1

P3

P2

time

T2,3(L)link e2,3

send2,3P2

General case: affine model (includes latencies)

Common variant: sending and receiving processors busy during
whole transfer

Yves Robert Scheduling for Heterogeneous Platforms 62/ 90

Limitations Communication model

Models

Network = directed graph P = (V,E)

P0

P1

P3

P2

time

recv 2,3P3

T2,3(L)link e2,3

send2,3P2

General case: affine model (includes latencies)

Common variant: sending and receiving processors busy during
whole transfer

Yves Robert Scheduling for Heterogeneous Platforms 62/ 90

Limitations Communication model

Models

Network = directed graph P = (V,E)

P0

P1

P3

P2

time

r2,3

r2,3 · L
P3

α2,3

β2,3 · L
link e2,3

s2,3 · L
s2,3P2

General case: affine model (includes latencies)

Common variant: sending and receiving processors busy during
whole transfer

Yves Robert Scheduling for Heterogeneous Platforms 62/ 90

Limitations Communication model

Models

Network = directed graph P = (V,E)

P0

P1

P3

P2

time

recv 2,3P3

T2,3(L)link e2,3

send2,3P2

General case: affine model (includes latencies)

Common variant: sending and receiving processors busy during
whole transfer

Yves Robert Scheduling for Heterogeneous Platforms 62/ 90

Limitations Communication model

Models

Network = directed graph P = (V,E)

P0

P1

P3

P2

time

recv 2,3P3

T2,3(L)link e2,3

send2,3P2

General case: affine model (includes latencies)

Common variant: sending and receiving processors busy during
whole transfer

Yves Robert Scheduling for Heterogeneous Platforms 62/ 90

Limitations Communication model

Multi-port

Banikazemi et al.
no overlap between link and processor occupation:

time

recv 2,3

T2,3(L)

send2,3

P3

link e2,3

P2

⇒ methodology to instantiate parameters

Yves Robert Scheduling for Heterogeneous Platforms 63/ 90

Limitations Communication model

Multi-port

Bar-Noy et al.
occupation time of sender Pu independent of target Pv

time

recv vPv

Tu,v(L)link eu,v

senduPu

not fully multi-port model, but allows for starting a new transfer from

Pu without waiting for previous one to finish

Yves Robert Scheduling for Heterogeneous Platforms 64/ 90

Limitations Communication model

One-port

Bhat et al.
same parameters for sender Pu, link eu,v and receiver Pv

time

ru,v · L
ru,vPv

βu,v · L
αu,vlink eu,v

su,v · L
su,vPu

Two flavors:

bidirectional: simultaneous send and receive transfers allowed

unidirectional: only one send or receive transfer at a given time-step

Yves Robert Scheduling for Heterogeneous Platforms 65/ 90

Limitations Communication model

One-port

Bhat et al.
same parameters for sender Pu, link eu,v and receiver Pv

time

ru,v · L
ru,vPv

βu,v · L
αu,vlink eu,v

su,v · L
su,vPu

Two flavors:

bidirectional: simultaneous send and receive transfers allowed

unidirectional: only one send or receive transfer at a given time-step

Yves Robert Scheduling for Heterogeneous Platforms 65/ 90

Limitations Communication model

One-port

Bhat et al.
same parameters for sender Pu, link eu,v and receiver Pv

time

ru,v · L
ru,vPv

βu,v · L
αu,vlink eu,v

su,v · L
su,vPu

Two flavors:

bidirectional: simultaneous send and receive transfers allowed

unidirectional: only one send or receive transfer at a given time-step

Yves Robert Scheduling for Heterogeneous Platforms 65/ 90

Limitations Bandwidth sharing

Outline

1 Background on traditional scheduling

2 Packet routing

3 Master-worker on heterogeneous platforms

4 Broadcast

5 Limitations
Parameters
Communication model
Bandwidth sharing
Topology hierarchy

6 Putting all together

7 Conclusion

Yves Robert Scheduling for Heterogeneous Platforms 66/ 90

Limitations Bandwidth sharing

Store & Forward, WormHole, TCP

How to model a file transfer along a path?

Yves Robert Scheduling for Heterogeneous Platforms 67/ 90

Limitations Bandwidth sharing

Store & Forward, WormHole, TCP

How to model a file transfer along a path?

S

l1

l3

l2

Yves Robert Scheduling for Heterogeneous Platforms 67/ 90

Limitations Bandwidth sharing

Store & Forward, WormHole, TCP

How to model a file transfer along a path?

S

l1

l3

l2

Store & Forward : bad model for contention

Yves Robert Scheduling for Heterogeneous Platforms 67/ 90

Limitations Bandwidth sharing

Store & Forward, WormHole, TCP

How to model a file transfer along a path?

S

l1

l3

l2

Yves Robert Scheduling for Heterogeneous Platforms 67/ 90

Limitations Bandwidth sharing

Store & Forward, WormHole, TCP

How to model a file transfer along a path?

pi,j

s

S

l1

l3

l2

WormHole : computation intensive (packets), not that realistic

Yves Robert Scheduling for Heterogeneous Platforms 67/ 90

Limitations Bandwidth sharing

Store & Forward, WormHole, TCP

How to model a file transfer along a path?

∀l ∈ L,
∑

r∈R s.t. l∈r

ρr ≤ cl

Analytical model

Yves Robert Scheduling for Heterogeneous Platforms 67/ 90

Limitations Bandwidth sharing

Store & Forward, WormHole, TCP

How to model a file transfer along a path?

∀l ∈ L,
∑

r∈R s.t. l∈r

ρr ≤ cl

Max-Min Fairness maximize min
r∈R

ρr

Yves Robert Scheduling for Heterogeneous Platforms 67/ 90

Limitations Bandwidth sharing

Store & Forward, WormHole, TCP

How to model a file transfer along a path?

∀l ∈ L,
∑

r∈R s.t. l∈r

ρr ≤ cl

Max-Min Fairness maximize min
r∈R

ρr

Proportional Fairness maximize
∑
r∈R

ρr log(ρr)

Yves Robert Scheduling for Heterogeneous Platforms 67/ 90

Limitations Bandwidth sharing

Store & Forward, WormHole, TCP

How to model a file transfer along a path?

∀l ∈ L,
∑

r∈R s.t. l∈r

ρr ≤ cl

Max-Min Fairness maximize min
r∈R

ρr

Proportional Fairness maximize
∑
r∈R

ρr log(ρr)

MCT minimization maximize min
r∈R

1
ρr

Yves Robert Scheduling for Heterogeneous Platforms 67/ 90

Limitations Bandwidth sharing

Store & Forward, WormHole, TCP

How to model a file transfer along a path?

∀l ∈ L,
∑

r∈R s.t. l∈r

ρr ≤ cl

Max-Min Fairness maximize min
r∈R

ρr

Proportional Fairness maximize
∑
r∈R

ρr log(ρr)

MCT minimization maximize min
r∈R

1
ρr

TCP behavior Close to max-min.
In SIMGRID: max-min + bound by 1/RTT

Yves Robert Scheduling for Heterogeneous Platforms 67/ 90

Limitations Bandwidth sharing

Bandwidth sharing

Traditional assumption: Fair Sharing

Open i TCP connections, receive bw(i) bandwidth per connection

bw(i) = bw(1)/i on a LAN

Experimental evidence → bw(i) = bw(1) on a WAN

Backbone links have so many connections that interference among
a few selected connections is negligible

Better model: bw(i) =
bw(1)

1 + (i− 1).γ
γ = 1 for a perfect LAN, γ = 0 for a perfect WAN

Yves Robert Scheduling for Heterogeneous Platforms 68/ 90

Limitations Bandwidth sharing

Bandwidth sharing

Traditional assumption: Fair Sharing

Open i TCP connections, receive bw(i) bandwidth per connection

bw(i) = bw(1)/i on a LAN

Experimental evidence → bw(i) = bw(1) on a WAN

Backbone links have so many connections that interference among
a few selected connections is negligible

Better model: bw(i) =
bw(1)

1 + (i− 1).γ
γ = 1 for a perfect LAN, γ = 0 for a perfect WAN

Yves Robert Scheduling for Heterogeneous Platforms 68/ 90

Limitations Bandwidth sharing

Bandwidth sharing

Traditional assumption: Fair Sharing

Open i TCP connections, receive bw(i) bandwidth per connection

bw(i) = bw(1)/i on a LAN

Experimental evidence → bw(i) = bw(1) on a WAN

Backbone links have so many connections that interference among
a few selected connections is negligible

Better model: bw(i) =
bw(1)

1 + (i− 1).γ
γ = 1 for a perfect LAN, γ = 0 for a perfect WAN

Yves Robert Scheduling for Heterogeneous Platforms 68/ 90

Limitations Bandwidth sharing

Bandwidth sharing

Traditional assumption: Fair Sharing

Open i TCP connections, receive bw(i) bandwidth per connection

bw(i) = bw(1)/i on a LAN

Experimental evidence → bw(i) = bw(1) on a WAN

Backbone links have so many connections that interference among
a few selected connections is negligible

Better model: bw(i) =
bw(1)

1 + (i− 1).γ
γ = 1 for a perfect LAN, γ = 0 for a perfect WAN

Yves Robert Scheduling for Heterogeneous Platforms 68/ 90

Limitations Bandwidth sharing

Bandwidth sharing

Traditional assumption: Fair Sharing

Open i TCP connections, receive bw(i) bandwidth per connection

bw(i) = bw(1)/i on a LAN

Experimental evidence → bw(i) = bw(1) on a WAN

Backbone links have so many connections that interference among
a few selected connections is negligible

Better model: bw(i) =
bw(1)

1 + (i− 1).γ
γ = 1 for a perfect LAN, γ = 0 for a perfect WAN

Yves Robert Scheduling for Heterogeneous Platforms 68/ 90

Limitations Bandwidth sharing

Bandwidth sharing

Traditional assumption: Fair Sharing

Open i TCP connections, receive bw(i) bandwidth per connection

bw(i) = bw(1)/i on a LAN

Experimental evidence → bw(i) = bw(1) on a WAN

Backbone links have so many connections that interference among
a few selected connections is negligible

Better model: bw(i) =
bw(1)

1 + (i− 1).γ
γ = 1 for a perfect LAN, γ = 0 for a perfect WAN

Yves Robert Scheduling for Heterogeneous Platforms 68/ 90

Limitations Bandwidth sharing

Bandwidth sharing

Traditional assumption: Fair Sharing

Open i TCP connections, receive bw(i) bandwidth per connection

bw(i) = bw(1)/i on a LAN

Experimental evidence → bw(i) = bw(1) on a WAN

Backbone links have so many connections that interference among
a few selected connections is negligible

Better model: bw(i) =
bw(1)

1 + (i− 1).γ
γ = 1 for a perfect LAN, γ = 0 for a perfect WAN

Yves Robert Scheduling for Heterogeneous Platforms 68/ 90

Limitations Topology hierarchy

Outline

1 Background on traditional scheduling

2 Packet routing

3 Master-worker on heterogeneous platforms

4 Broadcast

5 Limitations
Parameters
Communication model
Bandwidth sharing
Topology hierarchy

6 Putting all together

7 Conclusion

Yves Robert Scheduling for Heterogeneous Platforms 69/ 90

Limitations Topology hierarchy

Sample large-scale platform

Primergy

Primergy

backbone link

router

front end

cluster

Yves Robert Scheduling for Heterogeneous Platforms 70/ 90

Limitations Topology hierarchy

What topology?

Generated (GT-ITM, BRITE, etc.) or obtained from monitoring?
I Very complex (Layer 2 information)
I Not clear that a scheduling algorithm could exploit/know all that

information

Need a simple model that is
I More accurate than traditional models (e.g., LAN links,

fully-connected)
I Still amenable to analysis

Yves Robert Scheduling for Heterogeneous Platforms 71/ 90

Limitations Topology hierarchy

What topology?

Generated (GT-ITM, BRITE, etc.) or obtained from monitoring?
I Very complex (Layer 2 information)
I Not clear that a scheduling algorithm could exploit/know all that

information

Need a simple model that is
I More accurate than traditional models (e.g., LAN links,

fully-connected)
I Still amenable to analysis

Yves Robert Scheduling for Heterogeneous Platforms 71/ 90

Limitations Topology hierarchy

What topology? (cont’d)

Primergy

Primergy

uu
γ = 0.5

Unknown topology

(complete graph)

Yves Robert Scheduling for Heterogeneous Platforms 72/ 90

Limitations Topology hierarchy

What topology? (cont’d)

Primergy

Primergy

backbone link

router

front end

cluster

Hierarchy + BW sharing, but assume knowledge of

Routing

Backbone bandwidths

CPU speeds

Yves Robert Scheduling for Heterogeneous Platforms 73/ 90

Limitations Topology hierarchy

A first trial

sk

sl

gk

gl

b3

b1

Lk,l

b2

Ck

Ck
master

Ck
router

C l
router

C l
master

C l

Clusters and backbone links

Yves Robert Scheduling for Heterogeneous Platforms 74/ 90

Limitations Topology hierarchy

A first trial (cont’d)

sk

sl

gk

gl

b3

b1

Lk,l

b2

Ck

Ck
master

Ck
router

C l
router

C l
master

C l

Clusters

K clusters Ck, 1 ≤ k ≤ K

Ck
master front-end processor

Ck
router router to external world

sk cumulated speed of Ck

gk bandwidth of the LAN link (γ = 1) from Ck
master to Ck

router

Yves Robert Scheduling for Heterogeneous Platforms 75/ 90

Limitations Topology hierarchy

A first trial (cont’d)

sk

sl

gk

gl

b3

b1

Lk,l

b2

Ck

Ck
master

Ck
router

C l
router

C l
master

C l

Network

Set R of routers and B of backbone links li

bw(li) bandwidth available for a new connection

max-connect(li) max. number of connections that can be opened

Fixed routing: path Lk,l of backbones from Ck
router to C l

router

Yves Robert Scheduling for Heterogeneous Platforms 75/ 90

Limitations Topology hierarchy

Bibliography

NWS:
The network weather service: a distributed resource performance
forecasting service for metacomputing, R. Wolski, N.T. Spring and
J. Hayes, Future Generation Computer Systems 15, 10 (1999),
757-768

SIMGRID:
Scheduling distributed applications: the SIMGRID simulation
framework, A. Legrand, L. Marchal, and H. Casanova, 3rd IEEE
CCGrid (2003), 138-145

Bandwidth sharing:
Bandwidth sharing: objectives and algorithms, L. Massoulié and J.
Roberts, IEEE/ACM Trans. Networking 10, 3 (2002), 320-328

Yves Robert Scheduling for Heterogeneous Platforms 76/ 90

Putting all together

Outline

1 Background on traditional scheduling

2 Packet routing

3 Master-worker on heterogeneous platforms

4 Broadcast

5 Limitations

6 Putting all together

7 Conclusion

Yves Robert Scheduling for Heterogeneous Platforms 77/ 90

Putting all together

Scheduling multiple divisible load applications

Large-scale platforms not likely to be exploited in dedicated
mode/single application

Investigate scenarios in which multiple divisible loads applications
are simultaneously executed on the platform
⇒ competition for CPU and network resources

Yves Robert Scheduling for Heterogeneous Platforms 78/ 90

Putting all together

Scheduling multiple divisible load applications

Large-scale platforms not likely to be exploited in dedicated
mode/single application

Investigate scenarios in which multiple divisible loads applications
are simultaneously executed on the platform
⇒ competition for CPU and network resources

Yves Robert Scheduling for Heterogeneous Platforms 78/ 90

Putting all together

Divisible applications

One divisible load application Ak per cluster Ck:
- τk computation size (flops) of elemental chunk
- δk communication size (bytes) of elemental chunk

αk,l: fraction of Ak executed by C l (per time unit)
αk =

∑
l αk,l: total work executed for application Ak

Need
αk,l.τk

sl
time-units to process αk,l chunks of Ak on C l

Need
αk,l.δk

gk,l
time-units to route one chunk of Ak from Ck

router to

C l
router (along one connection):

→ gk,l = minli∈Lk,l
{bw(li)}

βk,l number of connections from Ck to C l

Yves Robert Scheduling for Heterogeneous Platforms 79/ 90

Putting all together

Divisible applications

One divisible load application Ak per cluster Ck:
- τk computation size (flops) of elemental chunk
- δk communication size (bytes) of elemental chunk

αk,l: fraction of Ak executed by C l (per time unit)
αk =

∑
l αk,l: total work executed for application Ak

Need
αk,l.τk

sl
time-units to process αk,l chunks of Ak on C l

Need
αk,l.δk

gk,l
time-units to route one chunk of Ak from Ck

router to

C l
router (along one connection):

→ gk,l = minli∈Lk,l
{bw(li)}

βk,l number of connections from Ck to C l

Yves Robert Scheduling for Heterogeneous Platforms 79/ 90

Putting all together

Divisible applications

One divisible load application Ak per cluster Ck:
- τk computation size (flops) of elemental chunk
- δk communication size (bytes) of elemental chunk

αk,l: fraction of Ak executed by C l (per time unit)
αk =

∑
l αk,l: total work executed for application Ak

Need
αk,l.τk

sl
time-units to process αk,l chunks of Ak on C l

Need
αk,l.δk

gk,l
time-units to route one chunk of Ak from Ck

router to

C l
router (along one connection):

→ gk,l = minli∈Lk,l
{bw(li)}

βk,l number of connections from Ck to C l

Yves Robert Scheduling for Heterogeneous Platforms 79/ 90

Putting all together

Divisible applications

One divisible load application Ak per cluster Ck:
- τk computation size (flops) of elemental chunk
- δk communication size (bytes) of elemental chunk

αk,l: fraction of Ak executed by C l (per time unit)
αk =

∑
l αk,l: total work executed for application Ak

Need
αk,l.τk

sl
time-units to process αk,l chunks of Ak on C l

Need
αk,l.δk

gk,l
time-units to route one chunk of Ak from Ck

router to

C l
router (along one connection):

→ gk,l = minli∈Lk,l
{bw(li)}

βk,l number of connections from Ck to C l

Yves Robert Scheduling for Heterogeneous Platforms 79/ 90

Putting all together

Divisible applications

One divisible load application Ak per cluster Ck:
- τk computation size (flops) of elemental chunk
- δk communication size (bytes) of elemental chunk

αk,l: fraction of Ak executed by C l (per time unit)
αk =

∑
l αk,l: total work executed for application Ak

Need
αk,l.τk

sl
time-units to process αk,l chunks of Ak on C l

Need
αk,l.δk

gk,l
time-units to route one chunk of Ak from Ck

router to

C l
router (along one connection):

→ gk,l = minli∈Lk,l
{bw(li)}

βk,l number of connections from Ck to C l

Yves Robert Scheduling for Heterogeneous Platforms 79/ 90

Putting all together

Steady-state

∀Ck,
∑

l

αl,k.τl ≤ sk (1)

∀Ck,
∑
l 6=k

αk,l.δk︸ ︷︷ ︸
(outgoing data)

+
∑
j 6=k

αj,k.δj︸ ︷︷ ︸
(incoming data)

≤ gk (2)

∀li,
∑

{k,l}, li∈Lk,l

βk,l ≤ max-connect(li) (3)

∀(Ck, C l), αk,l.δk ≤ βk,l × gk,l (4)

Maximize min
k

{
αk

πk

}
. (5)

Yves Robert Scheduling for Heterogeneous Platforms 80/ 90

Putting all together

Steady-state

∀Ck,
∑

l

αl,k.τl ≤ sk (1)

∀Ck,
∑
l 6=k

αk,l.δk︸ ︷︷ ︸
(outgoing data)

+
∑
j 6=k

αj,k.δj︸ ︷︷ ︸
(incoming data)

≤ gk (2)

∀li,
∑

{k,l}, li∈Lk,l

βk,l ≤ max-connect(li) (3)

∀(Ck, C l), αk,l.δk ≤ βk,l × gk,l (4)

Maximize min
k

{
αk

πk

}
. (5)

Yves Robert Scheduling for Heterogeneous Platforms 80/ 90

Putting all together

Steady-state

∀Ck,
∑

l

αl,k.τl ≤ sk (1)

∀Ck,
∑
l 6=k

αk,l.δk︸ ︷︷ ︸
(outgoing data)

+
∑
j 6=k

αj,k.δj︸ ︷︷ ︸
(incoming data)

≤ gk (2)

∀li,
∑

{k,l}, li∈Lk,l

βk,l ≤ max-connect(li) (3)

∀(Ck, C l), αk,l.δk ≤ βk,l × gk,l (4)

Maximize min
k

{
αk

πk

}
. (5)

Yves Robert Scheduling for Heterogeneous Platforms 80/ 90

Putting all together

Steady-state

∀Ck,
∑

l

αl,k.τl ≤ sk (1)

∀Ck,
∑
l 6=k

αk,l.δk︸ ︷︷ ︸
(outgoing data)

+
∑
j 6=k

αj,k.δj︸ ︷︷ ︸
(incoming data)

≤ gk (2)

∀li,
∑

{k,l}, li∈Lk,l

βk,l ≤ max-connect(li) (3)

∀(Ck, C l), αk,l.δk ≤ βk,l × gk,l (4)

Maximize min
k

{
αk

πk

}
. (5)

Yves Robert Scheduling for Heterogeneous Platforms 80/ 90

Putting all together

Steady-state

∀Ck,
∑

l

αl,k.τl ≤ sk (1)

∀Ck,
∑
l 6=k

αk,l.δk︸ ︷︷ ︸
(outgoing data)

+
∑
j 6=k

αj,k.δj︸ ︷︷ ︸
(incoming data)

≤ gk (2)

∀li,
∑

{k,l}, li∈Lk,l

βk,l ≤ max-connect(li) (3)

∀(Ck, C l), αk,l.δk ≤ βk,l × gk,l (4)

Maximize min
k

{
αk

πk

}
. (5)

Yves Robert Scheduling for Heterogeneous Platforms 80/ 90

Putting all together

Linear program

Maximize mink

{
αk
πk

}
,

under the constraints

(6a) ∀Ck,
∑

l

αk,l = αk

(6b) ∀Ck,
∑

l

αl,k.τl ≤ sk

(6c) ∀Ck,
∑
l 6=k

αk,l.δk +
∑
j 6=k

αj,k.δj ≤ gk

(6d) ∀li,
∑

li∈Lk,l

βk,l ≤ max-connect(li)

(6e) ∀k, l, αk,l.δk ≤ βk,l × gk,l

(6f) ∀k, l, αk,l ≥ 0
(6g) ∀k, l, βk,l ∈ N

(6)

Yves Robert Scheduling for Heterogeneous Platforms 81/ 90

Putting all together

Methodology

Solution to rational linear problem as comparator/upper bound

Several heuristics, greedy and LP-based

Use Tiers as topology generator:
I 100 two-level topologies, each containing 40 WAN nodes, 30 MAN

networks each containing 20 MAN nodes (no LAN) →≈ 700 nodes
I randomly select K = 5, 7, . . . , 90 nodes as participating clusters,

compute shortest paths (in hops)
I pruned topology with computing nodes and routers

For each pruned Tiers topology, randomly generate 10
configurations → 29,298 platforms

Yves Robert Scheduling for Heterogeneous Platforms 82/ 90

Putting all together

Methodology

Solution to rational linear problem as comparator/upper bound

Several heuristics, greedy and LP-based

Use Tiers as topology generator:
I 100 two-level topologies, each containing 40 WAN nodes, 30 MAN

networks each containing 20 MAN nodes (no LAN) →≈ 700 nodes
I randomly select K = 5, 7, . . . , 90 nodes as participating clusters,

compute shortest paths (in hops)
I pruned topology with computing nodes and routers

For each pruned Tiers topology, randomly generate 10
configurations → 29,298 platforms

Yves Robert Scheduling for Heterogeneous Platforms 82/ 90

Putting all together

Methodology

Solution to rational linear problem as comparator/upper bound

Several heuristics, greedy and LP-based

Use Tiers as topology generator:
I 100 two-level topologies, each containing 40 WAN nodes, 30 MAN

networks each containing 20 MAN nodes (no LAN) →≈ 700 nodes
I randomly select K = 5, 7, . . . , 90 nodes as participating clusters,

compute shortest paths (in hops)
I pruned topology with computing nodes and routers

For each pruned Tiers topology, randomly generate 10
configurations → 29,298 platforms

Yves Robert Scheduling for Heterogeneous Platforms 82/ 90

Putting all together

Methodology

Solution to rational linear problem as comparator/upper bound

Several heuristics, greedy and LP-based

Use Tiers as topology generator:
I 100 two-level topologies, each containing 40 WAN nodes, 30 MAN

networks each containing 20 MAN nodes (no LAN) →≈ 700 nodes
I randomly select K = 5, 7, . . . , 90 nodes as participating clusters,

compute shortest paths (in hops)
I pruned topology with computing nodes and routers

For each pruned Tiers topology, randomly generate 10
configurations → 29,298 platforms

Yves Robert Scheduling for Heterogeneous Platforms 82/ 90

Putting all together

Methodology

Solution to rational linear problem as comparator/upper bound

Several heuristics, greedy and LP-based

Use Tiers as topology generator:
I 100 two-level topologies, each containing 40 WAN nodes, 30 MAN

networks each containing 20 MAN nodes (no LAN) →≈ 700 nodes
I randomly select K = 5, 7, . . . , 90 nodes as participating clusters,

compute shortest paths (in hops)
I pruned topology with computing nodes and routers

For each pruned Tiers topology, randomly generate 10
configurations → 29,298 platforms

Yves Robert Scheduling for Heterogeneous Platforms 82/ 90

Putting all together

Methodology

Solution to rational linear problem as comparator/upper bound

Several heuristics, greedy and LP-based

Use Tiers as topology generator:
I 100 two-level topologies, each containing 40 WAN nodes, 30 MAN

networks each containing 20 MAN nodes (no LAN) →≈ 700 nodes
I randomly select K = 5, 7, . . . , 90 nodes as participating clusters,

compute shortest paths (in hops)
I pruned topology with computing nodes and routers

For each pruned Tiers topology, randomly generate 10
configurations → 29,298 platforms

Yves Robert Scheduling for Heterogeneous Platforms 82/ 90

Putting all together

Methodology

Solution to rational linear problem as comparator/upper bound

Several heuristics, greedy and LP-based

Use Tiers as topology generator:
I 100 two-level topologies, each containing 40 WAN nodes, 30 MAN

networks each containing 20 MAN nodes (no LAN) →≈ 700 nodes
I randomly select K = 5, 7, . . . , 90 nodes as participating clusters,

compute shortest paths (in hops)
I pruned topology with computing nodes and routers

For each pruned Tiers topology, randomly generate 10
configurations → 29,298 platforms

Yves Robert Scheduling for Heterogeneous Platforms 82/ 90

Putting all together

Methodology (cont’d)

-1000

 0

 1000

 2000

 3000

 4000

 5000

-1000 0 1000 2000 3000 4000 5000

V
er

tic
al

 D
is

ta
nc

e

Horizontal Distance Number of nodes: 641, Number of links:934

Original Network

WAN
MAN
LAN

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500

V
er

tic
al

 D
is

ta
nc

e

Horizontal Distance Number of nodes: 41, Number of links:45

Pruned Network WAN
MAN
LAN

Sample full and pruned Tiers topology

distribution

K 5, 7, . . . , 90
log(bw(lk)), log(gk) normal (mean= log(2000), std=log(10))
sk uniform, 1000 — 10000
max-connect, δk, τk, πk uniform, 1 — 10

Platform parameters used in simulation

Yves Robert Scheduling for Heterogeneous Platforms 83/ 90

Putting all together

Hints for implementation

Participants sharing resources in a Virtual Organization

Centralized broker managing applications and resources

Broker gathers all parameters of LP program

Priority factors

Various policies and refinements possible
⇒ e.g. fixed number of connections per application

Yves Robert Scheduling for Heterogeneous Platforms 84/ 90

Putting all together

Bibliography

Tiers:
Modeling Internet topology, K. Calvert, M. Doar and E.W.
Zegura, IEEE Comm. Magazine 35, 6 (1997), 160-163

Scheduling multiple applications:
A realistic network/application model for scheduling divisible loads
on large-scale platforms, L. Marchal et al., 19th IEEE IPDPS
(2005)

Yves Robert Scheduling for Heterogeneous Platforms 85/ 90

Conclusion

Outline

1 Background on traditional scheduling

2 Packet routing

3 Master-worker on heterogeneous platforms

4 Broadcast

5 Limitations

6 Putting all together

7 Conclusion

Yves Robert Scheduling for Heterogeneous Platforms 86/ 90

Conclusion

Key advantages of steady-state scheduling

Simplicity

From local equations to global behavior
Throughput characterized from activity variables

Efficiency

Periodic schedule, described in compact form
Asymptotic optimality

Adaptability

Record observed performance during current period
Inject information to compute schedule for next
period
React on the fly to resource availability variations

Yves Robert Scheduling for Heterogeneous Platforms 87/ 90

Conclusion

Open problems

Decentralized scheduling
I From local strategies to provably good performance?
I Adapt Awerbuch-Leighton algorithm for multicommodity flows?

Concurrent scheduling
I Multi-criteria and fairness?
I Adapt economic models and buzz-words (e.g., Nash equilibrium)?

Yves Robert Scheduling for Heterogeneous Platforms 88/ 90

Conclusion

Scheduling for heterogeneous platforms

If the platform is well identified and relatively stable, try to:
(i) accurately model the (expected) hierarchical structure of the
platform
(ii) design scheduling algorithms well-suited to this hierarchical
structure

If the platform is not stable enough, or if it evolves too fast,
dynamic schedulers are the only option

Otherwise, grab the opportunity to inject some static knowledge
into dynamic schedulers:
/ Is this opportunity a niche?
, Does it encompass a wide range of applications?

Yves Robert Scheduling for Heterogeneous Platforms 89/ 90

Conclusion

Answer to first comment

Comment
Scheduling is “this thing that people in academia like to think about
but that people who do real stuff sort of ignore”

Answer
/ Thank you for your attention.
Other comments or questions?

Yves Robert Scheduling for Heterogeneous Platforms 90/ 90

Conclusion

Answer to first comment

Comment
Scheduling is “this thing that people in academia like to think about
but that people who do real stuff sort of ignore”

Answer
/ Thank you for your attention.
Other comments or questions?

Yves Robert Scheduling for Heterogeneous Platforms 90/ 90

	Background on traditional scheduling
	Packet routing
	Master-worker on heterogeneous platforms
	Broadcast
	Limitations
	Parameters
	Communication model
	Bandwidth sharing
	Topology hierarchy

	Putting all together
	Conclusion

